Antimicrobial and Anticancer Application of Silver(I) Dipeptide Complexes

. 2021 Oct 20 ; 26 (21) : . [epub] 20211020

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34770744

Three silver(I) dipeptide complexes [Ag(GlyGly)]n(NO3)n (AgGlyGly), [Ag2(GlyAla)(NO3)2]n (AgGlyAla) and [Ag2(HGlyAsp)(NO3)]n (AgGlyAsp) were prepared, investigated and characterized by vibrational spectroscopy (mid-IR), elemental and thermogravimetric analysis and mass spectrometry. For AgGlyGly, X-ray crystallography was also performed. Their stability in biological testing media was verified by time-dependent NMR measurements. Their in vitro antimicrobial activity was evaluated against selected pathogenic microorganisms. Moreover, the influence of silver(I) dipeptide complexes on microbial film formation was described. Further, the cytotoxicity of the complexes against selected cancer cells (BLM, MDA-MB-231, HeLa, HCT116, MCF-7 and Jurkat) and fibroblasts (BJ-5ta) using a colorimetric MTS assay was tested, and the selectivity index (SI) was identified. The mechanism of action of Ag(I) dipeptide complexes was elucidated and discussed by the study in terms of their binding affinity toward the CT DNA, the ability to cleave the DNA and the ability to influence numbers of cells within each cell cycle phase. The new silver(I) dipeptide complexes are able to bind into DNA by noncovalent interaction, and the topoisomerase I inhibition study showed that the studied complexes inhibit its activity at a concentration of 15 μM.

Zobrazit více v PubMed

Tornesello A.L., Borrelli A., Buonaguro L., Buonaguro F.M., Tornesello M.L. Antimicrobial Peptides as Anticancer Agents: Functional Properties and Biological Activities. Molecules. 2020;25:2850. doi: 10.3390/molecules25122850. PubMed DOI PMC

Raheem N., Straus S.K. Mechanisms of Action for Antimicrobial Peptides with Antibacterial and Antibiofilm Functions. Front. Microbiol. 2019;10:2866. doi: 10.3389/fmicb.2019.02866. PubMed DOI PMC

Flemming A., Allison V.D. Observations on a bacteriolytic substance (“lysozyme”) found in secretions and tissues. Br. J. Exp. Pathol. 1922;3:252–260.

Hirsch J.G. Phagocytin: A bactericidal substance from polymorphonuclear leucocytes. J. Exp. Med. 1956;103:589–611. doi: 10.1084/jem.103.5.589. PubMed DOI PMC

Bobone S., Stella L. Selectivity of Antimicrobial Peptides: A Complex Interplay of Multiple Equilibria. Adv. Exp. Med. Biol. 2019;1117:175–214. PubMed

Budagumpi S., Haque R.A., Endud S., Rehman G.U., Salman A.W. Biologically Relevant Silver(I)-N-Heterocyclic Carbene Complexes: Synthesis, Structure, Intramolecular Interactions, and Applications. Eur. J. Inorg. Chem. 2013;2013:4367–4388. doi: 10.1002/ejic.201300483. DOI

Medici S., Peana M., Crisponi G., Nurchi V.M., Lachowicz J.I., Remelli M., Zoroddu M.A. Silver coordination compounds: A new horizon in medicine. Coord. Chem. Rev. 2016;327–328:349–359. doi: 10.1016/j.ccr.2016.05.015. DOI

Abarca R., Gomez G., Velasquez C., Paez M.A., Gulppi M., Arrieta A., Azocar M.I. Antibacterial Behavior of Pyridinecarboxylatesilver(I) Complexes. Chin. J. Chem. 2012;30:1631–1635. doi: 10.1002/cjoc.201100666. DOI

Homzová K., Gyoryová K., Bujdošová Z., Hudecová D., Ganajová M., Vargová Z., Kovářová J. Synthesis, thermal, spectral and biological properties of zinc(II) 4-hydroxybenzoate complexes. J. Therm. Anal. Calorim. 2014;116:77–91. doi: 10.1007/s10973-014-3702-x. DOI

Vargová Z., Almáši M., Hudecová D., Titková D., Rostášová I., Zeleňák V., Györyová K. New silver(I) pyridinecarboxylate complexes: Synthesis, characterization, and antimicrobial therapeutic potential. J. Coord. Chem. 2014;67:1002–1021. doi: 10.1080/00958972.2014.906588. DOI

