Ga(III) pyridinecarboxylate complexes: potential analogues of the second generation of therapeutic Ga(III) complexes?
Language English Country Germany Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
37498326
PubMed Central
PMC10415494
DOI
10.1007/s00775-023-02012-2
PII: 10.1007/s00775-023-02012-2
Knihovny.cz E-resources
- Keywords
- Anticancer, Antimicrobial, BSA binding, Ga(III) complexes, Potentiometry, Stability,
- MeSH
- Cell Line MeSH
- Coordination Complexes * pharmacology chemistry MeSH
- Humans MeSH
- Ligands MeSH
- Molecular Structure MeSH
- Neoplasms * MeSH
- Pyridines pharmacology MeSH
- Serum Albumin, Bovine metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Coordination Complexes * MeSH
- Ligands MeSH
- Pyridines MeSH
- Serum Albumin, Bovine MeSH
A series of novel Ga(III)-pyridine carboxylates ([Ga(Pic)3]·H2O (GaPic; HPic = picolinic acid), H3O[Ga(Dpic)2]·H2O (GaDpic; H2Dpic = dipicolinic acid), [Ga(Chel)(H2O)(OH)]2·4H2O (GaChel; H2Chel = chelidamic acid) and [Ga(Cldpic)(H2O)(OH)]2 (GaCldpic; H2Cldpic = 4-chlorodipicolinic acid)) have been synthesized by simple one-step procedure. Vibrational spectroscopy (mid-IR), elemental analysis, thermogravimetric analysis and X-ray diffraction confirmed complexes molecular structure, inter and intramolecular interactions and their influence to spectral and thermal properties. Moreover, complex species speciation was described in Ga(III)-HPic and Ga(III)-H2Dpic systems by potentiometry and 1H NMR spectroscopy and mononuclear complex species were determined; [Ga(Pic)2]+ (logβ021 = 16.23(6)), [Ga(Pic)3] (logβ031 = 20.86(2)), [Ga(Dpic)2]- (logβ021 = 15.42(9)) and [Ga(Dpic)2(OH)]2- (logβ-121 = 11.08(4)). To confirm the complexes stability in 1% DMSO (primary solvent for biological testing), timescale 1H NMR spectra were measured (immediately after dissolution up to 96 h). Antimicrobial activity evaluated by IC50 (0.05 mM) is significant for GaDpic and GaCldpic against difficult to treat and multi-resistant P. aeruginosa. On the other hand, the GaPic complex is most effective against Jurkat, MDA-MB-231 and A2058 cancer cell lines and significantly also decreases the HepG2 cancer cells viability at 75 and 100 μM concentrations in a relatively short time (up to 48 h). In addition, fluorescence measurements have been used to elucidate bovine serum albumin binding activity between ligands, Ga(III) complexes and bovine serum albumin.
