Well-Blended PCL/PEO Electrospun Nanofibers with Functional Properties Enhanced by Plasma Processing
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
18-12774S
Grantová Agentura České Republiky
LQ1601
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2018110
Ministerstvo Školství, Mládeže a Tělovýchovy
18-75-10057
Russian Science Foundation
CZ.02.1.01/0.0/0.0/16_019/0000754
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
32580496
PubMed Central
PMC7362260
DOI
10.3390/polym12061403
PII: polym12061403
Knihovny.cz E-resources
- Keywords
- SEM, mechanical properties, plasma enhanced CVD, polymer fibers, thin films,
- Publication type
- Journal Article MeSH
Biodegradable composite nanofibers were electrospun from poly(ε-caprolactone) (PCL) and poly(ethylene oxide) (PEO) mixtures dissolved in acetic and formic acids. The variation of PCL:PEO concentration in the polymer blend, from 5:95 to 75:25, revealed the tunability of the hydrolytic stability and mechanical properties of the nanofibrous mats. The degradation rate of PCL/PEO nanofibers can be increased compared to pure PCL, and the mechanical properties can be improved compared to pure PEO. Although PCL and PEO have been previously reported as immiscible, the electrospinning into nanofibers having restricted dimensions (250-450 nm) led to a microscopically mixed PCL/PEO blend. However, the hydrolytic stability and tensile tests revealed the segregation of PCL into few-nanometers-thin fibrils in the PEO matrix of each nanofiber. A synergy phenomenon of increased stiffness appeared for the high concentration of PCL in PCL/PEO nanofibrous mats. The pure PCL and PEO mats had a Young's modulus of about 12 MPa, but the mats made of high concentration PCL in PCL/PEO solution exhibited 2.5-fold higher values. The increase in the PEO content led to faster degradation of mats in water and up to a 20-fold decrease in the nanofibers' ductility. The surface of the PCL/PEO nanofibers was functionalized by an amine plasma polymer thin film that is known to increase the hydrophilicity and attach proteins efficiently to the surface. The combination of different PCL/PEO blends and amine plasma polymer coating enabled us to tune the surface functionality, the hydrolytic stability, and the mechanical properties of biodegradable nanofibrous mats.
See more in PubMed
Shang L., Yu Y., Liu Y., Chen Z., Kong T., Zhao Y. Spinning and Applications of Bioinspired Fiber Systems. ACS Nano. 2019;13:2749–2772. doi: 10.1021/acsnano.8b09651. PubMed DOI
Cheng G., Yin C., Tu H., Jiang S., Wang Q., Zhou X., Xing X., Xie C., Shi X., Du Y., et al. Controlled Co-delivery of Growth Factors through Layer-by-Layer Assembly of Core–Shell Nanofibers for Improving Bone Regeneration. ACS Nano. 2019;13:6372–6382. doi: 10.1021/acsnano.8b06032. PubMed DOI
Zhang Y., Ouyang H., Lim C.T., Ramakrishna S., Huang Z.-M. Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J. Biomed. Mater. Res. 2004;72:156–165. doi: 10.1002/jbm.b.30128. PubMed DOI
Li B., Luo J., Huang X., Lin L., Wang L., Hu M., Tang L., Xue H., Gao J.-F., Mai Y.-W. A highly stretchable, super-hydrophobic strain sensor based on polydopamine and graphene reinforced nanofiber composite for human motion monitoring. Compos. Part B Eng. 2020;181:107580. doi: 10.1016/j.compositesb.2019.107580. DOI