Almáši M., Vargová Z., Sabolová D., Kudláčová J., Hudecová D., Kuchár J., Očenášová L., Györyová K. Ag(I) and Zn(II) isonicotinate complexes: Design, characterization, antimicrobial effect, and CT-DNA binding studies. J. Coord. Chem. 2015;68:4423–4443. doi: 10.1080/00958972.2015.1101074. DOI

McCann M., Curran R., Ben-Shoshan M., McKee V., Devereux M., Kavanagh K., Kellett A. Synthesis, structure and biological activity of silver(I) complexes of substituted imidazoles. Polyhedron. 2013;56:180–188. doi: 10.1016/j.poly.2013.03.057. DOI

Sadek B. Imidazole-substituted drugs and tendency for inhibition of cytochrome P450 isoenzymes: A review. Pharma Chem. 2011;3:410–419.

Kalinowska-Lis U., Felczak A., Chęcińska L., Małecka M., Lisowska K., Ochocki J. Influence of selected inorganic counter-ions on the structure and antimicrobial properties of silver(i) complexes with imidazole-containing ligands. New J. Chem. 2016;40:694–704. doi: 10.1039/C5NJ02514A. DOI

Kalinowska-Lis U., Felczak A., Chęcińska L., Zawadzka K., Patyna E., Lisowska K., Ochocki J. Synthesis, characterization and antimicrobial activity of water-soluble silver(i) complexes of metronidazole drug and selected counter-ions. Dalton Trans. 2015;44:8178–8189. doi: 10.1039/C5DT00403A. PubMed DOI

Rendošová M., Vargová Z., Kuchár J., Sabolová D., Levoča Š., Kudláčová J., Paulíková H., Hudecová D., Helebrandtová V., Almáši M., et al. New silver complexes with bioactive glycine and nicotinamide molecules—Characterization, DNA binding, antimicrobial and anticancer evaluation. J. Inorg. Biochem. 2017;168:1–12. doi: 10.1016/j.jinorgbio.2016.12.003. PubMed DOI

Kuzderová G., Rendošová M., Gyepes R., Almáši M., Sabolová D., Vilková M., Olejníková P., Hudecová D., Kello M., Vargová Z. In vitro biological evaluation and consideration about structure-activity relationship of silver(I) aminoacidate complexes. J. Inorg. Biochem. 2020;210:11170. doi: 10.1016/j.jinorgbio.2020.111170. PubMed DOI

Manzano C., Nakahata D.H., Corbi P.P., Tenorio J.C., Lustri W.R., Nogueira F.A.R., Aleixo N.A., Gomes P.S.D.S., Pavan F., Grecco J.A., et al. Silver complexes with fluoroanthranilic acid isomers: Spectroscopic characterization, antimycobacterial activity and cytotoxic studies over a panel of tumor cells. Inorg. Chim. Acta. 2020;502:119293. doi: 10.1016/j.ica.2019.119293. DOI

Samanta T., Munda R.N., Roymahapatra G., Nandy A., Saha K.D., Al-Deyab S.S., Dinda J. Silver(I), Gold(I) and Gold(III)-N-Heterocyclic carbene complexes of naphthyl substituted annelated ligand: Synthesis, structure and cytotoxicity. J. Organomet. Chem. 2015;791:183–191. doi: 10.1016/j.jorganchem.2015.05.049. DOI

Haque R.A., Choo S.Y., Budagumpi S., Iqbal M.A., Abdullah A.A.-A. Silver(I) complexes of mono- and bidentate N-heterocyclic carbene ligands: Synthesis, crystal structures, and in vitro antibacterial and anticancer studies. Eur. J. Med. Chem. 2015;90:82–92. doi: 10.1016/j.ejmech.2014.11.005. PubMed DOI

Canakci D., Koyuncu I., Lolak N., Durgun M., Akocak S., Supuran C.T. Synthesis and cytotoxic activities of novel copper and silver complexes of 1,3-diaryltriazene-substituted sulfonamides. J. Enzyme Inhib. Med. Chem. 2019;34:110–116. doi: 10.1080/14756366.2018.1530994. PubMed DOI PMC

Akkoç S., Kayser V., Ilhan I.Ö., Hibbs D.E., Gök Y., Williams P.A., Hawkins B., Lai F. New compounds based on a benzimidazole nucleus: Synthesis, characterization and cytotoxic activity against breast and colon cancer cell lines. J. Organomet. Chem. 2017;839:98–107. doi: 10.1016/j.jorganchem.2017.03.037. DOI