Department of Biochemistry P J Šafárik University Moyzesova 11 041 54 Kosice Slovak Republic
Department of Inorganic Chemistry Charles University Hlavova 2030 128 00 Prague Czech Republic
Department of Inorganic Chemistry P J Šafárik University Moyzesova 11 041 54 Kosice Slovak Republic
Department of Pharmacology P J Šafárik University Trieda SNP 1 040 11 Kosice Slovak Republic
NMR Laboratory P J Šafárik University Moyzesova 11 041 54 Kosice Slovak Republic
See more in PubMed
Fleitas O, Franco, OL induced bacterial cross-resistance toward host antimicrobial peptides: a worrying phenomenon. Front Microbiol. 2016;7:381. doi: 10.3389/fmicb.2016.00381. PubMed DOI PMC
Rzhepishevska O, Ekstrand-Hammarström B, Popp M, Björn E, Bucht A, Sjöstedt A, Antti H, Ramstedt M. The antibacterial activity of Ga3+ is influenced by ligand complexation as well as the bacterial carbon source. Antimicrob Agents Chemother. 2011;55:5568–5580. doi: 10.1128/AAC.00386-11. PubMed DOI PMC
Claudel M, Schwarte JV, Fromm KM. New antimicrobial strategies based on metal complexes. Chemistry. 2020;2:849–899. doi: 10.3390/chemistry2040056. DOI
Gianferrara T, Bratsos I, Alessio EA. Categorization of metal anticancer compounds based on their mode of action. Dalton Trans. 2009 doi: 10.1039/b905798f. PubMed DOI
Gasser G, Metzler-Nolte N. The potential of organometallic complexes in medicinal chemistry. Curr Opin Chem Biol. 2012;16:84–91. doi: 10.1016/j.cbpa.2012.01.013. PubMed DOI
Vargová Z, Almáši M, Hudecová D, Titková D, Rostášová I, Zeleňák V, Györyová K. New Silver(I) pyridinecarboxylate complexes: synthesis, characterization, and antimicrobial therapeutic potential. J Coord Chem. 2014;67:1002–1021. doi: 10.1080/00958972.2014.906588. DOI
Rendošová M, Vargová Z, Kuchár J, Sabolová D, Levoča Š, Kudláčová J, Paulíková H, Hudecová D, Helebrandtová V, Almáši M, Vilková M, Dušek M, Bobáľová D. New silver complexes with bioactive glycine and nicotinamide molecules—characterization, DNA binding, antimicrobial and anticancer evaluation. J Inorg Biochem. 2017;168:1–12. doi: 10.1016/j.jinorgbio.2016.12.003. PubMed DOI
Rendošová M, Gyepes R, Maruščáková IC, Mudroňová D, Sabolová D, Kello M, Vilková M, Almáši M, Huntošová V, Zemek O, Vargová Z. An in Vitro selective inhibitory effect of silver(I) aminoacidates against bacteria and intestinal cell lines and elucidation of the mechanism of action by means of DNA binding properties, DNA cleavage and cell cycle arrest. Dalton Trans. 2021;50:936–953. doi: 10.1039/d0dt03332d. PubMed DOI
Kuzderová G, Rendošová M, Gyepes R, Sovová S, Sabolová D, Vilková M, Olejníková P, Bačová I, Stokič S, Kello M, Vargová Z. Antimicrobial and anticancer application of silver(I) dipeptide complexes. Molecules. 2021;26:6335. doi: 10.3390/molecules26216335. PubMed DOI PMC
Peng X, Gao S, Zhang J. Gallium (III) complexes in cancer chemotherapy. Eur J Inorg Chem. 2022 doi: 10.1002/ejic.202100953. DOI
Gogna R, Madan E, Keppler B, Pati U. Gallium compound GaQ3-induced Ca2+ signalling triggers P53-dependent and -Independent apoptosis in cancer cells. Br J Pharmacol. 2012;166:617–636. doi: 10.1111/j.1476-5381.2011.01780. PubMed DOI PMC
Casas JS, García-Tasende MS, Sordo J, Main group metal complexes of semicarbazones and thiosemicarbazones A Structural Review. Coord Chem Rev. 2000;209:197–261. doi: 10.1016/s0010-8545(00)00363-5. DOI
Popović-Bijelić A, Kowol CR, Lind MES, Luo J, EnyedyÉA, Arion VB, Gräslund A, HF. Ribonucleotide reductase inhibition by metal complexes of triapine (3-aminopyridine-2-carboxaldehyde thiosemicarbazone): a combined experimental and theoretical study. J Inorg Biochem. 2011;105:1422–1431. doi: 10.1016/j.jinorgbio.2011.07.003. PubMed DOI PMC
Lu Y, Ma P, Li M, Chen D, Zou XA. Main Group Gallium(III) complex derived from 2-acetylpyrazine N4-phenylthiosemicarbazone: synthesis, crystal structure and biological evaluation. synth. react. inorg., met.-org. Nano-Met Chem. 2015;46:718–724. doi: 10.1080/15533174.2014.989585. DOI
Aliabadi A, Hakimi M, Hosseinabadi F, Motieiyan E, Rodrigues VH, Ghadermazi M, Marabelloe D, Abdolmaleki S. Investigation of X-ray crystal structure and in vitro cytotoxicity of two Ga(III) complexes containing pyridine dicarboxylic acid derivatives and 2-aminobenzimidazole. J Mol Structure. 2021;1223:129005. doi: 10.1016/j.molstruc.2020.129005. DOI
Rush C, Stern J. Gallium-67 SPECT imaging in hepatocellular carcinoma. Clin Nucl Med. 1988;13:535–537. doi: 10.1097/00003072-198807000-00017. PubMed DOI
Braga FJ, Flamen P, Mortelmans L, Stroobants S, Homans F, Maes A. Ga-67-positive and F-18 FDG-negative imaging in well-differentiated hepatocellular carcinoma. Clin Nucl Med. 2001;26:642. doi: 10.1097/00003072-200107000-00020. PubMed DOI
Vargová Z, Almáši M, Gyepes R, Vetráková R. Heavy metal complexes of 4-chlorodipicolinic acid - structural, spectral and thermal correlations. J Coord Chem. 2019;72:3013–3029. doi: 10.1080/00958972.2019.1675873. DOI
Sheldrick GM, SHELXT–integrated space-group and crystal-structure determination. Acta Crystallog Sect A: Found Adv. 2015;71:3–8. doi: 10.1107/s2053273314026370. PubMed DOI PMC
Sheldrick GM. Crystal Structure Refinement with SHELXL. Acta Crystallogr Sect C: Struct Chem. 2015;71:3–8. doi: 10.1107/S2053229614024218. PubMed DOI PMC
Spek AL. Structure validation in chemical crystallography. Acta Crystallogr Sect D: Biol Crystallogr. 2009;65:148–155. doi: 10.1107/s090744490804362x. PubMed DOI PMC
Putz H, Brandenburg K (2020)
Kývala M, Lukeš I (1995) International Conference, Chemometrics ’95, Pardubice, Czech Republic p. 63, full version of “OPIUM” available (free of charge) on http://www.natur.cuni.cz/~kyvala/opium.html
Brown P.L. and Ekberg C., Hydrolysis of Metal Ions. Wiley, 2016, pp. 797–812. ISBN: 978–3–527–33010–2
Jantová S, Hudecová D, Stankovský Š, Špirková K, Ružeková L. Antibacterial effect of substituted 4-quinazolylhydrazines and their arylhydrazones determined by a modified microdilution method. Folia Microbiol. 1995;40:611–614. doi: 10.1007/bf02818517. PubMed DOI
Betina V, Mičeková D. Antimicrobial properties of fungal macrolide antibiotics. Z Allg Mikrobiol. 1972;12:355–364. doi: 10.1002/jobm.19720120502. PubMed DOI
Hudecová D, Jantová S, Melník M, Uher M. New azidometalkojates and their biological activity. Folia Microbiol. 1996;41:473–476. doi: 10.1007/bf02814660. PubMed DOI
Dudová B, Hudecová D, Pokorný R, Mičková M, Palicová M, Segl’a P, Melník M, Copper complexes with bioactive ligands. Folia Microbiol. 2002;47:225–229. doi: 10.1007/bf02817642. PubMed DOI
Carmona P, Vibrational spectra and structure of crystalline dipicolinic acid and calcium dipicolinate trihydrate. Spectrochim Acta, Part A. 1980;36:705–712. doi: 10.1016/0584-8539(80)80032-8. DOI
Kalinowska M, Borawska M, Świsłocka R, Piekut J, Lewandowski W. Spectroscopic (IR, Raman, UV, 1H and 13C NMR) and Microbiological Studies of Fe(III), Ni(II), Cu(II), Zn(II) and Ag(I) Picolinates. J Mol Struct. 2007;834–836:419–425. doi: 10.1016/j.molstruc.2006.11.045. DOI
Świderski G, Kalinowska M, Malejko J, Lewandowski W. Spectroscopic (IR, Raman, UV and fluorescence) study on lanthanide complexes of picolinic acid. Vib Spectrosc. 2016;87:81–87. doi: 10.1016/j.vibspec.2016.09.012. DOI
Koczoń P, Dobrowolski JC, Lewandowski W, Mazurek AP. Experimental and theoretical IR and Raman spectra of picolinic, nicotinic and isonicotinic acids. J Mol Struct. 2003;655:89–95. doi: 10.1016/s0022-2860(03)00247-3. DOI
McCann K, Laane J. Raman and infrared spectra and theoretical calculations of dipicolinic acid, dinicotinic acid, and their dianions. J Mol Struct. 2008;890:346–358. doi: 10.1016/j.molstruc.2008.05.046. DOI
Hay MB, Myneni SCB. Structural environments of carboxyl groups in natural organic molecules from terrestrial systems. part 1: infrared spectroscopy. Geochim Cosmochim Acta. 2007;71:3518–3532. doi: 10.1016/j.gca.2007.03.038. DOI
Deacon G. Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Coord Chem Rev. 1980;33:227–250. doi: 10.1016/s0010-8545(00)80455-5. DOI
Heren Z, Pasaoglu H, Kastas G, Keser C, Yesilel OZ, Büyükgüngör O. The novel polymeric complex of manganese (II) with picolinic acid, [mn(pic)2]n, a new coordination mode for picolinic acid. Z Anorg Allg Chem. 2006;632:1578–1581. doi: 10.1002/zaac.200600064. DOI
Tamer Ö, Avcı D, Çelikoğlu E, İdil Ö, Atalay Y. Crystal growth, structural and spectroscopic characterization, antimicrobial activity, DNA cleavage, molecular docking and density functional theory calculations of Zn(II) complex with 2-pyridine carboxylic acid. Appl Organomet Chem. 2018;32:e4540. doi: 10.1002/aoc.4540. DOI
Vural H, Uçar İ, Serkan Soylu M. An experimental and theoretical approach of spectroscopic and structural properties of a new chelidamate copper (II) complex. Spectrochim Acta, Part A. 2014;122:758–766. doi: 10.1016/j.saa.2013.12.027. PubMed DOI
