Well-Blended PCL/PEO Electrospun Nanofibers with Functional Properties Enhanced by Plasma Processing

. 2020 Jun 22 ; 12 (6) : . [epub] 20200622

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32580496

Grantová podpora
18-12774S Grantová Agentura České Republiky
LQ1601 Ministerstvo Školství, Mládeže a Tělovýchovy
LM2018110 Ministerstvo Školství, Mládeže a Tělovýchovy
18-75-10057 Russian Science Foundation
CZ.02.1.01/0.0/0.0/16_019/0000754 Ministerstvo Školství, Mládeže a Tělovýchovy

Biodegradable composite nanofibers were electrospun from poly(ε-caprolactone) (PCL) and poly(ethylene oxide) (PEO) mixtures dissolved in acetic and formic acids. The variation of PCL:PEO concentration in the polymer blend, from 5:95 to 75:25, revealed the tunability of the hydrolytic stability and mechanical properties of the nanofibrous mats. The degradation rate of PCL/PEO nanofibers can be increased compared to pure PCL, and the mechanical properties can be improved compared to pure PEO. Although PCL and PEO have been previously reported as immiscible, the electrospinning into nanofibers having restricted dimensions (250-450 nm) led to a microscopically mixed PCL/PEO blend. However, the hydrolytic stability and tensile tests revealed the segregation of PCL into few-nanometers-thin fibrils in the PEO matrix of each nanofiber. A synergy phenomenon of increased stiffness appeared for the high concentration of PCL in PCL/PEO nanofibrous mats. The pure PCL and PEO mats had a Young's modulus of about 12 MPa, but the mats made of high concentration PCL in PCL/PEO solution exhibited 2.5-fold higher values. The increase in the PEO content led to faster degradation of mats in water and up to a 20-fold decrease in the nanofibers' ductility. The surface of the PCL/PEO nanofibers was functionalized by an amine plasma polymer thin film that is known to increase the hydrophilicity and attach proteins efficiently to the surface. The combination of different PCL/PEO blends and amine plasma polymer coating enabled us to tune the surface functionality, the hydrolytic stability, and the mechanical properties of biodegradable nanofibrous mats.

Zobrazit více v PubMed

Shang L., Yu Y., Liu Y., Chen Z., Kong T., Zhao Y. Spinning and Applications of Bioinspired Fiber Systems. ACS Nano. 2019;13:2749–2772. doi: 10.1021/acsnano.8b09651. PubMed DOI

Cheng G., Yin C., Tu H., Jiang S., Wang Q., Zhou X., Xing X., Xie C., Shi X., Du Y., et al. Controlled Co-delivery of Growth Factors through Layer-by-Layer Assembly of Core–Shell Nanofibers for Improving Bone Regeneration. ACS Nano. 2019;13:6372–6382. doi: 10.1021/acsnano.8b06032. PubMed DOI

Zhang Y., Ouyang H., Lim C.T., Ramakrishna S., Huang Z.-M. Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J. Biomed. Mater. Res. 2004;72:156–165. doi: 10.1002/jbm.b.30128. PubMed DOI

Li B., Luo J., Huang X., Lin L., Wang L., Hu M., Tang L., Xue H., Gao J.-F., Mai Y.-W. A highly stretchable, super-hydrophobic strain sensor based on polydopamine and graphene reinforced nanofiber composite for human motion monitoring. Compos. Part B Eng. 2020;181:107580. doi: 10.1016/j.compositesb.2019.107580. DOI

Huang Z.-M., Zhang Y., Kotaki M., Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 2003;63:2223–2253. doi: 10.1016/S0266-3538(03)00178-7. DOI

Bechelany M., Pal K., Rahier H., Uludag H., Kim I.S., Bechelany M. Nanofibers as new-generation materials: From spinning and nano-spinning fabrication techniques to emerging applications. Appl. Mater. Today. 2019;17:1–35. doi: 10.1016/j.apmt.2019.06.015. DOI

Sell S.A., Barnes C., Smith M., McClure M., Madurantakam P., Grant J., McManus M., Bowlin G.L. Extracellular matrix regenerated: Tissue engineering via electrospun biomimetic nanofibers. Polym. Int. 2007;56:1349–1360. doi: 10.1002/pi.2344. DOI

Repanas A., Andriopoulou S., Glasmacher B. The significance of electrospinning as a method to create fibrous scaffolds for biomedical engineering and drug delivery applications. J. Drug Deliv. Sci. Technol. 2016;31:137–146. doi: 10.1016/j.jddst.2015.12.007. DOI

Li Y., Liu Y., Xun X., Zhang W., Xu Y., Gu D. Three-Dimensional Porous Scaffolds with Biomimetic Microarchitecture and Bioactivity for Cartilage Tissue Engineering. ACS Appl. Mater. Interfaces. 2019;11:36359–36370. doi: 10.1021/acsami.9b12206. PubMed DOI

Miszuk J.M., Xu T., Yao Q., Fang F., Childs J.D., Hong Z., Tao J., Fong H., Sun H. Functionalization of PCL-3D electrospun nanofibrous scaffolds for improved BMP2-induced bone formation. Appl. Mater. Today. 2018;10:194–202. doi: 10.1016/j.apmt.2017.12.004. PubMed DOI PMC

Kumar T.S.M., Kumar K.S., Rajini N., Siengchin S., Ayrilmis N., Rajulu A.V. A comprehensive review of electrospun nanofibers: Food and packaging perspective. Compos. Part B Eng. 2019;175:107074. doi: 10.1016/j.compositesb.2019.107074. DOI

Abdullah M.F., Nuge T., Andriyana A., Ang B.C., Muhamad F. Core-Shell Fibers: Design, Roles, and Controllable Release Strategies in Tissue Engineering and Drug Delivery. Polymers. 2019;11:2008. doi: 10.3390/polym11122008. PubMed DOI PMC

Wang M., Hai T., Feng Z., Yu D.-G., Yang Y., Bligh S.A. The Relationships between the Working Fluids, Process Characteristics and Products from the Modified Coaxial Electrospinning of Zein. Polymers. 2019;11:1287. doi: 10.3390/polym11081287. PubMed DOI PMC

Zhao K., Wang W., Yang Y., Wang K., Yu D.-G. From Taylor cone to solid nanofiber in tri-axial electrospinning: Size relationships. Results Phys. 2019;15:102770. doi: 10.1016/j.rinp.2019.102770. DOI

Wang K., Wang P., Wang M., Yu D.-G., Wan F., Bligh S.W.A. Comparative study of electrospun crystal-based and composite-based drug nano depots. Mater. Sci. Eng. C. 2020;113:110988. doi: 10.1016/j.msec.2020.110988. PubMed DOI

Yang J., Wang K., Yu D.-G., Yang Y., Bligh S.W.A., Williams G.R. Electrospun Janus nanofibers loaded with a drug and inorganic nanoparticles as an effective antibacterial wound dressing. Mater. Sci. Eng. C. 2020;111:110805. doi: 10.1016/j.msec.2020.110805. PubMed DOI

Yu D.-G., Wang M., Li X., Liu X., Zhu L.-M., Bligh S.W.A. Multifluid electrospinning for the generation of complex nanostructures. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2020;12:e1601. doi: 10.1002/wnan.1601. PubMed DOI

Wang K., Wen H.-F., Yu D.-G., Yang Y., Zhang D. Electrosprayed hydrophilic nanocomposites coated with shellac for colon-specific delayed drug delivery. Mater. Des. 2018;143:248–255. doi: 10.1016/j.matdes.2018.02.016. DOI

Liu W., Zhang J., Liu H. Conductive Bicomponent Fibers Containing Polyaniline Produced via Side-by-Side Electrospinning. Polymers. 2019;11:954. doi: 10.3390/polym11060954. PubMed DOI PMC

Hou J., Yang J., Zheng X., Wang M., Liu Y., Yu D.-G. A nanofiber-based drug depot with high drug loading for sustained release. Int. J. Pharm. 2020;583:119397. doi: 10.1016/j.ijpharm.2020.119397. PubMed DOI