Huang Z.-M., Zhang Y., Kotaki M., Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 2003;63:2223–2253. doi: 10.1016/S0266-3538(03)00178-7. DOI
Bechelany M., Pal K., Rahier H., Uludag H., Kim I.S., Bechelany M. Nanofibers as new-generation materials: From spinning and nano-spinning fabrication techniques to emerging applications. Appl. Mater. Today. 2019;17:1–35. doi: 10.1016/j.apmt.2019.06.015. DOI
Sell S.A., Barnes C., Smith M., McClure M., Madurantakam P., Grant J., McManus M., Bowlin G.L. Extracellular matrix regenerated: Tissue engineering via electrospun biomimetic nanofibers. Polym. Int. 2007;56:1349–1360. doi: 10.1002/pi.2344. DOI
Repanas A., Andriopoulou S., Glasmacher B. The significance of electrospinning as a method to create fibrous scaffolds for biomedical engineering and drug delivery applications. J. Drug Deliv. Sci. Technol. 2016;31:137–146. doi: 10.1016/j.jddst.2015.12.007. DOI
Li Y., Liu Y., Xun X., Zhang W., Xu Y., Gu D. Three-Dimensional Porous Scaffolds with Biomimetic Microarchitecture and Bioactivity for Cartilage Tissue Engineering. ACS Appl. Mater. Interfaces. 2019;11:36359–36370. doi: 10.1021/acsami.9b12206. PubMed DOI
Miszuk J.M., Xu T., Yao Q., Fang F., Childs J.D., Hong Z., Tao J., Fong H., Sun H. Functionalization of PCL-3D electrospun nanofibrous scaffolds for improved BMP2-induced bone formation. Appl. Mater. Today. 2018;10:194–202. doi: 10.1016/j.apmt.2017.12.004. PubMed DOI PMC
Kumar T.S.M., Kumar K.S., Rajini N., Siengchin S., Ayrilmis N., Rajulu A.V. A comprehensive review of electrospun nanofibers: Food and packaging perspective. Compos. Part B Eng. 2019;175:107074. doi: 10.1016/j.compositesb.2019.107074. DOI
Abdullah M.F., Nuge T., Andriyana A., Ang B.C., Muhamad F. Core-Shell Fibers: Design, Roles, and Controllable Release Strategies in Tissue Engineering and Drug Delivery. Polymers. 2019;11:2008. doi: 10.3390/polym11122008. PubMed DOI PMC
Wang M., Hai T., Feng Z., Yu D.-G., Yang Y., Bligh S.A. The Relationships between the Working Fluids, Process Characteristics and Products from the Modified Coaxial Electrospinning of Zein. Polymers. 2019;11:1287. doi: 10.3390/polym11081287. PubMed DOI PMC
Zhao K., Wang W., Yang Y., Wang K., Yu D.-G. From Taylor cone to solid nanofiber in tri-axial electrospinning: Size relationships. Results Phys. 2019;15:102770. doi: 10.1016/j.rinp.2019.102770. DOI
Wang K., Wang P., Wang M., Yu D.-G., Wan F., Bligh S.W.A. Comparative study of electrospun crystal-based and composite-based drug nano depots. Mater. Sci. Eng. C. 2020;113:110988. doi: 10.1016/j.msec.2020.110988. PubMed DOI
Yang J., Wang K., Yu D.-G., Yang Y., Bligh S.W.A., Williams G.R. Electrospun Janus nanofibers loaded with a drug and inorganic nanoparticles as an effective antibacterial wound dressing. Mater. Sci. Eng. C. 2020;111:110805. doi: 10.1016/j.msec.2020.110805. PubMed DOI
Yu D.-G., Wang M., Li X., Liu X., Zhu L.-M., Bligh S.W.A. Multifluid electrospinning for the generation of complex nanostructures. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2020;12:e1601. doi: 10.1002/wnan.1601. PubMed DOI
Wang K., Wen H.-F., Yu D.-G., Yang Y., Zhang D. Electrosprayed hydrophilic nanocomposites coated with shellac for colon-specific delayed drug delivery. Mater. Des. 2018;143:248–255. doi: 10.1016/j.matdes.2018.02.016. DOI
Liu W., Zhang J., Liu H. Conductive Bicomponent Fibers Containing Polyaniline Produced via Side-by-Side Electrospinning. Polymers. 2019;11:954. doi: 10.3390/polym11060954. PubMed DOI PMC
Hou J., Yang J., Zheng X., Wang M., Liu Y., Yu D.-G. A nanofiber-based drug depot with high drug loading for sustained release. Int. J. Pharm. 2020;583:119397. doi: 10.1016/j.ijpharm.2020.119397. PubMed DOI
Chang S., Wang M., Zhang F., Liu Y., Liu X., Yu D.-G., Shen H. Sheath-separate-core nanocomposites fabricated using a trifluid electrospinning. Mater. Des. 2020;192:108782. doi: 10.1016/j.matdes.2020.108782. DOI
Wang M., Wang K., Yang Y., Liu Y., Yu D.-G. Electrospun Environment Remediation Nanofibers Using Unspinnable Liquids as the Sheath Fluids: A Review. Polymers. 2020;12:103. doi: 10.3390/polym12010103. PubMed DOI PMC
Yoo H.S., Kim T.G., Park T.G. Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Adv. Drug Deliv. Rev. 2009;61:1033–1042. doi: 10.1016/j.addr.2009.07.007. PubMed DOI
Stevenson A.T., Jankus D.J., Tarshis M.A., Whittington A., Stevenson J.A.T. The correlation between gelatin macroscale differences and nanoparticle properties: Providing insight into biopolymer variability. Nanoscale. 2018;10:10094–10108. doi: 10.1039/C8NR00970H. PubMed DOI
Miroshnichenko S., Timofeeva V., Permyakova E., Ershov S., Kiryukhantsev-Korneev F.V., Dvořaková E., Shtansky D.V., Zajíčková L., Solovieva A., Manakhov A., et al. Plasma-Coated Polycaprolactone Nanofibers with Covalently Bonded Platelet-Rich Plasma Enhance Adhesion and Growth of Human Fibroblasts. Nanomaterials. 2019;9:637. doi: 10.3390/nano9040637. PubMed DOI PMC
Sun H., Mei L., Song C., Cui X., Wang P. The in vivo degradation, absorption and excretion of PCL-based implant. Biomaterials. 2006;27:1735–1740. doi: 10.1016/j.biomaterials.2005.09.019. PubMed DOI
Cipitria A., Skelton A., Dargaville T.R., Dalton P.D., Hutmacher D.W. Design, fabrication and characterization of PCL electrospun Scaffolds—A review. J. Mater. Chem. 2011;21:9419. doi: 10.1039/c0jm04502k. DOI
Metwally S., Karbowniczek J., Szewczyk P., Marzec M.M., Gruszczyński A., Bernasik A., Stachewicz U. Single-Step Approach to Tailor Surface Chemistry and Potential on Electrospun PCL Fibers for Tissue Engineering Application. Adv. Mater. Interfaces. 2018;6:1801211. doi: 10.1002/admi.201801211. DOI
Llorens E., del Valle L.J., Ferrán R., Rodríguez-Galán A., Puiggali J. Scaffolds with tuneable hydrophilicity from electrospun microfibers of polylactide and poly(ethylene glycol) mixtures: Morphology, drug release behavior, and biocompatibility. J. Polym. Res. 2014;21:360. doi: 10.1007/s10965-014-0360-4. DOI
Pavliňáková V., Vojtova L., Pavlinak D., Vojtek L., Sedlakova V., Hyršl P., Alberti M., Jaros J., Hampl A., Jančař J., et al. Novel electrospun gelatin/oxycellulose nanofibers as a suitable platform for lung disease modeling. Mater. Sci. Eng. C. 2016;67:493–501. doi: 10.1016/j.msec.2016.05.059. PubMed DOI
Ghasemi-Mobarakeh L., Prabhakaran M., Morshed M., Nasr-Esfahani M., Ramakrishna S. Electrospun poly (ε-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials. 2008;29:4532–4539. doi: 10.1016/j.biomaterials.2008.08.007. PubMed DOI
