Behaviour of Vascular Smooth Muscle Cells on Amine Plasma-Coated Materials with Various Chemical Structures and Morphologies
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-12774S
Ministerstvo Školství, Mládeže a Tělovýchovy
LQ1601
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2018110
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
33322781
PubMed Central
PMC7763571
DOI
10.3390/ijms21249467
PII: ijms21249467
Knihovny.cz E-zdroje
- Klíčová slova
- amine plasma polymer, bioactive coating, cell adhesion, cell proliferation, polycaprolactone nanofibers, substrate morphology,
- MeSH
- aminy škodlivé účinky chemie imunologie farmakologie MeSH
- biokompatibilní potahované materiály škodlivé účinky chemie farmakologie MeSH
- buněčná adheze účinky léků imunologie MeSH
- fotoelektronová spektroskopie MeSH
- krevní plazma chemie imunologie MeSH
- krysa rodu Rattus MeSH
- kultivované buňky MeSH
- makrofágy účinky léků metabolismus MeSH
- myocyty hladké svaloviny účinky léků metabolismus MeSH
- myši MeSH
- nanovlákna škodlivé účinky chemie MeSH
- polyestery chemie MeSH
- polymery škodlivé účinky chemie farmakologie MeSH
- povrchové vlastnosti účinky léků MeSH
- proliferace buněk účinky léků MeSH
- RAW 264.7 buňky MeSH
- svaly hladké cévní cytologie účinky léků růst a vývoj MeSH
- tkáňové podpůrné struktury škodlivé účinky chemie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aminy MeSH
- biokompatibilní potahované materiály MeSH
- polycaprolactone MeSH Prohlížeč
- polyestery MeSH
- polymery MeSH
Amine-coated biodegradable materials based on synthetic polymers have a great potential for tissue remodeling and regeneration because of their excellent processability and bioactivity. In the present study, we have investigated the influence of various chemical compositions of amine plasma polymer (PP) coatings and the influence of the substrate morphology, represented by polystyrene culture dishes and polycaprolactone nanofibers (PCL NFs), on the behavior of vascular smooth muscle cells (VSMCs). Although all amine-PP coatings improved the initial adhesion of VSMCs, 7-day long cultivation revealed a clear preference for the coating containing about 15 at.% of nitrogen (CPA-33). The CPA-33 coating demonstrated the ideal combination of good water stability, a sufficient amine group content, and favorable surface wettability and morphology. The nanostructured morphology of amine-PP-coated PCL NFs successfully slowed the proliferation rate of VSMCs, which is essential in preventing restenosis of vascular replacements in vivo. At the same time, CPA-33-coated PCL NFs supported the continuous proliferation of VSMCs during 7-day long cultivation, with no significant increase in cytokine secretion by RAW 264.7 macrophages. The CPA-33 coating deposited on biodegradable PCL NFs therefore seems to be a promising material for manufacturing small-diameter vascular grafts, which are still lacking on the current market.