Chang S., Wang M., Zhang F., Liu Y., Liu X., Yu D.-G., Shen H. Sheath-separate-core nanocomposites fabricated using a trifluid electrospinning. Mater. Des. 2020;192:108782. doi: 10.1016/j.matdes.2020.108782. DOI

Wang M., Wang K., Yang Y., Liu Y., Yu D.-G. Electrospun Environment Remediation Nanofibers Using Unspinnable Liquids as the Sheath Fluids: A Review. Polymers. 2020;12:103. doi: 10.3390/polym12010103. PubMed DOI PMC

Yoo H.S., Kim T.G., Park T.G. Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Adv. Drug Deliv. Rev. 2009;61:1033–1042. doi: 10.1016/j.addr.2009.07.007. PubMed DOI

Stevenson A.T., Jankus D.J., Tarshis M.A., Whittington A., Stevenson J.A.T. The correlation between gelatin macroscale differences and nanoparticle properties: Providing insight into biopolymer variability. Nanoscale. 2018;10:10094–10108. doi: 10.1039/C8NR00970H. PubMed DOI

Miroshnichenko S., Timofeeva V., Permyakova E., Ershov S., Kiryukhantsev-Korneev F.V., Dvořaková E., Shtansky D.V., Zajíčková L., Solovieva A., Manakhov A., et al. Plasma-Coated Polycaprolactone Nanofibers with Covalently Bonded Platelet-Rich Plasma Enhance Adhesion and Growth of Human Fibroblasts. Nanomaterials. 2019;9:637. doi: 10.3390/nano9040637. PubMed DOI PMC

Sun H., Mei L., Song C., Cui X., Wang P. The in vivo degradation, absorption and excretion of PCL-based implant. Biomaterials. 2006;27:1735–1740. doi: 10.1016/j.biomaterials.2005.09.019. PubMed DOI

Cipitria A., Skelton A., Dargaville T.R., Dalton P.D., Hutmacher D.W. Design, fabrication and characterization of PCL electrospun Scaffolds—A review. J. Mater. Chem. 2011;21:9419. doi: 10.1039/c0jm04502k. DOI

Metwally S., Karbowniczek J., Szewczyk P., Marzec M.M., Gruszczyński A., Bernasik A., Stachewicz U. Single-Step Approach to Tailor Surface Chemistry and Potential on Electrospun PCL Fibers for Tissue Engineering Application. Adv. Mater. Interfaces. 2018;6:1801211. doi: 10.1002/admi.201801211. DOI

Llorens E., del Valle L.J., Ferrán R., Rodríguez-Galán A., Puiggali J. Scaffolds with tuneable hydrophilicity from electrospun microfibers of polylactide and poly(ethylene glycol) mixtures: Morphology, drug release behavior, and biocompatibility. J. Polym. Res. 2014;21:360. doi: 10.1007/s10965-014-0360-4. DOI

Pavliňáková V., Vojtova L., Pavlinak D., Vojtek L., Sedlakova V., Hyršl P., Alberti M., Jaros J., Hampl A., Jančař J., et al. Novel electrospun gelatin/oxycellulose nanofibers as a suitable platform for lung disease modeling. Mater. Sci. Eng. C. 2016;67:493–501. doi: 10.1016/j.msec.2016.05.059. PubMed DOI

Ghasemi-Mobarakeh L., Prabhakaran M., Morshed M., Nasr-Esfahani M., Ramakrishna S. Electrospun poly (ε-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials. 2008;29:4532–4539. doi: 10.1016/j.biomaterials.2008.08.007. PubMed DOI

Ma Z., He W., Yong T., Ramakrishna S. Grafting of Gelatin on Electrospun Poly(caprolactone) Nanofibers to Improve Endothelial Cell Spreading and Proliferation and to Control Cell Orientation. Tissue Eng. 2005;11:1149–1158. doi: 10.1089/ten.2005.11.1149. PubMed DOI

Correia T.R., Ferreira P., Vaz R., Alves P., Figueiredo M., Correia I.J., Coimbra P. Development of UV cross-linked gelatin coated electrospun poly(caprolactone) fibrous scaffolds for tissue engineering. Int. J. Boil. Macromol. 2016;93:1539–1548. doi: 10.1016/j.ijbiomac.2016.05.045. PubMed DOI

Kim S.-E., Zhang C., Advincula A.A., Baer E., Pokorski J.K. Protein and Bacterial Antifouling Behavior of Melt-Coextruded Nanofiber Mats. ACS Appl. Mater. Interfaces. 2016;8:8928–8938. doi: 10.1021/acsami.6b00093. PubMed DOI

Scaffaro R., Lopresti F., Maio A., Botta L., Rigogliuso S., Ghersi G. Electrospun PCL/GO-g-PEG structures: Processing-morphology-properties relationships. Compos. Part A Appl. Sci. Manuf. 2017;92:97–107. doi: 10.1016/j.compositesa.2016.11.005. DOI

Li Y.-F., Rubert M., Aslan H., Yu Y., Howard K.A., Dong M., Besenbacher F., Chen M. Ultraporous interweaving electrospun microfibers from PCL–PEO binary blends and their inflammatory responses. Nanoscale. 2014;6:3392. doi: 10.1039/c3nr06197c. PubMed DOI

Asadian M., Dhaenens M., Onyshchenko Y., de Waele S., Declercq H., Cools P., Devreese B., Deforce D., Morent R., de Geyter N. Plasma Functionalization of Polycaprolactone Nanofibers Changes Protein Interactions with Cells, Resulting in Increased Cell Viability. ACS Appl. Mater. Interfaces. 2018;10:41962–41977. doi: 10.1021/acsami.8b14995. PubMed DOI

Santos F.G., Bonkovoski L.C., Garcia F.P., Cellet T.S.P., Witt M.A., Nakamura C.V., Rubira A.F., Muniz E.C. Antibacterial Performance of a PCL–PDMAEMA Blend Nanofiber-Based Scaffold Enhanced with Immobilized Silver Nanoparticles. ACS Appl. Mater. Interfaces. 2017;9:9304–9314. doi: 10.1021/acsami.6b14411. PubMed DOI

Patelli A., Mussano F., Brun P., Genova T., Ambrosi E., Michieli N.T., Mattei G., Scopece P., Moroni L. Nanoroughness, Surface Chemistry, and Drug Delivery Control by Atmospheric Plasma Jet on Implantable Devices. ACS Appl. Mater. Interfaces. 2018;10:39512–39523. doi: 10.1021/acsami.8b15886. PubMed DOI

Sardella E., Salama R., Waly G.H., Habib A.N., Favia P., Gristina R. Improving Internal Cell Colonization of Porous Scaffolds with Chemical Gradients Produced by Plasma Assisted Approaches. ACS Appl. Mater. Interfaces. 2017;9:4966–4975. doi: 10.1021/acsami.6b14170. PubMed DOI

Wörz A., Berchtold B., Moosmann K., Prucker O., Rühe J. Protein-resistant polymer surfaces. J. Mater. Chem. 2012;22:19547. doi: 10.1039/c2jm30820g. DOI

Bridges A.W., García A.J. Anti-Inflammatory Polymeric Coatings for Implantable Biomaterials and Devices. J. Diabetes Sci. Technol. 2008;2:984–994. doi: 10.1177/193229680800200628. PubMed DOI PMC

Tan S., Huang X., Wu B. Some fascinating phenomena in electrospinning processes and applications of electrospun nanofibers. Polym. Int. 2007;56:1330–1339. doi: 10.1002/pi.2354. DOI

Reneker D., Kataphinan W., Théron A., Zussman E., Yarin A. Nanofiber garlands of polycaprolactone by electrospinning. Polymers. 2002;43:6785–6794. doi: 10.1016/S0032-3861(02)00595-5. DOI

Mo X., Xu C.Y., Kotaki M., Ramakrishna S. Electrospun P(LLA-CL) nanofiber: A biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation. Biomaterials. 2004;25:1883–1890. doi: 10.1016/j.biomaterials.2003.08.042. PubMed DOI