Banti C.N., Papatriantafyllopoulou C., Manoli M., Tasiopoulos A.J., Hadjikakou S.K. Nimesulide Silver Metallodrugs, Containing the Mitochondriotropic, Triaryl Derivatives of Pnictogen; Anticancer Activity against Human Breast Cancer Cells. Inorg. Chem. 2016;55:8681–8696. doi: 10.1021/acs.inorgchem.6b01241. PubMed DOI

Banti C.N., Hatzidimitriou A.G., Kourkoumelis N., Hadjikakou S.K. Diclofenac conjugates with biocides through silver(I) ions (CoMeD’s); Development of a reliable model for the prediction of anti-proliferation of NSAID’s-silver formulations. J. Inorg. Biochem. 2019;194:7–18. doi: 10.1016/j.jinorgbio.2019.01.020. PubMed DOI

Altay A., Caglar S., Caglar B. Silver(I) complexes containing diclofenac and niflumic acid induce apoptosis in human-derived cancer cell lines. Arch. Physiol. Biochem. 2019:1–11. doi: 10.1080/13813455.2019.1662454. PubMed DOI

Li S., Zhang S., Jin X., Tan X., Lou J., Zhang X., Zhao Y. Singly protonated dehydronorcantharidin silver coordination polymer induces apoptosis of lung cancer cells via reactive oxygen species-mediated mitochondrial pathway. Eur. J. Med. Chem. 2014;86:1–11. doi: 10.1016/j.ejmech.2014.08.052. PubMed DOI

Mahendiran D., Kumar R.S., Viswanathan V., Velmurugan D., Rahiman A.Z. In vitro and in vivo anti-proliferative evaluation of bis(4′-(4-tolyl)-2,2′:6′,2″-terpyridine)copper(II) complex against Ehrlich ascites carcinoma tumors. J. Biol. Inorg. Chem. 2017;22:1109–1122. doi: 10.1007/s00775-017-1488-6. PubMed DOI

Li Y.-L., Qin Q.-P., An Y.-F., Liu Y.-C., Huang G.-B., Luo X.-J., Zhang G.-H. Study on potential antitumor mechanism of quinoline-based silver(I) complexes: Synthesis, structural characterization, cytotoxicity, cell cycle and caspase-initiated apoptosis. Inorg. Chem. Commun. 2014;40:73–77. doi: 10.1016/j.inoche.2013.11.014. DOI

Liang X., Luan S., Yin Z., He M., He C., Yin L., Zou Y., Yuan Z., Li L., Song X., et al. Recent advances in the medical use of silver complex. Eur. J. Med. Chem. 2018;157:62–80. doi: 10.1016/j.ejmech.2018.07.057. PubMed DOI

Rendošová M., Gyepes R., Cingelova M.I., Mudronova D., Sabolová D., Kello M., Vargova Z. In vitro selective inhibitory effect of silver(I) aminoacidates against bacteria and intestinal cell lines and elucidation of mechanism action by means of DNA binding properties, DNA cleavage and cell cycle arrest. Dalton Trans. 2021;50:936–953. doi: 10.1039/D0DT03332D. PubMed DOI

Flook R.J., Freeman H.C., Moore C.J., Scudder M.L. Model compounds for metal–protein interaction: Crystal structures of seven cadmium(II) complexes of amino-acids and peptides. J. Chem. Soc. Chem. Commun. 1973:753–754. doi: 10.1039/C39730000753. DOI

Takayama T., Ohuchida S., Koike Y., Watanabe M., Hashizume D., Ohashi Y. Structural Analysis of Cadmium-Glycylglycine Complexes Studied by X-ray Diffraction and High Resolution 1l3Cd and 13C Solid State NMR. Bull. Chem. Soc. Jpn. 1996;69:1579–1586. doi: 10.1246/bcsj.69.1579. DOI

Acland C.B., Freeman H.C. Model compounds for metal–protein interaction: Crystal structures of four silver(II) complexes with glycine, glycylglycine, and imidazole. J. Chem. Soc. D. 1971;17:1016–1017. doi: 10.1039/C29710001016. DOI

Shiro M., Nakao Y., Yamauchi O., Nakahara A. the crystal and molecular structure of chloroglycylglycinatocopper(II) monohydrate. Chem. Lett. 1972;1:123–124. doi: 10.1246/cl.1972.123. DOI