Zobrazit více v PubMed
Pashneh-Tala S., MacNeil S., Claeyssens F. The tissue-engineered vascular graft-past, present, and future. Tissue Eng. Part B-Rev. 2016;22:68–100. doi: 10.1089/ten.teb.2015.0100. PubMed DOI PMC
Riepe G., Loos J., Imig H., Schroder A., Schneider E., Petermann J., Rogge A., Ludwig M., Schenke A., Nassutt R., et al. Long-term in vivo alterations of polyester vascular grafts in humans. Eur. J. Vasc. Endovasc. Surg. 1997;13:540–548. doi: 10.1016/S1078-5884(97)80062-7. PubMed DOI
Camiade C., Maher A., Ricco J.B., Roumy J., Febrer G., Marchand C., Neau J.P. Carotid bypass with polytetrafluoroethylene grafts: A study of 110 consecutive patients. J. Vasc. Surg. 2003;38:1031–1037. doi: 10.1016/S0741-5214(03)00708-0. PubMed DOI
Obiweluozor F.O., Emechebe G.A., Kim D.W., Cho H.J., Park C.H., Kim C.S., Jeong I.S. Considerations in the development of small-diameter vascular graft as an alternative for bypass and reconstructive surgeries: A review. Cardiovasc. Eng. Technol. 2020;5:495–521. doi: 10.1007/s13239-020-00482-y. PubMed DOI
Bacakova L., Filova E., Parizek M., Ruml T., Svorcik V. Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotechnol. Adv. 2011;29:739–767. doi: 10.1016/j.biotechadv.2011.06.004. PubMed DOI
Kopova I., Rezek B., Stehlik S., Ukraintsev E., Slepickova Kasalkova N., Slepicka P., Potocky S., Bacakova L. Growth of primary human osteoblasts on plasma-treated and nanodiamond-coated PTFE polymer foils. Phys. Status Solidi (B) 2018;255:1700595. doi: 10.1002/pssb.201700595. DOI
Solouk A., Cousins B.G., Mirzadeh H., Seifalian A.M. Application of plasma surface modification techniques to improve hemocompatibility of vascular grafts: A review. Biotechnol. Appl. Biochem. 2011;58:311–327. doi: 10.1002/bab.50. PubMed DOI
Lassen B., Gölander C.G., Johanssona A., Elwing H. Some model surfaces made by RF plasma aimed for the study of biocompatibility. Clin. Mater. 1992;11:99–103. doi: 10.1016/0267-6605(92)90034-Q. DOI
Hopper A.P., Dugan J.M., Gill A.A., Regan E.M., Haycock J.W., Kelly S., May P.W., Claeyssens F. Photochemically modified diamond-like carbon surfaces for neural interfaces. Mater. Sci. Eng. C. 2016;58:1199–1206. doi: 10.1016/j.msec.2015.09.013. PubMed DOI
Janorkar A.V., Fritz E.W., Jr., Burg K.J.L., Metters A.T., Hirt D.E. Grafting amine-terminated branched architectures from poly(L-lactide) film surfaces for improved cell attachment. J. Biomed. Mater. Res. Part B Appl. Biomater. 2007;81B:142–152. doi: 10.1002/jbm.b.30647. PubMed DOI
Keen I., Broota P., Rintoul L., Fredericks P., Trau M., Grøndahl L. Introducing amine functionalities on a poly(3-hydroxybutyrate-co-3-hydroxyvalerate) surface: Comparing the use of ammonia plasma treatment and ethylenediamine aminolysis. Biomacromolecules. 2006;7:427–434. doi: 10.1021/bm050497a. PubMed DOI
Li L., Driscoll M., Kumi G., Hernandez R., Gaskell K.J., Losert W., Fourkas J.T. Binary and gray-scale patterning of chemical functionality on polymer films. J. Am. Chem. Soc. 2008;130:13512–13513. doi: 10.1021/ja803999r. PubMed DOI
Noel S., Liberelle B., Robitaille L., De Crescenzo G. Quantification of primary amine groups available for subsequent biofunctionalization of polymer surfaces. Bioconjug. Chem. 2011;22:1690–1699. doi: 10.1021/bc200259c. PubMed DOI
