Antimicrobial and Anticancer Application of Silver(I) Dipeptide Complexes
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34770744
PubMed Central
PMC8587849
DOI
10.3390/molecules26216335
PII: molecules26216335
Knihovny.cz E-zdroje
- Klíčová slova
- DNA interaction, anticancer activity, antimicrobial activity, cell cycle arrest, crystal structure, dipeptide, silver(I) complexes, stability, topoisomerase I inhibition,
- MeSH
- antiinfekční látky chemická syntéza chemie farmakologie MeSH
- buněčný cyklus účinky léků MeSH
- chemické jevy MeSH
- dipeptidy chemie MeSH
- komplexní sloučeniny chemická syntéza chemie farmakologie MeSH
- krystalografie rentgenová MeSH
- lidé MeSH
- molekulární konformace MeSH
- nádorové buněčné linie MeSH
- protinádorové látky chemická syntéza chemie farmakologie MeSH
- simulace molekulární dynamiky MeSH
- spektrální analýza MeSH
- stabilita léku MeSH
- stříbro chemie MeSH
- techniky syntetické chemie MeSH
- termogravimetrie MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antiinfekční látky MeSH
- dipeptidy MeSH
- komplexní sloučeniny MeSH
- protinádorové látky MeSH
- stříbro MeSH
Three silver(I) dipeptide complexes [Ag(GlyGly)]n(NO3)n (AgGlyGly), [Ag2(GlyAla)(NO3)2]n (AgGlyAla) and [Ag2(HGlyAsp)(NO3)]n (AgGlyAsp) were prepared, investigated and characterized by vibrational spectroscopy (mid-IR), elemental and thermogravimetric analysis and mass spectrometry. For AgGlyGly, X-ray crystallography was also performed. Their stability in biological testing media was verified by time-dependent NMR measurements. Their in vitro antimicrobial activity was evaluated against selected pathogenic microorganisms. Moreover, the influence of silver(I) dipeptide complexes on microbial film formation was described. Further, the cytotoxicity of the complexes against selected cancer cells (BLM, MDA-MB-231, HeLa, HCT116, MCF-7 and Jurkat) and fibroblasts (BJ-5ta) using a colorimetric MTS assay was tested, and the selectivity index (SI) was identified. The mechanism of action of Ag(I) dipeptide complexes was elucidated and discussed by the study in terms of their binding affinity toward the CT DNA, the ability to cleave the DNA and the ability to influence numbers of cells within each cell cycle phase. The new silver(I) dipeptide complexes are able to bind into DNA by noncovalent interaction, and the topoisomerase I inhibition study showed that the studied complexes inhibit its activity at a concentration of 15 μM.
Department of Biochemistry P J Šafárik University Moyzesova 11 041 54 Kosice Slovakia
Department of Inorganic Chemistry Charles University Hlavova 2030 128 00 Praque Czech Republic
Department of Inorganic Chemistry P J Šafárik University Moyzesova 11 041 54 Kosice Slovakia
Department of Pharmacology P J Šafárik University Trieda SNP 1 040 11 Kosice Slovakia
NMR Laboratory P J Šafárik University Moyzesova 11 041 54 Kosice Slovakia
Zobrazit více v PubMed
Tornesello A.L., Borrelli A., Buonaguro L., Buonaguro F.M., Tornesello M.L. Antimicrobial Peptides as Anticancer Agents: Functional Properties and Biological Activities. Molecules. 2020;25:2850. doi: 10.3390/molecules25122850. PubMed DOI PMC
Raheem N., Straus S.K. Mechanisms of Action for Antimicrobial Peptides with Antibacterial and Antibiofilm Functions. Front. Microbiol. 2019;10:2866. doi: 10.3389/fmicb.2019.02866. PubMed DOI PMC
Flemming A., Allison V.D. Observations on a bacteriolytic substance (“lysozyme”) found in secretions and tissues. Br. J. Exp. Pathol. 1922;3:252–260.
