Enhanced Adhesion of Electrospun Polycaprolactone Nanofibers to Plasma-Modified Polypropylene Fabric
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-14105S
Czech Science Foundation
LM2018110
MEYS CR
LM2018124
MEYS CR
PubMed
37050300
PubMed Central
PMC10097108
DOI
10.3390/polym15071686
PII: polym15071686
Knihovny.cz E-zdroje
- Klíčová slova
- PCL nanofibers, PP fabric, adhesion, atmospheric pressure plasma jet, composite, electrospinning, loop test, low-pressure plasma modification, tensile test,
- Publikační typ
- časopisecké články MeSH
Excellent adhesion of electrospun nanofiber (NF) to textile support is crucial for a broad range of their bioapplications, e.g., wound dressing development. We compared the effect of several low- and atmospheric pressure plasma modifications on the adhesion between two parts of composite-polycaprolactone (PCL) nanofibrous mat (functional part) and polypropylene (PP) spunbond fabric (support). The support fabrics were modified before electrospinning by low-pressure plasma oxygen treatment or amine plasma polymer thin film or treated by atmospheric pressure plasma slit jet (PSJ) in argon or argon/nitrogen. The adhesion was evaluated by tensile test and loop test adapted for thin NF mat measurement and the trends obtained by both tests largely agreed. Although all modifications improved the adhesion significantly (at least twice for PSJ treatments), low-pressure oxygen treatment showed to be the most effective as it strengthened adhesion by a factor of six. The adhesion improvement was ascribed to the synergic effect of high treatment homogeneity with the right ratio of surface functional groups and sufficient wettability. The low-pressure modified fabric also stayed long-term hydrophilic (ten months), even though surfaces usually return to a non-wettable state (hydrophobic recovery). In contrast to XPS, highly surface-sensitive water contact angle measurement proved suitable for monitoring subtle surface changes.
Zobrazit více v PubMed
Barnes C., Sell S., Knapp D., Walpoth B., Brand D., Bowlin G. Preliminary investigation of electrospun collagen and polydioxanone for vascular tissue engineering applications. Int. J. Electrospun Nanofibers Appl. 2007;1:73–87.
Welle A., Kröger M., Döring M., Niederer K., Pindel E., Chronakis I. Electrospun aliphatic polycarbonates as tailored tissue scaffold materials. Biomaterials. 2007;28:2211–2219. doi: 10.1016/j.biomaterials.2007.01.024. PubMed DOI
Venugopal J., Ramakrishna S. Biocompatible Nanofiber Matrices for the Engineering of a Dermal Substitute for Skin Regeneration. Tissue Eng. 2005;11:847–854. doi: 10.1089/ten.2005.11.847. PubMed DOI
Chen J., Chu B., Hsiao B.S. Mineralization of hydroxyapatite in electrospun nanofibrous poly(L-lactic acid) scaffolds. J. Biomed. Mater. Res. Part A. 2006;79:307–317. doi: 10.1002/jbm.a.30799. PubMed DOI
Mohammadalipour M., Asadolahi M., Mohammadalipour Z., Behzad T., Karbasi S. Plasma surface modification of electrospun polyhydroxybutyrate (PHB) nanofibers to investigate their performance in bone tissue engineering. Int. J. Biol. Macromol. 2023;230:123167. doi: 10.1016/j.ijbiomac.2023.123167. PubMed DOI
Zhang Y., Liu X., Zeng L., Zhang J., Zuo J., Zou J., Ding J., Chen X. Polymer Fiber Scaffolds for Bone and Cartilage issue Engineering. Adv. Funct. Mater. 2019;29:1903279. doi: 10.1002/adfm.201903279. DOI
Qi Y., Wang C., Wang Q., Zhou F., Li T., Wang B., Su W., Shang D., Wu S. A simple, quick, and cost-effective strategy to fabricate polycaprolactone/silk fibroin nanofiber yarns for biotextile-based tissue scaffold application. Eur. Polym. J. 2023;186:111863. doi: 10.1016/j.eurpolymj.2023.111863. DOI
Senthamizhan A., Balusamy B., Uyar T. Recent progress on designing electrospun nanofibers for colorimetric biosensing applications. Curr. Opin. Biomed. Eng. 2020;13:1–8. doi: 10.1016/j.cobme.2019.08.002. DOI
Unal B., Yalcinkaya E.E., Demirkol D.O., Timur S. An electrospun nanofiber matrix based on organo-clay for biosensors: PVA/PAMAM-Montmorillonite. Appl. Surf. Sci. 2018;444:542–551. doi: 10.1016/j.apsusc.2018.03.109. DOI
Stafiniak A., Boratyński B., Baranowska-Korczyc A., Szyszka A., Krasowska M.R., Prażmowska J., Fronc K., Elbaum D., Paszkiewicz R., Tłaczała M. A novel electrospun ZnO nanofibers biosensor fabrication. Sens. Actuators B Chem. 2011;160:1413–1418. doi: 10.1016/j.snb.2011.09.087. DOI
Qiu J., Yu T., Zhang W., Zhao Z., Zhang Y., Ye G., Zhao Y., Du X., Liu X., Yang L., et al. A Bioinspired, Durable, and Nondisposable Transparent Graphene Skin Electrode for Electrophysiological Signal Detection. ACS Mater. Lett. 2020;2:999–1007. doi: 10.1021/acsmaterialslett.0c00203. DOI
Faraji S., Nowroozi N., Nouralishahi A., Shabani Shayeh J. Electrospun poly-caprolactone/graphene oxide/quercetin nanofibrous scaffold for wound dressing: Evaluation of biological and structural properties. Life Sci. 2020;257:118062. doi: 10.1016/j.lfs.2020.118062. PubMed DOI
Balusamy B., Senthamizhan A., Uyar T. 8-Electrospun nanofibrous materials for wound healing applications. In: Uyar T., Kny E., editors. Electrospun Materials for Tissue Engineering and Biomedical Applications. Woodhead Publishing; Cambridge, UK: 2017. pp. 147–177. DOI
Li M., Qiu W., Wang Q., Li N., Liu L., Wang X., Yu J., Li X., Li F., Wu D. Nitric Oxide-Releasing Tryptophan-Based Poly(ester urea)s Electrospun Composite Nanofiber Mats with Antibacterial and Antibiofilm Activities for Infected Wound Healing. ACS Appl. Mater. Interfaces. 2022;14:15911–15926. doi: 10.1021/acsami.1c24131. PubMed DOI
Deng Z., Mu H., Jiang L., Xi W., Xu X., Zheng W. Preparation and characterization of electrospun PLGA-SF nanofibers as a potential drug delivery system. Mater. Chem. Phys. 2022;289:126452. doi: 10.1016/j.matchemphys.2022.126452. DOI
Agarwal S., Greiner A., Wendorff J. Functional materials by electrospinning of polymers. Prog. Polym. Sci. 2013;38:963–991. doi: 10.1016/j.progpolymsci.2013.02.001. DOI
Bhardwaj N., Kundu S. Electrospinning: A fascinating fiber fabrication technique. Biotechnol. Adv. 2010;28:325–347. doi: 10.1016/j.biotechadv.2010.01.004. PubMed DOI
Shi S., Si Y., Han Y., Wu T., Iqbal M.I., Fei B., Li R.K.Y., Hu J., Qu J. Recent Progress in Protective Membranes Fabricated via Electrospinning: Advanced Materials, Biomimetic Structures, and Functional Applications. Adv. Mater. 2022;34:2107938. doi: 10.1002/adma.202107938. PubMed DOI
Xue J., Wu T., Dai Y., Xia Y. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chem. Rev. 2019;119:5298–5415. doi: 10.1021/acs.chemrev.8b00593. PubMed DOI PMC
Asadian M., Chan K.V., Norouzi M., Grande S., Cools P., Morent R., Geyter N.D. Fabrication and plasma modification of nanofibrous tissue engineering scaffolds. Nanomaterials. 2020;10:119. doi: 10.3390/nano10010119. PubMed DOI PMC
Yoo H.S., Kim T.G., Park T.G. Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Nanofibers Regen. Med. Drug Deliv. 2009;61:1033–1042. doi: 10.1016/j.addr.2009.07.007. PubMed DOI
Bridges A.W., García A.J. Anti-Inflammatory Polymeric Coatings for Implantable Biomaterials and Devices. J. Diabetes Sci. Technol. 2008;2:984–994. doi: 10.1177/193229680800200628. PubMed DOI PMC
Woodruff M.A., Hutmacher D.W. The return of a forgotten polymer—Polycaprolactone in the 21st century. Prog. Polym. Sci. 2010;35:1217–1256. doi: 10.1016/j.progpolymsci.2010.04.002. DOI
Varesano A., Rombaldoni F., Tonetti C., Mauro S.D., Mazzuchetti G. Chemical treatments for improving adhesion between electrospun nanofibers and fabrics. J. Appl. Polym. Sci. 2014;131:39766. doi: 10.1002/app.39766. DOI
Amini G., Gharehaghaji A.A. Improving adhesion of electrospun nanofiber mats to supporting substrate by using adhesive bonding. Int. J. Adhes. Adhes. 2018;86:40–44. doi: 10.1016/j.ijadhadh.2018.08.005. DOI
Liu W., Zhan J., Su Y., Wu T., Wu C., Ramakrishna S., Mo X., Al-Deyab S.S., El-Newehy M. Effects of plasma treatment to nanofibers on initial cell adhesion and cell morphology. Colloids Surf. Biointerfaces. 2014;113:101–106. doi: 10.1016/j.colsurfb.2013.08.031. PubMed DOI
Yan D., Jones J., Yuan X.Y., Xu X.H., Sheng J., Lee J.C.M., Ma G.Q., Yu Q.S. Plasma treatment of electrospun PCL random nanofiber meshes (NFMs) for biological property improvement. J. Biomed. Mater. Res. Part A. 2013;101:963–972. doi: 10.1002/jbm.a.34398. PubMed DOI
Duque Sánchez L., Brack N., Postma A., Pigram P.J., Meagher L. Surface modification of electrospun fibres for biomedical applications: A focus on radical polymerization methods. Biomaterials. 2016;106:24–45. doi: 10.1016/j.biomaterials.2016.08.011. PubMed DOI
Park K., Ju Y.M., Son J.S., Ahn K.D., Han D.K. Surface modification of biodegradable electrospun nanofiber scaffolds and their interaction with fibroblasts. J. Biomater. Sci. Polym. Ed. 2007;18:369–382. doi: 10.1163/156856207780424997. PubMed DOI
Chatelier R.C., Xie X., Gengenbach T.R., Griesser H.J. Quantitative Analysis of Polymer Surface Restructuring. Langmuir. 1995;11:2576–2584. doi: 10.1021/la00007a042. DOI
Ruiz J.C., St-Georges-Robillard A., Thérésy C., Lerouge S., Wertheimer M.R. Fabrication and Characterisation of Amine-Rich Organic Thin Films: Focus on Stability. Plasma Process. Polym. 2010;7:737–753. doi: 10.1002/ppap.201000042. DOI
Siow K.S., Britcher L., Kumar S., Griesser H.J. Plasma Methods for the Generation of Chemically Reactive Surfaces for Biomolecule Immobilization and Cell Colonization - A Review. Plasma Process. Polym. 2006;3:392–418. doi: 10.1002/ppap.200600021. DOI
Rombaldoni F., Mahmood K., Varesano A., Songia M.B., Aluigi A., Vineis C., Mazzuchetti G. Adhesion enhancement of electrospun nanofiber mats to polypropylene nonwoven fabric by low-temperature oxygen plasma treatment. Surf. Coat. Technol. 2013;216:178–184. doi: 10.1016/j.surfcoat.2012.11.056. DOI
Pavliňák D., Galmiz O., Pavliňáková V., Poláček P., Kelar J., Stupavská M., Černák M. Application of dielectric barrier plasma treatment in the nanofiber processing. Mater. Today Commun. 2018;16:330–338. doi: 10.1016/j.mtcomm.2018.07.010. DOI
Vitchuli N., Shi Q., Nowak J., Nawalakhe R., Sieber M., Bourham M., McCord M., Zhang X. Plasma-electrospinning hybrid process and plasma pretreatment to improve adhesive properties of nanofibers on fabric surface. Plasma Chem. Plasma Process. 2012;32:275–291. doi: 10.1007/s11090-011-9341-0. DOI
Nawalakhe R., Shi Q., Vitchuli N., Noar J., Caldwell J.M., Breidt F., Bourham M.A., Zhang X., McCord M.G. Novel atmospheric plasma enhanced chitosan nanofiber/gauze composite wound dressings. J. Appl. Polym. Sci. 2013;129:916–923. doi: 10.1002/app.38804. DOI
Nawalakhe R., Shi Q., Vitchuli N., Bourham M.A., Zhang X., McCord M.G. Plasma-Assisted Preparation of High-Performance Chitosan Nanofibers/Gauze Composite Bandages. Int. J. Polym. Mater. Polym. Biomater. 2015;64:709–717. doi: 10.1080/00914037.2014.1002098. DOI
Shi Q., Vitchuli N., Nowak J., Jiang S., Caldwell J.M., Breidt F., Bourham M., Zhang X., McCord M. Multifunctional and durable nanofiber-fabric-layered composite for protective application. J. Appl. Polym. Sci. 2013;128:1219–1226. doi: 10.1002/app.38465. DOI
Jelínek P., Polášková K., Jeník F., Jeníková Z., Dostál L., Dvořáková E., Cerman J., Šourková H., Buršíková V., Špatenka P., et al. Effects of additives on atmospheric pressure gliding arc applied to the modification of polypropylene. Surf. Coat. Technol. 2019;372:45–55. doi: 10.1016/j.surfcoat.2019.04.035. DOI
Polášková K., Klíma M., Jeníková Z., Blahová L., Zajíčková L. Effect of Low Molecular Weight Oxidized Materials and Nitrogen Groups on Adhesive Joints of Polypropylene Treated by a Cold Atmospheric Plasma Jet. Polymers. 2021;13:4396. doi: 10.3390/polym13244396. PubMed DOI PMC
Polášková K., Nečas D., Dostál L., Klíma M., Fiala P., Zajíčková L. Self-organization phenomena in cold atmospheric pressure plasma slit jet. Plasma Sources Sci. Technol. 2022;31:125014. doi: 10.1088/1361-6595/acab82. DOI
Guo Y., Guo Y., He W., Zhao Y., Shen R., Liu J., Wang J. PET/TPU nanofiber composite filters with high interfacial adhesion strength based on one-step co-electrospinning. Powder Technol. 2021;387:136–145. doi: 10.1016/j.powtec.2021.04.020. DOI
Tiu B.D.B., Delparastan P., Ney M.R., Gerst M., Messersmith P.B. Enhanced Adhesion and Cohesion of Bioinspired Dry/Wet Pressure-Sensitive Adhesives. ACS Appl. Mater. Interfaces. 2019;11:28296–28306. doi: 10.1021/acsami.9b08429. PubMed DOI
Rivals I., Personnaz L., Creton C., Simal F., Roose P., Van Es S. A Statistical Method for the Prediction of the Loop Tack and the Peel of PSAs from Probe test Measurements. Meas. Sci. Technol. 2005;16:2020. doi: 10.1088/0957-0233/16/10/018. DOI
Plaut R.H., Williams N.L., Dillard D.A. Elastic analysis of the loop tack test for pressure sensitive adhesives. J. Adhes. 2001;76:37–53. doi: 10.1080/00218460108029616. DOI
Štrbková L., Manakhov A., Zajíčková L., Stoica A., Veselý P., Chmelík R. The adhesion of normal human dermal fibroblasts to the cyclopropylamine plasma polymers studied by holographic microscopy. Surf. Coat. Technol. 2016;295:70–77. doi: 10.1016/j.surfcoat.2015.10.076. DOI
Michlíček M., Blahová L., Dvořáková E., Nečas D., Zajíčková L. Deposition penetration depth and sticking probability in plasma polymerization of cyclopropylamine. Appl. Surf. Sci. 2021;540:147979. doi: 10.1016/j.apsusc.2020.147979. DOI
Kupka V., Dvoráková E., Manakhov A., Michlíček M., Petruš J., Vojtová L., Zajíčková L. Well-blended PCL/PEO electrospun nanofibers with functional properties enhanced by plasma processing. Polymers. 2020;12:1403. doi: 10.3390/polym12061403. PubMed DOI PMC
Beamson G., Briggs D. High Resolution XPS of Organic Polymers, the Scienta ESCA300 Database. John Wiley & Sons; Chichester, UK: 1992. p. 295.
Nemcakova I., Blahova L., Rysanek P., Blanquer A., Bacakova L., Zajíčková L. Behaviour of Vascular Smooth Muscle Cells on Amine Plasma-Coated Materials with Various Chemical Structures and Morphologies. Int. J. Mol. Sci. 2020;21:9467. doi: 10.3390/ijms21249467. PubMed DOI PMC
Morent R., Geyter N.D., Gengembre L., Leys C., Payen E., Vlierberghe S.V., Schacht E. Surface treatment of a polypropylene film with a nitrogen DBD at medium pressure. Eur. Phys. J. Appl. Phys. 2008;43:289–294. doi: 10.1051/epjap:2008076. DOI
Sarani A., Nikiforov A.Y., Geyter N.D., Morent R., Leys C. Surface modification of polypropylene with an atmospheric pressure plasma jet sustained in argon and an argon/water vapour mixture. Appl. Surf. Sci. 2011;257:8737–8741. doi: 10.1016/j.apsusc.2011.05.071. DOI
Buchtelová M., Blahová L., Nečas D., Křížková P., Bartošíková J., Medalová J., Kolská Z., Hegemann D., Zajíčková L. Insight into peculiar adhesion of cells to plasma-chemically prepared multifunctional “amino-glue” surfaces. Plasma Process. Polym. 2023;20:e2200157. doi: 10.1002/ppap.202200157. DOI
Gengenbach T.R., Griesser H.J. Aging of 1,3-diaminopropane plasma-deposited polymer films: Mechanisms and reaction pathways. J. Polym. Sci. Part A Polym. Chem. 1999;37:2191–2206. doi: 10.1002/(SICI)1099-0518(19990701)37:13<2191::AID-POLA34>3.0.CO;2-F. DOI
Girard-Lauriault P.L., Dietrich P.M., Gross T., Wirth T., Unger W.E. Chemical characterization of the long-term ageing of nitrogen-rich plasma polymer films under various ambient conditions. Plasma Process. Polym. 2013;10:388–395. doi: 10.1002/ppap.201200118. DOI
Vandenbossche M., Hegemann D. Recent approaches to reduce aging phenomena in oxygen- and nitrogen-containing plasma polymer films: An overview. Curr. Opin. Solid State Mater. Sci. 2018;22:26–38. doi: 10.1016/j.cossms.2018.01.001. DOI
Dorai R., Kushner M.J. A model for plasma modification of polypropylene using atmospheric pressure discharges. J. Phys. D Appl. Phys. 2003;36:666. doi: 10.1088/0022-3727/36/6/309. DOI
Strobel M., Strobel J.M., Jones V., Lechuga H., Lyons C.S. Effect on wettability of the topography and oxidation state of biaxially oriented poly (propylene) film. J. Adhes. Sci. Technol. 2019;33:1644–1657. doi: 10.1080/01694243.2019.1604304. DOI
Mortazavi M., Nosonovsky M. A model for diffusion-driven hydrophobic recovery in plasma treated polymers. Appl. Surf. Sci. 2012;258:6876–6883. doi: 10.1016/j.apsusc.2012.03.122. DOI