Carmagnola I., Chiono V., Abrigo M., Ranzato E., Martinotti S., Ciardelli G. Tailored functionalization of poly(L-lactic acid) substrates at the nanoscale to enhance cell response. J. Biomater. Sci. Polym. Ed. 2019;30:526–546. doi: 10.1080/09205063.2019.1580954. PubMed DOI
Omrani M.M., Kiaie N., Ansari M., Kordestani S.S. Enhanced protein adsorption, cell attachment, and neural differentiation with the help of amine functionalized polycaprolactone scaffolds. J. Macromol. Sci. Part B. 2016;55:617–626. doi: 10.1080/00222348.2016.1179245. DOI
Yang Y., Qi P., Ding Y., Maitz M.F., Yang Z., Tu Q., Xiong K., Leng Y., Huang N. A biocompatible and functional adhesive amine-rich coating based on dopamine polymerization. J. Mater. Chem. B. 2015;3:72–81. doi: 10.1039/C4TB01236D. PubMed DOI
Zhu Y., Leong M.F., Ong W.F., Chan-Park M.B., Chian K.S. Esophageal epithelium regeneration on fibronectin grafted poly(l-lactide-co-caprolactone) (PLLC) nanofiber scaffold. Biomaterials. 2007;28:861–868. doi: 10.1016/j.biomaterials.2006.09.051. PubMed DOI
Cvelbar U., Junkar I., Modic M. Hemocompatible poly(ethylene terephthalate) polymer modified via reactive plasma treatment. Jpn. J. Appl. Phys. 2011;50:08JF02. doi: 10.7567/JJAP.50.08JF02. DOI
Gomathi N., Rajasekar R., Babu R.R., Mishra D., Neogi S. Development of bio/blood compatible polypropylene through low pressure nitrogen plasma surface modification. Mater. Sci. Eng. C. 2012;32:1767–1778. doi: 10.1016/j.msec.2012.04.034. PubMed DOI
Junkar I., Cvelbar U., Lehocky M. Plasma treatment of biomedical materials. Mater. Tehnol. 2011;45:221–226.
Kolar M., Primc G. Haemostatic response of polyethylene terephthalate treated by oxygen and nitrogen plasma afterglows. Int. J. Polym. Sci. 2016;2016 doi: 10.1155/2016/1749285. DOI
Risbud M.V., Dabhade R., Gangal S., Bhonde R.R. Radio-frequency plasma treatment improves the growth and attachment of endothelial cells on poly(methyl methacrylate) substrates: Implications in tissue engineering. J. Biomater. Sci. Polym. Ed. 2002;13:1067–1080. doi: 10.1163/156856202320813792. PubMed DOI
Shah A., Shah S., Mani G., Wenke J., Agrawal M. Endothelial cell behaviour on gas-plasma-treated PLA surfaces: The roles of surface chemistry and roughness. J. Tissue Eng. Regen. Med. 2011;5:301–312. doi: 10.1002/term.316. PubMed DOI
Wang Y., Lu L., Zheng Y., Chen X. Improvement in hydrophilicity of PHBV films by plasma treatment. J. Biomed. Mater. Res. Part A. 2006;76A:589–595. doi: 10.1002/jbm.a.30575. PubMed DOI
Daranarong D., Techaikool P., Intatue W., Daengngern R., Thomson K.A., Molloy R., Kungwan N., Foster L.J.R., Boonyawan D., Punyodom W. Effect of surface modification of poly(l-lactide-co-ε-caprolactone) membranes by low-pressure plasma on support cell biocompatibility. Surf. Coat. Technol. 2016;306:328–335. doi: 10.1016/j.surfcoat.2016.07.058. DOI
Lopez L.C., Belviso M.R., Gristina R., Nardulli M., d’Agostino R., Favia P. Plasma-treated nitrogen-containing surfaces for cell adhesion: The role of the polymeric substrate. Plasma Process. Polym. 2007;4:S402–S405. doi: 10.1002/ppap.200731008. DOI