Ma Z., He W., Yong T., Ramakrishna S. Grafting of Gelatin on Electrospun Poly(caprolactone) Nanofibers to Improve Endothelial Cell Spreading and Proliferation and to Control Cell Orientation. Tissue Eng. 2005;11:1149–1158. doi: 10.1089/ten.2005.11.1149. PubMed DOI
Correia T.R., Ferreira P., Vaz R., Alves P., Figueiredo M., Correia I.J., Coimbra P. Development of UV cross-linked gelatin coated electrospun poly(caprolactone) fibrous scaffolds for tissue engineering. Int. J. Boil. Macromol. 2016;93:1539–1548. doi: 10.1016/j.ijbiomac.2016.05.045. PubMed DOI
Kim S.-E., Zhang C., Advincula A.A., Baer E., Pokorski J.K. Protein and Bacterial Antifouling Behavior of Melt-Coextruded Nanofiber Mats. ACS Appl. Mater. Interfaces. 2016;8:8928–8938. doi: 10.1021/acsami.6b00093. PubMed DOI
Scaffaro R., Lopresti F., Maio A., Botta L., Rigogliuso S., Ghersi G. Electrospun PCL/GO-g-PEG structures: Processing-morphology-properties relationships. Compos. Part A Appl. Sci. Manuf. 2017;92:97–107. doi: 10.1016/j.compositesa.2016.11.005. DOI
Li Y.-F., Rubert M., Aslan H., Yu Y., Howard K.A., Dong M., Besenbacher F., Chen M. Ultraporous interweaving electrospun microfibers from PCL–PEO binary blends and their inflammatory responses. Nanoscale. 2014;6:3392. doi: 10.1039/c3nr06197c. PubMed DOI
Asadian M., Dhaenens M., Onyshchenko Y., de Waele S., Declercq H., Cools P., Devreese B., Deforce D., Morent R., de Geyter N. Plasma Functionalization of Polycaprolactone Nanofibers Changes Protein Interactions with Cells, Resulting in Increased Cell Viability. ACS Appl. Mater. Interfaces. 2018;10:41962–41977. doi: 10.1021/acsami.8b14995. PubMed DOI
Santos F.G., Bonkovoski L.C., Garcia F.P., Cellet T.S.P., Witt M.A., Nakamura C.V., Rubira A.F., Muniz E.C. Antibacterial Performance of a PCL–PDMAEMA Blend Nanofiber-Based Scaffold Enhanced with Immobilized Silver Nanoparticles. ACS Appl. Mater. Interfaces. 2017;9:9304–9314. doi: 10.1021/acsami.6b14411. PubMed DOI
Patelli A., Mussano F., Brun P., Genova T., Ambrosi E., Michieli N.T., Mattei G., Scopece P., Moroni L. Nanoroughness, Surface Chemistry, and Drug Delivery Control by Atmospheric Plasma Jet on Implantable Devices. ACS Appl. Mater. Interfaces. 2018;10:39512–39523. doi: 10.1021/acsami.8b15886. PubMed DOI
Sardella E., Salama R., Waly G.H., Habib A.N., Favia P., Gristina R. Improving Internal Cell Colonization of Porous Scaffolds with Chemical Gradients Produced by Plasma Assisted Approaches. ACS Appl. Mater. Interfaces. 2017;9:4966–4975. doi: 10.1021/acsami.6b14170. PubMed DOI
Wörz A., Berchtold B., Moosmann K., Prucker O., Rühe J. Protein-resistant polymer surfaces. J. Mater. Chem. 2012;22:19547. doi: 10.1039/c2jm30820g. DOI
Bridges A.W., García A.J. Anti-Inflammatory Polymeric Coatings for Implantable Biomaterials and Devices. J. Diabetes Sci. Technol. 2008;2:984–994. doi: 10.1177/193229680800200628. PubMed DOI PMC
Tan S., Huang X., Wu B. Some fascinating phenomena in electrospinning processes and applications of electrospun nanofibers. Polym. Int. 2007;56:1330–1339. doi: 10.1002/pi.2354. DOI
Reneker D., Kataphinan W., Théron A., Zussman E., Yarin A. Nanofiber garlands of polycaprolactone by electrospinning. Polymers. 2002;43:6785–6794. doi: 10.1016/S0032-3861(02)00595-5. DOI