Vargová Z, Zeleòák V, Císaøová I, Györyová k, correlation of thermal and spectral properties of zinc(II) complexes of pyridinecarboxylic acids with their crystal structures. Thermochim Acta. 2004;423:149–157. doi: 10.1016/j.tca.2004.03.016. DOI
Basu S, Peng SM, Lee GH, Bhattacharya S. Synthesis, structure and electrochemical properties of tris-picolinate complexes of rhodium and iridium. Polyhedron. 2005;24:157–163. doi: 10.1016/j.poly.2004.10.015. DOI
Pal MK, Kushwah NP, Wadawale AP, Sagoria VS, Jain VK, Tiekink ERT. Diorgano-gallium and -indium complexes with N-heterocyclic carboxylic acids: synthesis, characterization and structures of [Me2M(O2C–C5H4N)]2, M=Ga or In. J Organomet Chem. 2007;692:4237–4243. doi: 10.1016/j.jorganchem.2007.06.065. DOI
Janiak CA. Dalton Trans. 2000;1:3885–3896. doi: 10.1039/B003010O. DOI
Aghabozorg H, Ramezanipour F, Kheirollahi PD, Saei AA, Shokrollahi A, Shamsipur M, Manteghi F, Soleimannejad J, Sharif MA. Novel Complexes of Gallium(III), Indium(III), and Thallium(III) with Pyridine-Containing Proton Transfer Ion Pairs Obtained from Dipicolinic Acid - Synthesis, Characterization and X-Ray Crystal Structure. Z Anorg Allg Chem. 2006;632:147–154. doi: 10.1002/zaac.200500321. DOI
Rafizadeh M, Nemati A, Derikvand Z. Hemipiperazinediium Bis(Pyridine-2,6-Dicarboxylato-κ3O, N, O′)Gallate(III) Pyridine-2,6-Dicarboxylic Acid Dihydrate. Acta Crystallogr Sect E: Struct Rep Online. 2008;64:m1298–m1299. doi: 10.1107/s1600536808029140. PubMed DOI PMC
Soleimannejad J, Sheshmani S, Solimannejad M, Nazarnia E, Hosseinabadi F. Two supramolecular complexes of gallium(III) with different adduct ion pairs containing pyridine-2,6-dicarboxylic acid: syntheses, characterization, crystal structures and computational study. J Struct Chem. 2014;55:342–352. doi: 10.1134/s0022476614020231. DOI
Soleimannejad J., Nazarnia E., The effect of ligand substituent on crystal packing: Structural and theoretical studies of two Ga(III) supramolecular compounds J Mol Struct 1116 (2016) 207–217. DOI: 10.1016/j.molstruc.2016.03.047
Thich JA, Ou CC, Powers D, Vasiliou B, Mastropaolo D, Potenza JA, Schugar HJ. Molecular structure and magnetic properties of.mu.-dihydroxo-bis[2,6-pyridinedicarboxylatoaquoiron(III)] and.mu.-dihydroxo-bis[4-hydroxo-2,6-pyridinedicarboxylatoaquoiron(iii)] tetrahydrate. J Am Chem Soc. 1976;98:1425–1433. doi: 10.1021/ja00422a024. DOI
Cline SJ, Kallesoe S, Pedersen E, Hodgson DJ, Structural and magnetic characterization of the chromium(III) dimers di-.mu.-hydroxo-bis[(4-hydroxo-2,6-dicarboxylatopyridine)aquachromium(III)] tetrahydrate, [Cr(chel)(OH2)OH]2.4H2O, and di-.mu.-hydroxo-bis[(4-chloro-2,6-dicarboxylatopyridine)aquachromium(III)] dihydrate, [Cr(Cl-dipic)(OH2)OH]2.2H2O. Inorg Chem. 1979;18:796–801. doi: 10.1021/ic50193a052. DOI
Thottathil, John K.; Warrell, Raymond P. Patent WO2012129473 A1, https://pubchem.ncbi.nlm.nih.gov/patent/WO-2012129473-A1
Vargová Z, Kotek J, Rudovský J, Plutnar J, Gyepes R, Hermann P, Györyová K, Lukeš I, Ternary Complexes of Zinc(II) Cyclen and Pyridinecarboxylic Acids: Eur. J. Inorg. Chem; 2007.
Smith R, Martell A, Motekaitis R (2004) NIST standard reference database 46. NIST Critically Selected Stability Constants of Metal Complexes, version 8; NIST: Gaithersburg, MD
Lytkin AI, Badelin VG, Krutova ON, Tyunina EY, Krutov PD. Thermochemistry of the acid-base interactions in aqueous solutions of isonicotinic and picolinic acids. Russ J Gen Chem. 2019;89:2235–2238. doi: 10.1134/s1070363219110124. DOI
Enyedy ÉA, Dömötör O, Varga E, Kiss T, Trondl R, Hartinger CG, Keppler BK. Comparative solution equilibrium studies of anticancer gallium(III) complexes of 8-hydroxyquinoline and hydroxy(thio)pyrone ligands. J Inorg Biochem. 2012;117:189–197. doi: 10.1016/j.jinorgbio.2012.08.005. PubMed DOI
El-Dessouky MA, El-Ezaby MS, Shuaib NM. Complexes of Vitamin B6. VI. Kinetics and mechanisms of the ternary complex formations of iron(III) with picolinic acid and pyridoxol. Inorg Chim Acta. 1980;46:7–14. doi: 10.1016/s0020-1693(00)84161-4. DOI
Timberlake CF. Iron-tartrate complexes. J Chem Soc. 1964 doi: 10.1039/jr9640001229. DOI
Lannon AM, Lappin AG, Segal MG (1986) Redox Reactions of Some Iron(II), Iron(III), and Cobalt(II) Picolinate Complexes. J. Chem. Soc., Dalton Trans. Doi: 10.1039/dt9860000619
Anderegg G. Pyridinderivate Als Komplexbildner II. Komplexbildung Des Dreiwertigen Eisen-Ions Mit Pyridincarbonsäuren. Helv Chim Acta. 1960;43:1530–1545. doi: 10.1002/hlca.19600430611. DOI
Harris WR, Pecoraro VL. Thermodynamic binding constants for gallium transferrin. Biochemistry. 1983;22:292–299. doi: 10.1021/bi00271a010. PubMed DOI
Bonchi C, Frangipani E, Imperi F, Visca P. Pyoverdine and proteases affect the response of Pseudomonas aeruginosa to gallium in human serum. Antimicrob Agents Chemother. 2015;59:5641–5646. doi: 10.1128/aac.01097-15. PubMed DOI PMC
Chitambar CR. The therapeutic potential of iron-targeting gallium compounds in human disease: from basic research to clinical application Pharmacol. Res. 2017;115:56–64. doi: 10.1016/j.phrs.2016.11.009. PubMed DOI
Kaluđerović MR, Gómez-Ruiz S, Gallego B, Hey-Hawkins E, Paschke R, Kaluđerović GN. Anticancer activity of dinuclear gallium(III) carboxylate complexes. Eur J Med Chem. 2010;45:519–525. doi: 10.1016/j.ejmech.2009.10.038. PubMed DOI
Gómez-Ruiz S, Kaluđerović GN, Prashar S, Hey-Hawkins E, Erić A, Žižak Ž, Juranić ZD. Study of the cytotoxic activity of di and triphenyltin(IV) carboxylate complexes. J Inorg Biochem. 2008;102:2087–2096. doi: 10.1016/j.jinorgbio.2008.07.009. PubMed DOI
Litecká M, Hreusová M, Kašpárková J, Gyepes R, Smolková R, Obuch J, David T, Potočňák I (2020) Low-Dimensional Compounds Containing Bioactive Ligands. Part XIV: High Selective Antiproliferative Activity of Tris(5-Chloro-8-Quinolinolato)Gallium(III) Complex against Human Cancer Cell Lines. Bioorg. Med. Chem. Lett 30:127206. Doi: 10.1016/j.bmcl.2020.127206 PubMed
Chua MS, Bernstein LR, Li R, So SK. Gallium maltolate is a promising chemotherapeutic agent for the treatment of hepatocellular carcinoma. Anticancer Res. 2006;26:1739–1743. PubMed
Shi J, Pan D, Jiang M, Liu TT, Wang Q, Binding interaction of ramipril with bovine serum albumin (BSA): insights from multi-spectroscopy and molecular docking methods. J Photochem Photobiol. 2016;164:103–111. doi: 10.1016/j.jphotobiol.2016.09.025. PubMed DOI
Lázaro E, Lowe PJ, Briand X, Faller B. New approach to measure protein binding based on a parallel artificial membrane assay and human serum albumin. J Med Chem. 2008;51:2009–2017. doi: 10.1021/jm7012826. PubMed DOI
Ašanin DP, Skaro Bogojevic S, Perdih F, Andrejević TP, Milivojevic D, Aleksic I, Nikodinovic-Runic J, Glišić BĐ, Turel I, Djuran MI. Structural characterization, antimicrobial activity and BSA/DNA binding affinity of new silver(I) complexes with thianthrene and 1,8-naphthyridine. Molecules. 2021;26:1871. doi: 10.3390/molecules26071871. PubMed DOI PMC