Ramires P.A., Mirenghi L., Romano A.R., Palumbo F., Nicolardi G. Plasma-treated PET surfaces improve the biocompatibility of human endothelial cells. J. Biomed. Mater. Res. 2000;51:535–539. doi: 10.1002/1097-4636(20000905)51:3<535::AID-JBM31>3.0.CO;2-P. PubMed DOI
Mortazavi M., Nosonovsky M. A model for diffusion-driven hydrophobic recovery in plasma treated polymers. Appl. Surf. Sci. 2012;258:6876–6883. doi: 10.1016/j.apsusc.2012.03.122. DOI
Awaja F., Carletti E., Bonani W., Speranza G. Vinculin focal adhesion of osteoblast-like cells on PEEK coated with ultra-thin polymer nano films. J. Appl. Polym. Sci. 2015;132 doi: 10.1002/app.42181. DOI
Finke B., Hempel F., Testrich H., Artemenko A., Rebl H., Kylián O., Meichsner J., Biederman H., Nebe B., Weltmann K.D., et al. Plasma processes for cell-adhesive titanium surfaces based on nitrogen-containing coatings. Surf. Coat. Technol. 2011;205:S520–S524. doi: 10.1016/j.surfcoat.2010.12.044. DOI
Testrich H., Rebl H., Finke B., Hempel F., Nebe B., Meichsner J. Aging effects of plasma polymerized ethylenediamine (PPEDA) thin films on cell-adhesive implant coatings. Mater. Sci. Eng. C. 2013;33:3875–3880. doi: 10.1016/j.msec.2013.05.024. PubMed DOI
Crespin M., Moreau N., Masereel B., Feron O., Gallez B., Vander Borght T., Michiels C., Lucas S. Surface properties and cell adhesion onto allylamine-plasma and amine-plasma coated glass coverslips. J. Mater. Sci. Mater. Med. 2011;22:671–682. doi: 10.1007/s10856-011-4245-3. PubMed DOI
Javid A., Kumar M., Wen L., Yoon S., Jin S.B., Lee J.H., Han J.G. Surface energy and wettability control in bio-inspired PEG like thin films. Mater. Des. 2016;92:405–413. doi: 10.1016/j.matdes.2015.12.046. DOI
Mangindaan D., Kuo W.-H., Kurniawan H., Wang M.-J. Creation of biofunctionalized plasma polymerized allylamine gradients. J. Polym. Sci. Part B Polym. Phys. 2013;51:1361–1367. doi: 10.1002/polb.23341. DOI
Ren T.B., Weigel T., Groth T., Lendlein A. Microwave plasma surface modification of silicone elastomer with allylamine for improvement of biocompatibility. J. Biomed. Mater. Res. A. 2008;86:209–219. doi: 10.1002/jbm.a.31508. PubMed DOI
Manakhov A., Kedronova E., Medalova J., Cernochova P., Obrusnik A., Michlicek M., Shtansky D.V., Zajickova L. Carboxyl-anhydride and amine plasma coating of PCL nanofibers to improve their bioactivity. Mater. Des. 2017;132:257–265. doi: 10.1016/j.matdes.2017.06.057. DOI
Manakhov A., Landova M., Medalova J., Michlicek M., Polcak J., Necas D., Zajickova L. Cyclopropylamine plasma polymers for increased cell adhesion and growth. Plasma Process. Polym. 2017;14:1600123. doi: 10.1002/ppap.201600123. DOI
Kwon S., Ban W., Lim H., Seo Y., Park H., Kim E.-J., Cho Y.K., Park S.G., Jung D. Effects of the generated functional groups by PECVD on adhesiveness of adipose derived mesenchymal stem cells. J. Vac. Sci. Technol. A. 2018;36:031403. doi: 10.1116/1.5020851. DOI
Conklin D.J., Boor P.J. Allylamine cardiovascular toxicity: Evidence for aberrant vasoreactivity in rats. Toxicol. Appl. Pharm. 1998;148:245–251. doi: 10.1006/taap.1997.8331. PubMed DOI
Manakhov A., Zajíčková L., Eliáš M., Čechal J., Polčák J., Hnilica J., Bittnerová Š., Nečas D. Optimization of cyclopropylamine plasma polymerization toward enhanced layer stability in contact with water. Plasma Process. Polym. 2014;11:532–544. doi: 10.1002/ppap.201300177. DOI