Bhattarai S.R., Bhattarai N., Viswanathamurthi P., Yi H.K., Hwang P.H., Kim H.Y. Hydrophilic nanofibrous structure of polylactide; fabrication and cell affinity. J. Biomed. Mater. Res. Part A. 2006;78:247–257. doi: 10.1002/jbm.a.30695. PubMed DOI

Bui H.T., Chung O.H., Cruz J.D., Park J.S. Fabrication and characterization of electrospun curcumin-loaded polycaprolactone-polyethylene glycol nanofibers for enhanced wound healing. Macromol. Res. 2014;22:1288–1296. doi: 10.1007/s13233-014-2179-6. DOI

Zhao S.Y., Harrison B.S. Morphology impact on oxygen sensing ability of Ru(dpp)3Cl2 containing biocompatible polymers. Mater. Sci. Eng. C. 2015;53:280–285. doi: 10.1016/j.msec.2015.04.001. PubMed DOI

Hrib J., Širc J., Hobzova R., Hampejsova Z., Bosakova Z., Munzarova M., Michálek J. Nanofibers for drug Delivery—Incorporation and release of model molecules, influence of molecular weight and polymer structure. Beilstein J. Nanotechnol. 2015;6:1939–1945. doi: 10.3762/bjnano.6.198. PubMed DOI PMC

Nadri S., Nasehi F., Barati G. Effect of parameters on the quality of core-shell fibrous scaffold for retinal differentiation of conjunctiva mesenchymal stem cells. J. Biomed. Mater. Res. Part A. 2016;105:189–197. doi: 10.1002/jbm.a.35897. PubMed DOI

Manakhov A., Nečas D., Čechal J., Pavlinak D., Eliáš M., Zajíčková L. Deposition of stable amine coating onto polycaprolactone nanofibers by low pressure cyclopropylamine plasma polymerization. Thin Solid Films. 2015;581:7–13. doi: 10.1016/j.tsf.2014.09.015. DOI

Manakhov A., Kedroňová E., Medalová J., Černochová P., Obrusník A., Michlicek M., Shtansky D.V., Zajíčková L. Carboxyl-anhydride and amine plasma coating of PCL nanofibers to improve their bioactivity. Mater. Des. 2017;132:257–265. doi: 10.1016/j.matdes.2017.06.057. DOI

Permyakova E., Polčak J., Slukin P.V., Ignatov S., Gloushankova N.A., Zajíčková L., Shtansky D.V., Manakhov A. Antibacterial biocompatible PCL nanofibers modified by COOH-anhydride plasma polymers and gentamicin immobilization. Mater. Des. 2018;153:60–70. doi: 10.1016/j.matdes.2018.05.002. DOI

Martins A., Pinho E.D., Faria S., Pashkuleva I., Marques A.P., Reis R.L., Neves N.M. Surface Modification of Electrospun Polycaprolactone Nanofiber Meshes by Plasma Treatment to Enhance Biological Performance. Small. 2009;5:1195–1206. doi: 10.1002/smll.200801648. PubMed DOI

Makhneva E., Farka Z., Skládal P., Zajíčková L. Cyclopropylamine plasma polymer surfaces for label-free SPR and QCM immunosensing of Salmonella. Sens. Actuators B Chem. 2018;276:447–455. doi: 10.1016/j.snb.2018.08.055. DOI

Andrady A.L. Science and Technology of Polymer Nanofibers. Wiley; Hoboken, NJ, USA: 2008.

Khajavi R., Abbasipour M. Electrospinning as a versatile method for fabricating coreshell, hollow and porous nanofibers. Sci. Iran. 2012;19:2029–2034. doi: 10.1016/j.scient.2012.10.037. DOI

Bide M., Phaneuf M.D., Phaneuf T., Brown P. Medical and Healthcare Textiles. Elsevier BV; Amsterdam, The Netherlands: 2010. Controlled Drug Release from Nanofibrous Polyester Materials; pp. 198–205.

Lavielle N., Popa A.-M., de Geus M., Hébraud A., Schlatter G., Thöny-Meyer L., Rossi R.M. Controlled formation of poly(ε-caprolactone) ultrathin electrospun nanofibers in a hydrolytic degradation-assisted process. Eur. Polym. J. 2013;49:1331–1336. doi: 10.1016/j.eurpolymj.2013.02.038. DOI

Manakhov A., Landová M., Medalová J., Michlicek M., Polčak J., Nečas D., Zajíčková L. Cyclopropylamine plasma polymers for increased cell adhesion and growth. Plasma Process. Polym. 2016;14:1600123. doi: 10.1002/ppap.201600123. DOI

Favia P., Stendardo M.V., D’Agostino R. Selective grafting of amine groups on polyethylene by means of NH3−H2 RF glow discharges. Plasmas Polym. 1996;1:91–112. doi: 10.1007/BF02532821. DOI

Michlíček M., Manakhov A., Dvořáková E., Zajíčková L. Homogeneity and penetration depth of atmospheric pressure plasma polymerization onto electrospun nanofibrous mats. Appl. Surf. Sci. 2019;471:835–841. doi: 10.1016/j.apsusc.2018.11.148. DOI

Manakhov A., Michlicek M., Felten A., Pireaux J.-J., Nečas D., Zajíčková L. XPS depth profiling of derivatized amine and anhydride plasma polymers: Evidence of limitations of the derivatization approach. Appl. Surf. Sci. 2017;394:578–585. doi: 10.1016/j.apsusc.2016.10.099. DOI

Vandenabeele C.R., Buddhadasa M., Girard-Lauriault P.-L., Snyders R. Comparison between single monomer versus gas mixture for the deposition of primary amine-rich plasma polymers. Thin Solid Films. 2017;630:100–107. doi: 10.1016/j.tsf.2016.08.008. DOI

Kweon H. A novel degradable polycaprolactone networks for tissue engineering. Biomaterials. 2003;24:801–808. doi: 10.1016/S0142-9612(02)00370-8. PubMed DOI

Pielichowski K., Flejtuch K., Pielichowska K. Differential scanning calorimetry studies on poly(ethylene glycol) with different molecular weights for thermal energy storage materials. Polym. Adv. Technol. 2002;13:690–696. doi: 10.1002/pat.276. DOI

Fong H., Chun I., Reneker D. Beaded nanofibers formed during electrospinning. Polymers. 1999;40:4585–4592. doi: 10.1016/S0032-3861(99)00068-3. DOI

Zong X., Kim K., Fang D., Ran S., Hsiao B., Chu B. Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymers. 2002;43:4403–4412. doi: 10.1016/S0032-3861(02)00275-6. DOI

Pillay V., Dott C., Choonara Y.E., Tyagi C., Tomar L., Kumar P., Du Toit L.C., Ndesendo V.M.K. A Review of the Effect of Processing Variables on the Fabrication of Electrospun Nanofibers for Drug Delivery Applications. J. Nanomater. 2013;2013:1–22. doi: 10.1155/2013/789289. DOI

Qiu Z., Ikehara T., Nishi T. Miscibility and crystallization of poly(ethylene oxide) and poly(ε-caprolactone) blends. Polymers. 2003;44:3101–3106. doi: 10.1016/S0032-3861(03)00167-8. DOI

Samanta P., Srivastava R., Nandan B., Chen H.-L. Crystallization behavior of crystalline/crystalline polymer blends under confinement in electrospun nanofibers of polystyrene/poly(ethylene oxide)/poly(?-caprolactone) ternary mixtures. Soft Matter. 2017;13:1569–1582. doi: 10.1039/C6SM02748B. PubMed DOI

Samanta P., Singh S., Srivastava R., Nandan B., Liu C.-L., Chen H.-L., Velmayil T. Crystallization behaviour of poly(ethylene oxide) under confinement in the electrospun nanofibers of polystyrene/poly(ethylene oxide) blends. Soft Matter. 2016;12:5110–5120. doi: 10.1039/C6SM00648E. PubMed DOI

Tanaka F. Polymer Physics: Applications to Molecular Association and Thermoreversible Gelation. Cambridge University Press; Cambridge, UK: 2011.

Hegemann D. Comprehensive Materials Processing. Volume 2014. Elsevier BV; Amsterdam, The Netherlands: 2014. Plasma Polymer Deposition and Coatings on Polymers; pp. 201–228.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...