Hirsch J.G. Phagocytin: A bactericidal substance from polymorphonuclear leucocytes. J. Exp. Med. 1956;103:589–611. doi: 10.1084/jem.103.5.589. PubMed DOI PMC
Bobone S., Stella L. Selectivity of Antimicrobial Peptides: A Complex Interplay of Multiple Equilibria. Adv. Exp. Med. Biol. 2019;1117:175–214. PubMed
Budagumpi S., Haque R.A., Endud S., Rehman G.U., Salman A.W. Biologically Relevant Silver(I)-N-Heterocyclic Carbene Complexes: Synthesis, Structure, Intramolecular Interactions, and Applications. Eur. J. Inorg. Chem. 2013;2013:4367–4388. doi: 10.1002/ejic.201300483. DOI
Medici S., Peana M., Crisponi G., Nurchi V.M., Lachowicz J.I., Remelli M., Zoroddu M.A. Silver coordination compounds: A new horizon in medicine. Coord. Chem. Rev. 2016;327–328:349–359. doi: 10.1016/j.ccr.2016.05.015. DOI
Abarca R., Gomez G., Velasquez C., Paez M.A., Gulppi M., Arrieta A., Azocar M.I. Antibacterial Behavior of Pyridinecarboxylatesilver(I) Complexes. Chin. J. Chem. 2012;30:1631–1635. doi: 10.1002/cjoc.201100666. DOI
Homzová K., Gyoryová K., Bujdošová Z., Hudecová D., Ganajová M., Vargová Z., Kovářová J. Synthesis, thermal, spectral and biological properties of zinc(II) 4-hydroxybenzoate complexes. J. Therm. Anal. Calorim. 2014;116:77–91. doi: 10.1007/s10973-014-3702-x. DOI
Vargová Z., Almáši M., Hudecová D., Titková D., Rostášová I., Zeleňák V., Györyová K. New silver(I) pyridinecarboxylate complexes: Synthesis, characterization, and antimicrobial therapeutic potential. J. Coord. Chem. 2014;67:1002–1021. doi: 10.1080/00958972.2014.906588. DOI
Almáši M., Vargová Z., Sabolová D., Kudláčová J., Hudecová D., Kuchár J., Očenášová L., Györyová K. Ag(I) and Zn(II) isonicotinate complexes: Design, characterization, antimicrobial effect, and CT-DNA binding studies. J. Coord. Chem. 2015;68:4423–4443. doi: 10.1080/00958972.2015.1101074. DOI
McCann M., Curran R., Ben-Shoshan M., McKee V., Devereux M., Kavanagh K., Kellett A. Synthesis, structure and biological activity of silver(I) complexes of substituted imidazoles. Polyhedron. 2013;56:180–188. doi: 10.1016/j.poly.2013.03.057. DOI
Sadek B. Imidazole-substituted drugs and tendency for inhibition of cytochrome P450 isoenzymes: A review. Pharma Chem. 2011;3:410–419.