Rabone J., Yue Y.-F., Chong S.Y., Stylianou K.C., Bacsa J., Bradshaw D., Darling G.R., Berry N.G., Khimyak Y.Z., Ganin A.Y., et al. An Adaptable Peptide-Based Porous Material. Science. 2010;329:1053–1057. doi: 10.1126/science.1190672. PubMed DOI

Emami S., Paz F.A.A., Mendes A., Gales L. Toward the Construction of 3D Dipeptide–Metal Frameworks. Cryst. Growth Des. 2014;14:4777–4780. doi: 10.1021/cg500925x. DOI

Koleva B.B., Zareva S., Kolev T., Spiteller M. New Au(III), Pt(II) and Pd(II) complexes with glycyl-containing homopeptides. J. Coord. Chem. 2008;61:3534–3548. doi: 10.1080/00958970802108817. DOI

Joseyphus R.S., Nair M.S. Synthesis, characterization and biological studies of some Co(II), Ni(II) and Cu(II) complexes derived from indole-3-carboxaldehyde and glycylglycine as Schiff base ligand. Arab. J. Chem. 2010;3:195–204. doi: 10.1016/j.arabjc.2010.05.001. DOI

Fu X.-B., Liu D.-D., Lin Y., Hu W., Mao Z.-W., Le X.-Y. Water-soluble DNA minor groove binders as potential chemotherapeutic agents: Synthesis, characterization, DNA binding and cleavage, antioxidation, cytotoxicity and HSA interactions. Dalton Trans. 2014;43:8721–8737. doi: 10.1039/c3dt53577k. PubMed DOI

Tabassum S., Al-Asbahy W.M., Afzal M., Shamsi M., Arjmand F. DNA binding and cleavage studies of new sulfasalazine-derived dipeptide Zn(II) complex: Validation for specific recognition with 5′–TMP. J. Lumin. 2012;132:3058–3065. doi: 10.1016/j.jlumin.2012.05.040. DOI

Schmidbaur H., Schier A. Argentophilic Interactions. Angew. Chem. Int. Ed. 2015;54:746–784. doi: 10.1002/anie.201405936. PubMed DOI

Groom C.R., Bruno I.J., Lightfoot M.P., Ward S.C. The Cambridge Structural Database. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2016;72:171–179. doi: 10.1107/S2052520616003954. PubMed DOI PMC

Liu W., Zou Y., Ni C.-L., Ni Z.-P., Li Y.-Z., Yao Y.-G., Meng Q.-J. Synthesis and characterization of a dipeptide–copper(II)–2-aminomethylbenzimidazole ternary complex. J. Coord. Chem. 2004;57:899–906. doi: 10.1080/00958970410001726362. DOI

Buckingham D.A., Marzilli P.A., Maxwell I.E., Sargeson A.M., Fehlmann M., Freeman H.C. The crystal structures of the glycylglycine O-ethyl ester and chloroaquo-complexes of β-(triethylenetetramine)cobalt(III) Chem. Commun. 1968;9:488–489. doi: 10.1039/C19680000488. DOI

Payne J.W., Smith M.W. Peptide transport by microorganisms. Adv. Microb. Physiol. 1994;36:1–80. doi: 10.1016/s0065-2911(08)60176-9. PubMed DOI

Alves R.A., Payne J.W. The number and nature of the peptide transport systems of E. coli: Characterization of specific transport mutants. Biochem. Soc. Trans. 1980;8:704–705. doi: 10.1042/bst0080704a. PubMed DOI

Smith M.W., Tyreman D.R., Payne G.M., Marshall N.J., Payne J.W. Substrate specificity of the periplasmic dipeptide-binding protein from Escherichia coli: Experimental basis for the design of peptide prodrugs. Microbiology. 1999;145:2891–2901. doi: 10.1099/00221287-145-10-2891. PubMed DOI

Perry D., Gilvarg C. Spectrophotometric determination of affinities of peptides for their transport systems in Escherichia coli. J. Bacteriol. 1984;160:943–948. doi: 10.1128/jb.160.3.943-948.1984. PubMed DOI PMC

Banti C.N., Raptopoulou C.P., Psycharis V., Hadjikakou S.K. Novel silver glycinate conjugate with 3D polymeric intermolecular self-assembly architecture; an antiproliferative agent which induces apoptosis on human breast cancer cells. J. Inorg. Biochem. 2021;216:111351. doi: 10.1016/j.jinorgbio.2020.111351. PubMed DOI

Kutlu T., Yıldırım I., Karabıyık H., Kılınçlı A., Tekedereli I., Gök Y., Dikmen M., Aktas A. Cytotoxic activity and apoptosis induction by a series Ag(I)-NHC complexes on human breast cancer cells and non-tumorigenic epithelial cell line. J. Mol. Struct. 2021;1228:129462. doi: 10.1016/j.molstruc.2020.129462. DOI

Satyanarayana S., Dabrowiak J.C., Chaires J. Tris(phenanthroline)ruthenium(II) enantiomer interactions with DNA: Mode and specificity of binding. Biochemistry. 1993;32:2573–2584. doi: 10.1021/bi00061a015. PubMed DOI

Shahabadi N., Ghasemian Z., Hadidi S. Binding Studies of a New Water-Soluble Iron(III) Schiff Base Complex to DNA Using Multispectroscopic Methods. Bioinorg. Chem. Appl. 2012;2012:126451. doi: 10.1155/2012/126451. PubMed DOI PMC

Bhadra K., Kumar G.S. Interaction of berberine, palmatine, coralyne, and sanguinarine to quadruplex DNA: A comparative spectroscopic and calorimetric study. Biochim. Biophys. Acta. 2011;1810:485–496. doi: 10.1016/j.bbagen.2011.01.011. PubMed DOI

Thakor K.P., Lunagariya M.V., Bhatt B.S., Patel M.N. Fluorescence and absorption studies of DNA-Pd(II) complex interaction: Synthesis, spectroanalytical investigations and biological activities. Luminescence. 2019;34:113–124. doi: 10.1002/bio.3587. PubMed DOI

Chang Y.-M., Chen C.K.-M., Hou M.-H. Conformational Changes in DNA upon Ligand Binding Monitored by Circular Dichroism. Int. J. Mol. Sci. 2012;13:3394–3413. doi: 10.3390/ijms13033394. PubMed DOI PMC

Meenongwa A., Brissos R.F., Soikum C., Chaveerach P., Trongpanich Y., Chaveerach U. Enhancement of biological activities of copper(II) complexes containing guanidine derivatives by enrofloxacin. J. Mol. Struct. 2021;1241:130645. doi: 10.1016/j.molstruc.2021.130645. DOI

Shahabadi N., Fatahi S., Maghsudi M. Synthesis of a new Pt(II) complex containing valganciclovir drug and calf-thymus DNA interaction study using multispectroscopic methods. J. Coord. Chem. 2018;71:258–270. doi: 10.1080/00958972.2018.1433828. DOI

Brodie C.R., Collins J.G., Wright J.R.A. DNA binding and biological activity of some platinum(II) intercalating compounds containing methyl-substituted 1,10-phenanthrolines. Dalton Trans. 2004;8:1145–1152. doi: 10.1039/b316511f. PubMed DOI

Yildiz U., Coban B. Chemical and photo-induced nuclease activity of a novel minor groove DNA binder Cu(II) complex. J. Serbian Chem. Soc. 2019;84:563–574. doi: 10.2298/JSC180802102Y. DOI

Champoux J.J. DNA Topoisomerases: Structure, Function, and Mechanism. Annu. Rev. Biochem. 2001;70:369–413. doi: 10.1146/annurev.biochem.70.1.369. PubMed DOI

Nitiss J.L. Targeting DNA topoisomerase II in cancer chemotherapy. Nat. Rev. Cancer. 2009;9:338–350. doi: 10.1038/nrc2607. PubMed DOI PMC

Yuan Z., Chen S., Chen C., Chen J., Chen C., Dai Q., Gao C., Jiang Y. Design, synthesis and biological evaluation of 4-amidobenzimidazole acridine derivatives as dual PARP and Topo inhibitors for cancer therapy. Eur. J. Med. Chem. 2017;138:1135–1146. doi: 10.1016/j.ejmech.2017.07.050. PubMed DOI

Rendošová M., Vargová Z., Sabolová D., Imrichová N., Hudecová D., Gyepes R., Lakatoš B., Elefantová K. Silver pyridine-2-sulfonate complex-its characterization, DNA binding, topoisomerase I inhibition, antimicrobial and anticancer response. J. Inorg. Biochem. 2018;186:206–216. doi: 10.1016/j.jinorgbio.2018.06.006. PubMed DOI