Mo X., Xu C.Y., Kotaki M., Ramakrishna S. Electrospun P(LLA-CL) nanofiber: A biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation. Biomaterials. 2004;25:1883–1890. doi: 10.1016/j.biomaterials.2003.08.042. PubMed DOI
Bhattarai S.R., Bhattarai N., Viswanathamurthi P., Yi H.K., Hwang P.H., Kim H.Y. Hydrophilic nanofibrous structure of polylactide; fabrication and cell affinity. J. Biomed. Mater. Res. Part A. 2006;78:247–257. doi: 10.1002/jbm.a.30695. PubMed DOI
Bui H.T., Chung O.H., Cruz J.D., Park J.S. Fabrication and characterization of electrospun curcumin-loaded polycaprolactone-polyethylene glycol nanofibers for enhanced wound healing. Macromol. Res. 2014;22:1288–1296. doi: 10.1007/s13233-014-2179-6. DOI
Zhao S.Y., Harrison B.S. Morphology impact on oxygen sensing ability of Ru(dpp)3Cl2 containing biocompatible polymers. Mater. Sci. Eng. C. 2015;53:280–285. doi: 10.1016/j.msec.2015.04.001. PubMed DOI
Hrib J., Širc J., Hobzova R., Hampejsova Z., Bosakova Z., Munzarova M., Michálek J. Nanofibers for drug Delivery—Incorporation and release of model molecules, influence of molecular weight and polymer structure. Beilstein J. Nanotechnol. 2015;6:1939–1945. doi: 10.3762/bjnano.6.198. PubMed DOI PMC
Nadri S., Nasehi F., Barati G. Effect of parameters on the quality of core-shell fibrous scaffold for retinal differentiation of conjunctiva mesenchymal stem cells. J. Biomed. Mater. Res. Part A. 2016;105:189–197. doi: 10.1002/jbm.a.35897. PubMed DOI
Manakhov A., Nečas D., Čechal J., Pavlinak D., Eliáš M., Zajíčková L. Deposition of stable amine coating onto polycaprolactone nanofibers by low pressure cyclopropylamine plasma polymerization. Thin Solid Films. 2015;581:7–13. doi: 10.1016/j.tsf.2014.09.015. DOI
Manakhov A., Kedroňová E., Medalová J., Černochová P., Obrusník A., Michlicek M., Shtansky D.V., Zajíčková L. Carboxyl-anhydride and amine plasma coating of PCL nanofibers to improve their bioactivity. Mater. Des. 2017;132:257–265. doi: 10.1016/j.matdes.2017.06.057. DOI
Permyakova E., Polčak J., Slukin P.V., Ignatov S., Gloushankova N.A., Zajíčková L., Shtansky D.V., Manakhov A. Antibacterial biocompatible PCL nanofibers modified by COOH-anhydride plasma polymers and gentamicin immobilization. Mater. Des. 2018;153:60–70. doi: 10.1016/j.matdes.2018.05.002. DOI
Martins A., Pinho E.D., Faria S., Pashkuleva I., Marques A.P., Reis R.L., Neves N.M. Surface Modification of Electrospun Polycaprolactone Nanofiber Meshes by Plasma Treatment to Enhance Biological Performance. Small. 2009;5:1195–1206. doi: 10.1002/smll.200801648. PubMed DOI
Makhneva E., Farka Z., Skládal P., Zajíčková L. Cyclopropylamine plasma polymer surfaces for label-free SPR and QCM immunosensing of Salmonella. Sens. Actuators B Chem. 2018;276:447–455. doi: 10.1016/j.snb.2018.08.055. DOI
Andrady A.L. Science and Technology of Polymer Nanofibers. Wiley; Hoboken, NJ, USA: 2008.
Khajavi R., Abbasipour M. Electrospinning as a versatile method for fabricating coreshell, hollow and porous nanofibers. Sci. Iran. 2012;19:2029–2034. doi: 10.1016/j.scient.2012.10.037. DOI
Bide M., Phaneuf M.D., Phaneuf T., Brown P. Medical and Healthcare Textiles. Elsevier BV; Amsterdam, The Netherlands: 2010. Controlled Drug Release from Nanofibrous Polyester Materials; pp. 198–205.
Lavielle N., Popa A.-M., de Geus M., Hébraud A., Schlatter G., Thöny-Meyer L., Rossi R.M. Controlled formation of poly(ε-caprolactone) ultrathin electrospun nanofibers in a hydrolytic degradation-assisted process. Eur. Polym. J. 2013;49:1331–1336. doi: 10.1016/j.eurpolymj.2013.02.038. DOI
Manakhov A., Landová M., Medalová J., Michlicek M., Polčak J., Nečas D., Zajíčková L. Cyclopropylamine plasma polymers for increased cell adhesion and growth. Plasma Process. Polym. 2016;14:1600123. doi: 10.1002/ppap.201600123. DOI
Favia P., Stendardo M.V., D’Agostino R. Selective grafting of amine groups on polyethylene by means of NH3−H2 RF glow discharges. Plasmas Polym. 1996;1:91–112. doi: 10.1007/BF02532821. DOI
Michlíček M., Manakhov A., Dvořáková E., Zajíčková L. Homogeneity and penetration depth of atmospheric pressure plasma polymerization onto electrospun nanofibrous mats. Appl. Surf. Sci. 2019;471:835–841. doi: 10.1016/j.apsusc.2018.11.148. DOI
Manakhov A., Michlicek M., Felten A., Pireaux J.-J., Nečas D., Zajíčková L. XPS depth profiling of derivatized amine and anhydride plasma polymers: Evidence of limitations of the derivatization approach. Appl. Surf. Sci. 2017;394:578–585. doi: 10.1016/j.apsusc.2016.10.099. DOI
Vandenabeele C.R., Buddhadasa M., Girard-Lauriault P.-L., Snyders R. Comparison between single monomer versus gas mixture for the deposition of primary amine-rich plasma polymers. Thin Solid Films. 2017;630:100–107. doi: 10.1016/j.tsf.2016.08.008. DOI
Kweon H. A novel degradable polycaprolactone networks for tissue engineering. Biomaterials. 2003;24:801–808. doi: 10.1016/S0142-9612(02)00370-8. PubMed DOI
Pielichowski K., Flejtuch K., Pielichowska K. Differential scanning calorimetry studies on poly(ethylene glycol) with different molecular weights for thermal energy storage materials. Polym. Adv. Technol. 2002;13:690–696. doi: 10.1002/pat.276. DOI
Fong H., Chun I., Reneker D. Beaded nanofibers formed during electrospinning. Polymers. 1999;40:4585–4592. doi: 10.1016/S0032-3861(99)00068-3. DOI
Zong X., Kim K., Fang D., Ran S., Hsiao B., Chu B. Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymers. 2002;43:4403–4412. doi: 10.1016/S0032-3861(02)00275-6. DOI
Pillay V., Dott C., Choonara Y.E., Tyagi C., Tomar L., Kumar P., Du Toit L.C., Ndesendo V.M.K. A Review of the Effect of Processing Variables on the Fabrication of Electrospun Nanofibers for Drug Delivery Applications. J. Nanomater. 2013;2013:1–22. doi: 10.1155/2013/789289. DOI
Qiu Z., Ikehara T., Nishi T. Miscibility and crystallization of poly(ethylene oxide) and poly(ε-caprolactone) blends. Polymers. 2003;44:3101–3106. doi: 10.1016/S0032-3861(03)00167-8. DOI
Samanta P., Srivastava R., Nandan B., Chen H.-L. Crystallization behavior of crystalline/crystalline polymer blends under confinement in electrospun nanofibers of polystyrene/poly(ethylene oxide)/poly(?-caprolactone) ternary mixtures. Soft Matter. 2017;13:1569–1582. doi: 10.1039/C6SM02748B. PubMed DOI
Samanta P., Singh S., Srivastava R., Nandan B., Liu C.-L., Chen H.-L., Velmayil T. Crystallization behaviour of poly(ethylene oxide) under confinement in the electrospun nanofibers of polystyrene/poly(ethylene oxide) blends. Soft Matter. 2016;12:5110–5120. doi: 10.1039/C6SM00648E. PubMed DOI
Tanaka F. Polymer Physics: Applications to Molecular Association and Thermoreversible Gelation. Cambridge University Press; Cambridge, UK: 2011.
Hegemann D. Comprehensive Materials Processing. Volume 2014. Elsevier BV; Amsterdam, The Netherlands: 2014. Plasma Polymer Deposition and Coatings on Polymers; pp. 201–228.
Enhanced Adhesion of Electrospun Polycaprolactone Nanofibers to Plasma-Modified Polypropylene Fabric