Kalinowska-Lis U., Felczak A., Chęcińska L., Małecka M., Lisowska K., Ochocki J. Influence of selected inorganic counter-ions on the structure and antimicrobial properties of silver(i) complexes with imidazole-containing ligands. New J. Chem. 2016;40:694–704. doi: 10.1039/C5NJ02514A. DOI
Kalinowska-Lis U., Felczak A., Chęcińska L., Zawadzka K., Patyna E., Lisowska K., Ochocki J. Synthesis, characterization and antimicrobial activity of water-soluble silver(i) complexes of metronidazole drug and selected counter-ions. Dalton Trans. 2015;44:8178–8189. doi: 10.1039/C5DT00403A. PubMed DOI
Rendošová M., Vargová Z., Kuchár J., Sabolová D., Levoča Š., Kudláčová J., Paulíková H., Hudecová D., Helebrandtová V., Almáši M., et al. New silver complexes with bioactive glycine and nicotinamide molecules—Characterization, DNA binding, antimicrobial and anticancer evaluation. J. Inorg. Biochem. 2017;168:1–12. doi: 10.1016/j.jinorgbio.2016.12.003. PubMed DOI
Kuzderová G., Rendošová M., Gyepes R., Almáši M., Sabolová D., Vilková M., Olejníková P., Hudecová D., Kello M., Vargová Z. In vitro biological evaluation and consideration about structure-activity relationship of silver(I) aminoacidate complexes. J. Inorg. Biochem. 2020;210:11170. doi: 10.1016/j.jinorgbio.2020.111170. PubMed DOI
Manzano C., Nakahata D.H., Corbi P.P., Tenorio J.C., Lustri W.R., Nogueira F.A.R., Aleixo N.A., Gomes P.S.D.S., Pavan F., Grecco J.A., et al. Silver complexes with fluoroanthranilic acid isomers: Spectroscopic characterization, antimycobacterial activity and cytotoxic studies over a panel of tumor cells. Inorg. Chim. Acta. 2020;502:119293. doi: 10.1016/j.ica.2019.119293. DOI
Samanta T., Munda R.N., Roymahapatra G., Nandy A., Saha K.D., Al-Deyab S.S., Dinda J. Silver(I), Gold(I) and Gold(III)-N-Heterocyclic carbene complexes of naphthyl substituted annelated ligand: Synthesis, structure and cytotoxicity. J. Organomet. Chem. 2015;791:183–191. doi: 10.1016/j.jorganchem.2015.05.049. DOI
Haque R.A., Choo S.Y., Budagumpi S., Iqbal M.A., Abdullah A.A.-A. Silver(I) complexes of mono- and bidentate N-heterocyclic carbene ligands: Synthesis, crystal structures, and in vitro antibacterial and anticancer studies. Eur. J. Med. Chem. 2015;90:82–92. doi: 10.1016/j.ejmech.2014.11.005. PubMed DOI
Canakci D., Koyuncu I., Lolak N., Durgun M., Akocak S., Supuran C.T. Synthesis and cytotoxic activities of novel copper and silver complexes of 1,3-diaryltriazene-substituted sulfonamides. J. Enzyme Inhib. Med. Chem. 2019;34:110–116. doi: 10.1080/14756366.2018.1530994. PubMed DOI PMC
Akkoç S., Kayser V., Ilhan I.Ö., Hibbs D.E., Gök Y., Williams P.A., Hawkins B., Lai F. New compounds based on a benzimidazole nucleus: Synthesis, characterization and cytotoxic activity against breast and colon cancer cell lines. J. Organomet. Chem. 2017;839:98–107. doi: 10.1016/j.jorganchem.2017.03.037. DOI
Banti C.N., Papatriantafyllopoulou C., Manoli M., Tasiopoulos A.J., Hadjikakou S.K. Nimesulide Silver Metallodrugs, Containing the Mitochondriotropic, Triaryl Derivatives of Pnictogen; Anticancer Activity against Human Breast Cancer Cells. Inorg. Chem. 2016;55:8681–8696. doi: 10.1021/acs.inorgchem.6b01241. PubMed DOI
Banti C.N., Hatzidimitriou A.G., Kourkoumelis N., Hadjikakou S.K. Diclofenac conjugates with biocides through silver(I) ions (CoMeD’s); Development of a reliable model for the prediction of anti-proliferation of NSAID’s-silver formulations. J. Inorg. Biochem. 2019;194:7–18. doi: 10.1016/j.jinorgbio.2019.01.020. PubMed DOI