Siddiqui N., Asawa S., Birru B., Baadhe R., Rao S. PCL-based composite scaffold matrices for tissue engineering applications. Mol. Biotechnol. 2018;60:506–532. doi: 10.1007/s12033-018-0084-5. PubMed DOI
Thyberg J., Hedin U., Sjolund M., Palmberg L., Bottger B.A. Regulation of differentiated properties and proliferation of arterial smooth-muscle cells. Arteriosclerosis. 1990;10:966–990. doi: 10.1161/01.ATV.10.6.966. PubMed DOI
Cao Y., Poon Y.F., Feng J., Rayatpisheh S., Chan V., Chan-Park M.B. Regulating orientation and phenotype of primary vascular smooth muscle cells by biodegradable films patterned with arrays of microchannels and discontinuous microwalls. Biomaterials. 2010;31:6228–6238. doi: 10.1016/j.biomaterials.2010.04.059. PubMed DOI
Kiyan Y., Kurselis K., Kiyan R., Haller H., Chichkov B.N., Dumler I. Urokinase receptor counteracts vascular smooth muscle cell functional changes induced by surface topography. Theranostics. 2013;3:516–526. doi: 10.7150/thno.4119. PubMed DOI PMC
Yim E.K.F., Reano R.M., Pang S.W., Yee A.F., Chen C.S., Leong K.W. Nanopattern-induced changes in morphology and motility of smooth muscle cells. Biomaterials. 2005;26:5405–5413. doi: 10.1016/j.biomaterials.2005.01.058. PubMed DOI PMC
Inoue T., Node K. Molecular basis of restenosis and novel issues of drug-eluting stents. Circ. J. 2009;73:615–621. doi: 10.1253/circj.CJ-09-0059. PubMed DOI
Welt F.G.P., Rogers C. Inflammation and restenosis in the stent era. Arterioscler. Thromb. Vasc. Biol. 2002;22:1769–1776. doi: 10.1161/01.ATV.0000037100.44766.5B. PubMed DOI
Cernochova P., Blahova L., Medalova J., Necas D., Michlicek M., Kaushik P., Pribyl J., Bartosikova J., Manakhov A., Bacakova L., et al. Cell type specific adhesion to surfaces functionalised by amine plasma polymers. Sci. Rep. 2020;10:1–14. doi: 10.1038/s41598-020-65889-y. PubMed DOI PMC
Manakhov A., Nečas D., Čechal J., Pavliňák D., Eliáš M., Zajíčková L. Deposition of stable amine coating onto polycaprolactone nanofibers by low pressure cyclopropylamine plasma polymerization. Thin Solid Film. 2015;581:7–13. doi: 10.1016/j.tsf.2014.09.015. DOI
Beamson G., Briggs D. High Resolution XPS of Organic Polymers, the Scienta ESCA300 Database. John Wiley & Sons; Chichester, UK: 1992.
Beaulleu I., Geissler M., Mauzeroll J. Oxygen plasma treatment of polystyrene and zeonor: Substrates for adhesion of patterned cells. Langmuir. 2009;25:7169–7176. doi: 10.1021/la9001972. PubMed DOI
Girardeaux C., Pireaux J.-J. Analysis of polystyrene (PS) by XPS. Surf. Sci. Spectra. 1996;4:130–133. doi: 10.1116/1.1247812. DOI
Recek N., Mozetic M., Jaganjac M., Milkovic L., Zarkovic N., Vesel A. Adsorption of proteins and cell adhesion to plasma treated polymer substrates. Int. J. Polym. Mater. Polym. Biomater. 2014;63:685–691. doi: 10.1080/00914037.2013.854243. DOI
Truica-Marasescu F., Wertheimer M.R. Nitrogen-rich plasma-polymer films for biomedical applications. Plasma Process. Polym. 2008;5:44–57. doi: 10.1002/ppap.200700077. DOI
Mangindaan D., Kuo W.-H., Chang C.-C., Wang S.-L., Liu H.-C., Wang M.-J. Plasma polymerization of amine-containing thin films and the studies on the deposition kinetics. Surf. Coat. Technol. 2011;206:1299–1306. doi: 10.1016/j.surfcoat.2011.08.046. DOI