Banti C.N., Papatriantafyllopoulou C., Tasiopoulos A.J., Hadjikakou S.K. New metalo-therapeutics of NSAIDs against human breast cancer cells. Eur. J. Med. Chem. 2018;143:1687–1701. doi: 10.1016/j.ejmech.2017.10.067. PubMed DOI

Silva D.E.S., Becceneri A.B., Solcia M.C., Santiago J.V.B., Moreira M.B., Neto J.A.G., Pavan F., Cominetti M.R., Pereira J.C.M., Netto A.V.D.G. Cytotoxic and apoptotic effects of ternary silver(i) complexes bearing 2-formylpyridine thiosemicarbazones and 1,10-phenanthroline. Dalton Trans. 2020;49:5264–5275. doi: 10.1039/D0DT00253D. PubMed DOI

Ota A., Tajima M., Mori K., Sugiyama E., Sato V.H., Sato H. The selective cytotoxicity of silver thiosulfate, a silver complex, on MCF-7 breast cancer cells through ROS-induced cell death. Pharmacol. Rep. 2021;73:847–857. doi: 10.1007/s43440-021-00260-0. PubMed DOI PMC

Sheldrick G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015;71:3–8. doi: 10.1107/S2053229614024218. PubMed DOI PMC

Brandenburg K., Putz H. DIAMOND–Crystal and Molecular Structure Visualization, v6.3. Crystal Impact GbR; Bonn, Germany: 2020.

Jantová S., Hudecová D., Stankovský Š., Špirková K., Ružeková L. Antibacterial effect of substituted 4-quinazolylhydrazines and their arylhydrazones determined by a modified microdilution method. Folia Microbiol. 1995;40:611–614. doi: 10.1007/BF02818517. PubMed DOI

Betina V., Mičeková D. Antimicrobial properties of fungal macrolide antibiotics. J. Basic Microbiol. 1972;12:355–364. doi: 10.1002/jobm.3630120502. PubMed DOI

Hudecova D., Jantova S., Melnik M., Uher M. New azidometalkojates and their biological activity. Folia Microbiol. 1996;41:473–476. doi: 10.1007/BF02814660. PubMed DOI

Dudová B., Hudecová D., Pokorný R., Mičková M., Palicová M., Segl’a P., Melník M. Copper complexes with bioactive ligands. Folia Microbiol. 2002;47:225–229. doi: 10.1007/BF02817642. PubMed DOI

Maron D.M., Ames B.N. Revised methods for the Salmonella mutagenicity test. Mutat. Res. Mutagen. Relat. Subj. 1983;113:173–215. doi: 10.1016/0165-1161(83)90010-9. PubMed DOI

Sherry L., Rajendran R., Lappin D.F., Borghi E., Perdoni F., Falleni M., Tosi D., Smith K., Williams C., Jones B., et al. Biofilms formed by Candida albicans bloodstream isolates display phenotypic and transcriptional heterogeneity that are associated with resistance and pathogenicity. BMC Microbiol. 2014;14:182. doi: 10.1186/1471-2180-14-182. PubMed DOI PMC

Potočňák I., Vranec P., Farkasová V., Sabolová D., Vataščinová M., Kudláčová J., Radojević I.D., Čomić L.R., Markovic B.S., Volarevic V., et al. Low-dimensional compounds containing bioactive ligands. Part VI: Synthesis, structures, in vitro DNA binding, antibacterial and anticancer properties of first row transition metals complexes with 5-chloro-quinolin-8-ol. J. Inorg. Biochem. 2015;154:67–77. doi: 10.1016/j.jinorgbio.2015.10.015. PubMed DOI

Franich A.A., Živković M.D., Ilić-Tomić T., Đorđević I.S., Nikodinović-Runić J., Pavić A., Janjić G.V., Rajković S. New minor groove covering DNA binding mode of dinuclear Pt(II) complexes with various pyridine-linked bridging ligands and dual anticancer-antiangiogenic activities. J. Biol. Inorg. Chem. 2020;25:395–409. doi: 10.1007/s00775-020-01770-7. PubMed DOI

Smolková R., Zeleňák V., Gyepes R., Sabolová D., Imrichová N., Hudecová D., Smolko L. Synthesis, characterization, DNA binding, topoisomerase I inhibition and antimicrobial activity of four novel zinc(II) fenamates. Polyhedron. 2018;141:230–238. doi: 10.1016/j.poly.2017.11.052. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...