Altay A., Caglar S., Caglar B. Silver(I) complexes containing diclofenac and niflumic acid induce apoptosis in human-derived cancer cell lines. Arch. Physiol. Biochem. 2019:1–11. doi: 10.1080/13813455.2019.1662454. PubMed DOI
Li S., Zhang S., Jin X., Tan X., Lou J., Zhang X., Zhao Y. Singly protonated dehydronorcantharidin silver coordination polymer induces apoptosis of lung cancer cells via reactive oxygen species-mediated mitochondrial pathway. Eur. J. Med. Chem. 2014;86:1–11. doi: 10.1016/j.ejmech.2014.08.052. PubMed DOI
Mahendiran D., Kumar R.S., Viswanathan V., Velmurugan D., Rahiman A.Z. In vitro and in vivo anti-proliferative evaluation of bis(4′-(4-tolyl)-2,2′:6′,2″-terpyridine)copper(II) complex against Ehrlich ascites carcinoma tumors. J. Biol. Inorg. Chem. 2017;22:1109–1122. doi: 10.1007/s00775-017-1488-6. PubMed DOI
Li Y.-L., Qin Q.-P., An Y.-F., Liu Y.-C., Huang G.-B., Luo X.-J., Zhang G.-H. Study on potential antitumor mechanism of quinoline-based silver(I) complexes: Synthesis, structural characterization, cytotoxicity, cell cycle and caspase-initiated apoptosis. Inorg. Chem. Commun. 2014;40:73–77. doi: 10.1016/j.inoche.2013.11.014. DOI
Liang X., Luan S., Yin Z., He M., He C., Yin L., Zou Y., Yuan Z., Li L., Song X., et al. Recent advances in the medical use of silver complex. Eur. J. Med. Chem. 2018;157:62–80. doi: 10.1016/j.ejmech.2018.07.057. PubMed DOI
Rendošová M., Gyepes R., Cingelova M.I., Mudronova D., Sabolová D., Kello M., Vargova Z. In vitro selective inhibitory effect of silver(I) aminoacidates against bacteria and intestinal cell lines and elucidation of mechanism action by means of DNA binding properties, DNA cleavage and cell cycle arrest. Dalton Trans. 2021;50:936–953. doi: 10.1039/D0DT03332D. PubMed DOI
Flook R.J., Freeman H.C., Moore C.J., Scudder M.L. Model compounds for metal–protein interaction: Crystal structures of seven cadmium(II) complexes of amino-acids and peptides. J. Chem. Soc. Chem. Commun. 1973:753–754. doi: 10.1039/C39730000753. DOI
Takayama T., Ohuchida S., Koike Y., Watanabe M., Hashizume D., Ohashi Y. Structural Analysis of Cadmium-Glycylglycine Complexes Studied by X-ray Diffraction and High Resolution 1l3Cd and 13C Solid State NMR. Bull. Chem. Soc. Jpn. 1996;69:1579–1586. doi: 10.1246/bcsj.69.1579. DOI
Acland C.B., Freeman H.C. Model compounds for metal–protein interaction: Crystal structures of four silver(II) complexes with glycine, glycylglycine, and imidazole. J. Chem. Soc. D. 1971;17:1016–1017. doi: 10.1039/C29710001016. DOI
Shiro M., Nakao Y., Yamauchi O., Nakahara A. the crystal and molecular structure of chloroglycylglycinatocopper(II) monohydrate. Chem. Lett. 1972;1:123–124. doi: 10.1246/cl.1972.123. DOI
Rabone J., Yue Y.-F., Chong S.Y., Stylianou K.C., Bacsa J., Bradshaw D., Darling G.R., Berry N.G., Khimyak Y.Z., Ganin A.Y., et al. An Adaptable Peptide-Based Porous Material. Science. 2010;329:1053–1057. doi: 10.1126/science.1190672. PubMed DOI
Emami S., Paz F.A.A., Mendes A., Gales L. Toward the Construction of 3D Dipeptide–Metal Frameworks. Cryst. Growth Des. 2014;14:4777–4780. doi: 10.1021/cg500925x. DOI
Koleva B.B., Zareva S., Kolev T., Spiteller M. New Au(III), Pt(II) and Pd(II) complexes with glycyl-containing homopeptides. J. Coord. Chem. 2008;61:3534–3548. doi: 10.1080/00958970802108817. DOI
Joseyphus R.S., Nair M.S. Synthesis, characterization and biological studies of some Co(II), Ni(II) and Cu(II) complexes derived from indole-3-carboxaldehyde and glycylglycine as Schiff base ligand. Arab. J. Chem. 2010;3:195–204. doi: 10.1016/j.arabjc.2010.05.001. DOI
Fu X.-B., Liu D.-D., Lin Y., Hu W., Mao Z.-W., Le X.-Y. Water-soluble DNA minor groove binders as potential chemotherapeutic agents: Synthesis, characterization, DNA binding and cleavage, antioxidation, cytotoxicity and HSA interactions. Dalton Trans. 2014;43:8721–8737. doi: 10.1039/c3dt53577k. PubMed DOI
Tabassum S., Al-Asbahy W.M., Afzal M., Shamsi M., Arjmand F. DNA binding and cleavage studies of new sulfasalazine-derived dipeptide Zn(II) complex: Validation for specific recognition with 5′–TMP. J. Lumin. 2012;132:3058–3065. doi: 10.1016/j.jlumin.2012.05.040. DOI
Schmidbaur H., Schier A. Argentophilic Interactions. Angew. Chem. Int. Ed. 2015;54:746–784. doi: 10.1002/anie.201405936. PubMed DOI
Groom C.R., Bruno I.J., Lightfoot M.P., Ward S.C. The Cambridge Structural Database. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2016;72:171–179. doi: 10.1107/S2052520616003954. PubMed DOI PMC
Liu W., Zou Y., Ni C.-L., Ni Z.-P., Li Y.-Z., Yao Y.-G., Meng Q.-J. Synthesis and characterization of a dipeptide–copper(II)–2-aminomethylbenzimidazole ternary complex. J. Coord. Chem. 2004;57:899–906. doi: 10.1080/00958970410001726362. DOI
Buckingham D.A., Marzilli P.A., Maxwell I.E., Sargeson A.M., Fehlmann M., Freeman H.C. The crystal structures of the glycylglycine O-ethyl ester and chloroaquo-complexes of β-(triethylenetetramine)cobalt(III) Chem. Commun. 1968;9:488–489. doi: 10.1039/C19680000488. DOI
Payne J.W., Smith M.W. Peptide transport by microorganisms. Adv. Microb. Physiol. 1994;36:1–80. doi: 10.1016/s0065-2911(08)60176-9. PubMed DOI
Alves R.A., Payne J.W. The number and nature of the peptide transport systems of E. coli: Characterization of specific transport mutants. Biochem. Soc. Trans. 1980;8:704–705. doi: 10.1042/bst0080704a. PubMed DOI
Smith M.W., Tyreman D.R., Payne G.M., Marshall N.J., Payne J.W. Substrate specificity of the periplasmic dipeptide-binding protein from Escherichia coli: Experimental basis for the design of peptide prodrugs. Microbiology. 1999;145:2891–2901. doi: 10.1099/00221287-145-10-2891. PubMed DOI
Perry D., Gilvarg C. Spectrophotometric determination of affinities of peptides for their transport systems in Escherichia coli. J. Bacteriol. 1984;160:943–948. doi: 10.1128/jb.160.3.943-948.1984. PubMed DOI PMC
Banti C.N., Raptopoulou C.P., Psycharis V., Hadjikakou S.K. Novel silver glycinate conjugate with 3D polymeric intermolecular self-assembly architecture; an antiproliferative agent which induces apoptosis on human breast cancer cells. J. Inorg. Biochem. 2021;216:111351. doi: 10.1016/j.jinorgbio.2020.111351. PubMed DOI
Kutlu T., Yıldırım I., Karabıyık H., Kılınçlı A., Tekedereli I., Gök Y., Dikmen M., Aktas A. Cytotoxic activity and apoptosis induction by a series Ag(I)-NHC complexes on human breast cancer cells and non-tumorigenic epithelial cell line. J. Mol. Struct. 2021;1228:129462. doi: 10.1016/j.molstruc.2020.129462. DOI
Satyanarayana S., Dabrowiak J.C., Chaires J. Tris(phenanthroline)ruthenium(II) enantiomer interactions with DNA: Mode and specificity of binding. Biochemistry. 1993;32:2573–2584. doi: 10.1021/bi00061a015. PubMed DOI
Shahabadi N., Ghasemian Z., Hadidi S. Binding Studies of a New Water-Soluble Iron(III) Schiff Base Complex to DNA Using Multispectroscopic Methods. Bioinorg. Chem. Appl. 2012;2012:126451. doi: 10.1155/2012/126451. PubMed DOI PMC
Bhadra K., Kumar G.S. Interaction of berberine, palmatine, coralyne, and sanguinarine to quadruplex DNA: A comparative spectroscopic and calorimetric study. Biochim. Biophys. Acta. 2011;1810:485–496. doi: 10.1016/j.bbagen.2011.01.011. PubMed DOI
Thakor K.P., Lunagariya M.V., Bhatt B.S., Patel M.N. Fluorescence and absorption studies of DNA-Pd(II) complex interaction: Synthesis, spectroanalytical investigations and biological activities. Luminescence. 2019;34:113–124. doi: 10.1002/bio.3587. PubMed DOI
Chang Y.-M., Chen C.K.-M., Hou M.-H. Conformational Changes in DNA upon Ligand Binding Monitored by Circular Dichroism. Int. J. Mol. Sci. 2012;13:3394–3413. doi: 10.3390/ijms13033394. PubMed DOI PMC
Meenongwa A., Brissos R.F., Soikum C., Chaveerach P., Trongpanich Y., Chaveerach U. Enhancement of biological activities of copper(II) complexes containing guanidine derivatives by enrofloxacin. J. Mol. Struct. 2021;1241:130645. doi: 10.1016/j.molstruc.2021.130645. DOI
Shahabadi N., Fatahi S., Maghsudi M. Synthesis of a new Pt(II) complex containing valganciclovir drug and calf-thymus DNA interaction study using multispectroscopic methods. J. Coord. Chem. 2018;71:258–270. doi: 10.1080/00958972.2018.1433828. DOI
Brodie C.R., Collins J.G., Wright J.R.A. DNA binding and biological activity of some platinum(II) intercalating compounds containing methyl-substituted 1,10-phenanthrolines. Dalton Trans. 2004;8:1145–1152. doi: 10.1039/b316511f. PubMed DOI
Yildiz U., Coban B. Chemical and photo-induced nuclease activity of a novel minor groove DNA binder Cu(II) complex. J. Serbian Chem. Soc. 2019;84:563–574. doi: 10.2298/JSC180802102Y. DOI
Champoux J.J. DNA Topoisomerases: Structure, Function, and Mechanism. Annu. Rev. Biochem. 2001;70:369–413. doi: 10.1146/annurev.biochem.70.1.369. PubMed DOI
Nitiss J.L. Targeting DNA topoisomerase II in cancer chemotherapy. Nat. Rev. Cancer. 2009;9:338–350. doi: 10.1038/nrc2607. PubMed DOI PMC
Yuan Z., Chen S., Chen C., Chen J., Chen C., Dai Q., Gao C., Jiang Y. Design, synthesis and biological evaluation of 4-amidobenzimidazole acridine derivatives as dual PARP and Topo inhibitors for cancer therapy. Eur. J. Med. Chem. 2017;138:1135–1146. doi: 10.1016/j.ejmech.2017.07.050. PubMed DOI
Rendošová M., Vargová Z., Sabolová D., Imrichová N., Hudecová D., Gyepes R., Lakatoš B., Elefantová K. Silver pyridine-2-sulfonate complex-its characterization, DNA binding, topoisomerase I inhibition, antimicrobial and anticancer response. J. Inorg. Biochem. 2018;186:206–216. doi: 10.1016/j.jinorgbio.2018.06.006. PubMed DOI
Banti C.N., Papatriantafyllopoulou C., Tasiopoulos A.J., Hadjikakou S.K. New metalo-therapeutics of NSAIDs against human breast cancer cells. Eur. J. Med. Chem. 2018;143:1687–1701. doi: 10.1016/j.ejmech.2017.10.067. PubMed DOI
Silva D.E.S., Becceneri A.B., Solcia M.C., Santiago J.V.B., Moreira M.B., Neto J.A.G., Pavan F., Cominetti M.R., Pereira J.C.M., Netto A.V.D.G. Cytotoxic and apoptotic effects of ternary silver(i) complexes bearing 2-formylpyridine thiosemicarbazones and 1,10-phenanthroline. Dalton Trans. 2020;49:5264–5275. doi: 10.1039/D0DT00253D. PubMed DOI
Ota A., Tajima M., Mori K., Sugiyama E., Sato V.H., Sato H. The selective cytotoxicity of silver thiosulfate, a silver complex, on MCF-7 breast cancer cells through ROS-induced cell death. Pharmacol. Rep. 2021;73:847–857. doi: 10.1007/s43440-021-00260-0. PubMed DOI PMC
Sheldrick G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015;71:3–8. doi: 10.1107/S2053229614024218. PubMed DOI PMC
Brandenburg K., Putz H. DIAMOND–Crystal and Molecular Structure Visualization, v6.3. Crystal Impact GbR; Bonn, Germany: 2020.