France R.M., Short R.D., Dawson R.A., MacNeil S. Attachment of human keratinocytes to plasma co-polymers of acrylic acid octa-1,7-diene and allyl amine octa-1,7-diene. J. Mater. Chem. 1998;8:37–42. doi: 10.1039/a705098d. DOI
Li H.-L., Zhang H., Huang H., Liu Z.-Q., Li Y.-B., Yu H., An Y.-H. The effect of amino density on the attachment, migration, and differentiation of rat neural stem cells in vitro. Mol. Cells. 2013;35:436–443. doi: 10.1007/s10059-013-0046-5. PubMed DOI PMC
Chan K.V., Asadian M., Onyshchenko I., Declercq H., Morent R., De Geyter N. Biocompatibility of cyclopropylamine-based plasma polymers deposited at sub-atmospheric pressure on poly (epsilon-caprolactone) nanofiber meshes. Nanomaterials. 2019;9:1215. doi: 10.3390/nano9091215. PubMed DOI PMC
Jiang X., Christopherson G.T., Mao H.-Q. The effect of nanofibre surface amine density and conjugate structure on the adhesion and proliferation of human haematopoietic progenitor cells. Interface Focus. 2011;1:725–733. doi: 10.1098/rsfs.2011.0033. PubMed DOI PMC
Strbkova L., Manakhov A., Zajickova L., Stoica A., Vesely P., Chmelik R. The adhesion of normal human dermal fibroblasts to the cyclopropylamine plasma polymers studied by holographic microscopy. Surf. Coat. Technol. 2016;295:70–77. doi: 10.1016/j.surfcoat.2015.10.076. DOI
Ching J.Y., Lee C.H., Khung Y.L. Bioactivating silicon (100) surfaces with novel UV grafting of cyclopropylamine for promotion of cell adhesion. Materials. 2018;11:713. doi: 10.3390/ma11050713. PubMed DOI PMC
Cohen M., Joester D., Sabanay I., Addadi L., Geiger B. Hyaluronan in the pericellular coat: An additional layer of complexity in early cell adhesion events. Soft Matter. 2007;3:327–332. doi: 10.1039/b613770a. PubMed DOI
Zimmerman E., Geiger B., Addadi L. Initial stages of cell-matrix adhesion can be mediated and modulated by cell-surface hyaluronan. Biophys. J. 2002;82:1848–1857. doi: 10.1016/S0006-3495(02)75535-5. PubMed DOI PMC
Lee M.H., Brass D.A., Morris R., Composto R.J., Ducheyne P. The effect of non-specific interactions on cellular adhesion using model surfaces. Biomaterials. 2005;26:1721–1730. doi: 10.1016/j.biomaterials.2004.05.026. PubMed DOI
Hasan A., Pattanayek S.K., Pandey L.M. Effect of functional groups of self-assembled monolayers on protein adsorption and initial cell adhesion. ACS Biomater. Sci. Eng. 2018;4:3224–3233. doi: 10.1021/acsbiomaterials.8b00795. PubMed DOI
Bacakova L., Filova E., Rypacek F., Svorcik V., Stary V. Cell adhesion on artificial materials for tissue engineering. Physiol. Res. 2004;53:S35–S45. PubMed
Makhneva E., Manakhov A., Skládal P., Zajíčková L. Development of effective QCM biosensors by cyclopropylamine plasma polymerization and antibody immobilization using cross-linking reactions. Surf. Coat. Technol. 2016;290:116–123. doi: 10.1016/j.surfcoat.2015.09.035. DOI
Vanwachem P.B., Beugeling T., Feijen J., Bantjes A., Detmers J.P., Vanaken W.G. Interaction of cultured human-endothelial cells with polymeric surfaces of different wettabilities. Biomaterials. 1985;6:403–408. doi: 10.1016/0142-9612(85)90101-2. PubMed DOI