Jantová S., Hudecová D., Stankovský Š., Špirková K., Ružeková L. Antibacterial effect of substituted 4-quinazolylhydrazines and their arylhydrazones determined by a modified microdilution method. Folia Microbiol. 1995;40:611–614. doi: 10.1007/BF02818517. PubMed DOI
Betina V., Mičeková D. Antimicrobial properties of fungal macrolide antibiotics. J. Basic Microbiol. 1972;12:355–364. doi: 10.1002/jobm.3630120502. PubMed DOI
Hudecova D., Jantova S., Melnik M., Uher M. New azidometalkojates and their biological activity. Folia Microbiol. 1996;41:473–476. doi: 10.1007/BF02814660. PubMed DOI
Dudová B., Hudecová D., Pokorný R., Mičková M., Palicová M., Segl’a P., Melník M. Copper complexes with bioactive ligands. Folia Microbiol. 2002;47:225–229. doi: 10.1007/BF02817642. PubMed DOI
Maron D.M., Ames B.N. Revised methods for the Salmonella mutagenicity test. Mutat. Res. Mutagen. Relat. Subj. 1983;113:173–215. doi: 10.1016/0165-1161(83)90010-9. PubMed DOI
Sherry L., Rajendran R., Lappin D.F., Borghi E., Perdoni F., Falleni M., Tosi D., Smith K., Williams C., Jones B., et al. Biofilms formed by Candida albicans bloodstream isolates display phenotypic and transcriptional heterogeneity that are associated with resistance and pathogenicity. BMC Microbiol. 2014;14:182. doi: 10.1186/1471-2180-14-182. PubMed DOI PMC
Potočňák I., Vranec P., Farkasová V., Sabolová D., Vataščinová M., Kudláčová J., Radojević I.D., Čomić L.R., Markovic B.S., Volarevic V., et al. Low-dimensional compounds containing bioactive ligands. Part VI: Synthesis, structures, in vitro DNA binding, antibacterial and anticancer properties of first row transition metals complexes with 5-chloro-quinolin-8-ol. J. Inorg. Biochem. 2015;154:67–77. doi: 10.1016/j.jinorgbio.2015.10.015. PubMed DOI
Franich A.A., Živković M.D., Ilić-Tomić T., Đorđević I.S., Nikodinović-Runić J., Pavić A., Janjić G.V., Rajković S. New minor groove covering DNA binding mode of dinuclear Pt(II) complexes with various pyridine-linked bridging ligands and dual anticancer-antiangiogenic activities. J. Biol. Inorg. Chem. 2020;25:395–409. doi: 10.1007/s00775-020-01770-7. PubMed DOI
Smolková R., Zeleňák V., Gyepes R., Sabolová D., Imrichová N., Hudecová D., Smolko L. Synthesis, characterization, DNA binding, topoisomerase I inhibition and antimicrobial activity of four novel zinc(II) fenamates. Polyhedron. 2018;141:230–238. doi: 10.1016/j.poly.2017.11.052. DOI