Liu X., Lim J.Y., Donahue H.J., Dhurjati R., Mastro A.M., Vogler E.A. Influence of substratum surface chemistry/energy and topography on the human fetal osteoblastic cell line hFOB 1.19: Phenotypic and genotypic responses observed in vitro. Biomaterials. 2007;28:4535–4550. doi: 10.1016/j.biomaterials.2007.06.016. PubMed DOI PMC
Santos M., Reeves B., Michael P., Tan R., Wise S.G., Bilek M.M.M. Substrate geometry modulates self-assembly and collection of plasma polymerized nanoparticles. Commun. Phys. 2019;2 doi: 10.1038/s42005-019-0153-5. DOI
Chen W., Qi W., Lu W., Chaudhury N.R., Yuan J., Qin L., Lou J. Direct assessment of the toxicity of molybdenum disulfide atomically thin film and microparticles via cytotoxicity and patch testing. Small. 2018;14:1702600. doi: 10.1002/smll.201702600. PubMed DOI
Sahu D., Kannan G.M., Tailang M., Vijayaraghavan R. In vitro cytotoxicity of nanoparticles: A comparison between particle size and cell type. J. Nanosci. 2016;2016:4023852. doi: 10.1155/2016/4023852. DOI
Santos H.A., Riikonen J., Salonen J., Mäkilä E., Heikkilä T., Laaksonen T., Peltonen L., Lehto V.-P., Hirvonen J. In vitro cytotoxicity of porous silicon microparticles: Effect of the particle concentration, surface chemistry and size. Acta Biomater. 2010;6:2721–2731. doi: 10.1016/j.actbio.2009.12.043. PubMed DOI
Tolli M.A., Ferreira M.P., Kinnunen S.M., Rysa J., Makila E.M., Szabo Z., Serpi R.E., Ohukainen P.J., Valimaki M.J., Correia A.M., et al. In vivo biocompatibility of porous silicon biomaterials for drug delivery to the heart. Biomaterials. 2014;35:8394–8405. doi: 10.1016/j.biomaterials.2014.05.078. PubMed DOI
Mumjitha M., Raj V. Fabrication of TiO2–SiO2 bioceramic coatings on Ti alloy and its synergetic effect on biocompatibility and corrosion resistance. J. Mech. Behav. Biomed. Mater. 2015;46:205–221. doi: 10.1016/j.jmbbm.2015.02.006. PubMed DOI
Roy S., Fleischman A.J. Cytotoxicity evaluation of microsystems materials using human cells. Sens. Mater. 2003;15:335–340.
Voicu G., Miu D., Ghitulica C.-D., Jinga S.-I., Nicoara A.-I., Busuioc C., Holban A.-M. Co doped ZnO thin films deposited by spin coating as antibacterial coating for metallic implants. Ceram. Int. 2020;46:3904–3911. doi: 10.1016/j.ceramint.2019.10.118. DOI
Yao L., Wu X., Wu S., Pan X., Tu J., Chen M., Al-Bishari A.M., Al-Baadani M.A., Yao L., Shen X., et al. Atomic layer deposition of zinc oxide on microrough zirconia to enhance osteogenesis and antibiosis. Ceram. Int. 2019;45:24757–24767. doi: 10.1016/j.ceramint.2019.08.216. DOI
Taylor J., Anyango J.O., Potgieter M., Kallmeyer K., Naidoo V., Pepper M.S., Taylor J.R. Biocompatibility and biodegradation of protein microparticle and film scaffolds made from kafirin (sorghum prolamin protein) subcutaneously implanted in rodent models. J. Biomed. Mater. Res. A. 2015;103:2582–2590. doi: 10.1002/jbm.a.35394. PubMed DOI
Bacakova L., Filova E., Liskova J., Kopova I., Vandrovcova M., Havlikova J. Nanostructured materials as substrates for the adhesion, growth, and osteogenic differentiation of bone cells. In: Grumezescu A.M., editor. Nanobiomaterials in Hard Tissue Engineering. Applications of Nanobiomaterials. Volume 4. Elsevier Inc., William Andrew Publishing; Norwich, NY, USA: 2016. pp. 103–153.
Dong Y.X., Yong T., Liao S., Chan C.K., Stevens M.M., Ramakrishna S. Distinctive degradation behaviors of electrospun polyglycolide, poly(dl-lactide-co-glycolide), and poly(l-lactide-co-epsilon-caprolactone) nanofibers cultured with/without porcine smooth muscle cells. Tissue Eng. Part A. 2010;16:283–298. doi: 10.1089/ten.tea.2008.0537. PubMed DOI
Jia L., Prabhakaran M.P., Qin X., Ramakrishna S. Guiding the orientation of smooth muscle cells on random and aligned polyurethane/collagen nanofibers. J. Biomater. Appl. 2014;29:364–377. doi: 10.1177/0885328214529002. PubMed DOI
Lamichhane S., Anderson J.A., Remund T., Sun H., Larson M.K., Kelly P., Mani G. Responses of endothelial cells, smooth muscle cells, and platelets dependent on the surface topography of polytetrafluoroethylene. J. Biomed. Mater. Res. Part A. 2016;104:2291–2304. doi: 10.1002/jbm.a.35763. PubMed DOI
Vatankhah E., Prabhakaran M.P., Semnani D., Razavi S., Zamani M., Ramakrishna S. Phenotypic modulation of smooth muscle cells by chemical and mechanical cues of electrospun tecophilic/gelatin nanofibers. ACS Appl. Mater. Interfaces. 2014;6:4089–4101. doi: 10.1021/am405673h. PubMed DOI
Zhang H., Jia X., Han F., Zhao J., Zhao Y., Fan Y., Yuan X. Dual-delivery of VEGF and PDGF by double-layered electrospun membranes for blood vessel regeneration. Biomaterials. 2013;34:2202–2212. doi: 10.1016/j.biomaterials.2012.12.005. PubMed DOI
Brown X.Q., Bartolak-Suki E., Williams C., Walker M.L., Weaver V.M., Wong J.Y. Effect of substrate stiffness and PDGF on the behavior of vascular smooth muscle cells: Implications for atherosclerosis. J. Cell. Physiol. 2010;225:115–122. doi: 10.1002/jcp.22202. PubMed DOI PMC
McDaniel D.P., Shaw G.A., Elliott J.T., Bhadriraju K., Meuse C., Chung K.H., Plant A.L. The stiffness of collagen fibrils influences vascular smooth muscle cell phenotype. Biophys. J. 2007;92:1759–1769. doi: 10.1529/biophysj.106.089003. PubMed DOI PMC
Xie S.-A., Zhang T., Wang J., Zhao F., Zhang Y.-P., Yao W.-J., Hur S.S., Yeh Y.-T., Pang W., Zheng L.-S., et al. Matrix stiffness determines the phenotype of vascular smooth muscle cell in vitro and in vivo: Role of DNA methyltransferase 1. Biomaterials. 2018;155:203–216. doi: 10.1016/j.biomaterials.2017.11.033. PubMed DOI
Yi B.C., Shen Y.B., Tang H., Wang X.L., Li B., Zhang Y.Z. Stiffness of aligned fibers regulates the phenotypic expression of vascular smooth muscle cells. ACS Appl. Mater. Interfaces. 2019;11:6867–6880. doi: 10.1021/acsami.9b00293. PubMed DOI
Girard-Lauriault P.L., Dietrich P.M., Gross T., Wirth T., Unger W.E.S. Chemical characterization of the long-term ageing of nitrogen-rich plasma polymer films under various ambient conditions. Plasma Process. Polym. 2013;10:388–395. doi: 10.1002/ppap.201200118. DOI
Bacakova L., Lisa V., Pellicciari C., Mares V., Bottone M.G., Kocourek F. Sex related differences in the adhesion, migration, and growth of rat aortic smooth muscle cells in culture. In Vitro Cell. Dev. Biol. Anim. 1997;33:410–413. doi: 10.1007/s11626-997-0055-9. PubMed DOI
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC