Behaviour of Vascular Smooth Muscle Cells on Amine Plasma-Coated Materials with Various Chemical Structures and Morphologies

. 2020 Dec 12 ; 21 (24) : . [epub] 20201212

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33322781

Grantová podpora
18-12774S Ministerstvo Školství, Mládeže a Tělovýchovy
LQ1601 Ministerstvo Školství, Mládeže a Tělovýchovy
LM2018110 Ministerstvo Školství, Mládeže a Tělovýchovy

Amine-coated biodegradable materials based on synthetic polymers have a great potential for tissue remodeling and regeneration because of their excellent processability and bioactivity. In the present study, we have investigated the influence of various chemical compositions of amine plasma polymer (PP) coatings and the influence of the substrate morphology, represented by polystyrene culture dishes and polycaprolactone nanofibers (PCL NFs), on the behavior of vascular smooth muscle cells (VSMCs). Although all amine-PP coatings improved the initial adhesion of VSMCs, 7-day long cultivation revealed a clear preference for the coating containing about 15 at.% of nitrogen (CPA-33). The CPA-33 coating demonstrated the ideal combination of good water stability, a sufficient amine group content, and favorable surface wettability and morphology. The nanostructured morphology of amine-PP-coated PCL NFs successfully slowed the proliferation rate of VSMCs, which is essential in preventing restenosis of vascular replacements in vivo. At the same time, CPA-33-coated PCL NFs supported the continuous proliferation of VSMCs during 7-day long cultivation, with no significant increase in cytokine secretion by RAW 264.7 macrophages. The CPA-33 coating deposited on biodegradable PCL NFs therefore seems to be a promising material for manufacturing small-diameter vascular grafts, which are still lacking on the current market.

Zobrazit více v PubMed

Pashneh-Tala S., MacNeil S., Claeyssens F. The tissue-engineered vascular graft-past, present, and future. Tissue Eng. Part B-Rev. 2016;22:68–100. doi: 10.1089/ten.teb.2015.0100. PubMed DOI PMC

Riepe G., Loos J., Imig H., Schroder A., Schneider E., Petermann J., Rogge A., Ludwig M., Schenke A., Nassutt R., et al. Long-term in vivo alterations of polyester vascular grafts in humans. Eur. J. Vasc. Endovasc. Surg. 1997;13:540–548. doi: 10.1016/S1078-5884(97)80062-7. PubMed DOI

Camiade C., Maher A., Ricco J.B., Roumy J., Febrer G., Marchand C., Neau J.P. Carotid bypass with polytetrafluoroethylene grafts: A study of 110 consecutive patients. J. Vasc. Surg. 2003;38:1031–1037. doi: 10.1016/S0741-5214(03)00708-0. PubMed DOI

Obiweluozor F.O., Emechebe G.A., Kim D.W., Cho H.J., Park C.H., Kim C.S., Jeong I.S. Considerations in the development of small-diameter vascular graft as an alternative for bypass and reconstructive surgeries: A review. Cardiovasc. Eng. Technol. 2020;5:495–521. doi: 10.1007/s13239-020-00482-y. PubMed DOI

Bacakova L., Filova E., Parizek M., Ruml T., Svorcik V. Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotechnol. Adv. 2011;29:739–767. doi: 10.1016/j.biotechadv.2011.06.004. PubMed DOI

Kopova I., Rezek B., Stehlik S., Ukraintsev E., Slepickova Kasalkova N., Slepicka P., Potocky S., Bacakova L. Growth of primary human osteoblasts on plasma-treated and nanodiamond-coated PTFE polymer foils. Phys. Status Solidi (B) 2018;255:1700595. doi: 10.1002/pssb.201700595. DOI

Solouk A., Cousins B.G., Mirzadeh H., Seifalian A.M. Application of plasma surface modification techniques to improve hemocompatibility of vascular grafts: A review. Biotechnol. Appl. Biochem. 2011;58:311–327. doi: 10.1002/bab.50. PubMed DOI

Lassen B., Gölander C.G., Johanssona A., Elwing H. Some model surfaces made by RF plasma aimed for the study of biocompatibility. Clin. Mater. 1992;11:99–103. doi: 10.1016/0267-6605(92)90034-Q. DOI

Hopper A.P., Dugan J.M., Gill A.A., Regan E.M., Haycock J.W., Kelly S., May P.W., Claeyssens F. Photochemically modified diamond-like carbon surfaces for neural interfaces. Mater. Sci. Eng. C. 2016;58:1199–1206. doi: 10.1016/j.msec.2015.09.013. PubMed DOI

Janorkar A.V., Fritz E.W., Jr., Burg K.J.L., Metters A.T., Hirt D.E. Grafting amine-terminated branched architectures from poly(L-lactide) film surfaces for improved cell attachment. J. Biomed. Mater. Res. Part B Appl. Biomater. 2007;81B:142–152. doi: 10.1002/jbm.b.30647. PubMed DOI

Keen I., Broota P., Rintoul L., Fredericks P., Trau M., Grøndahl L. Introducing amine functionalities on a poly(3-hydroxybutyrate-co-3-hydroxyvalerate) surface:  Comparing the use of ammonia plasma treatment and ethylenediamine aminolysis. Biomacromolecules. 2006;7:427–434. doi: 10.1021/bm050497a. PubMed DOI

Li L., Driscoll M., Kumi G., Hernandez R., Gaskell K.J., Losert W., Fourkas J.T. Binary and gray-scale patterning of chemical functionality on polymer films. J. Am. Chem. Soc. 2008;130:13512–13513. doi: 10.1021/ja803999r. PubMed DOI

Noel S., Liberelle B., Robitaille L., De Crescenzo G. Quantification of primary amine groups available for subsequent biofunctionalization of polymer surfaces. Bioconjug. Chem. 2011;22:1690–1699. doi: 10.1021/bc200259c. PubMed DOI

Carmagnola I., Chiono V., Abrigo M., Ranzato E., Martinotti S., Ciardelli G. Tailored functionalization of poly(L-lactic acid) substrates at the nanoscale to enhance cell response. J. Biomater. Sci. Polym. Ed. 2019;30:526–546. doi: 10.1080/09205063.2019.1580954. PubMed DOI

Omrani M.M., Kiaie N., Ansari M., Kordestani S.S. Enhanced protein adsorption, cell attachment, and neural differentiation with the help of amine functionalized polycaprolactone scaffolds. J. Macromol. Sci. Part B. 2016;55:617–626. doi: 10.1080/00222348.2016.1179245. DOI

Yang Y., Qi P., Ding Y., Maitz M.F., Yang Z., Tu Q., Xiong K., Leng Y., Huang N. A biocompatible and functional adhesive amine-rich coating based on dopamine polymerization. J. Mater. Chem. B. 2015;3:72–81. doi: 10.1039/C4TB01236D. PubMed DOI

Zhu Y., Leong M.F., Ong W.F., Chan-Park M.B., Chian K.S. Esophageal epithelium regeneration on fibronectin grafted poly(l-lactide-co-caprolactone) (PLLC) nanofiber scaffold. Biomaterials. 2007;28:861–868. doi: 10.1016/j.biomaterials.2006.09.051. PubMed DOI

Cvelbar U., Junkar I., Modic M. Hemocompatible poly(ethylene terephthalate) polymer modified via reactive plasma treatment. Jpn. J. Appl. Phys. 2011;50:08JF02. doi: 10.7567/JJAP.50.08JF02. DOI

Gomathi N., Rajasekar R., Babu R.R., Mishra D., Neogi S. Development of bio/blood compatible polypropylene through low pressure nitrogen plasma surface modification. Mater. Sci. Eng. C. 2012;32:1767–1778. doi: 10.1016/j.msec.2012.04.034. PubMed DOI

Junkar I., Cvelbar U., Lehocky M. Plasma treatment of biomedical materials. Mater. Tehnol. 2011;45:221–226.

Kolar M., Primc G. Haemostatic response of polyethylene terephthalate treated by oxygen and nitrogen plasma afterglows. Int. J. Polym. Sci. 2016;2016 doi: 10.1155/2016/1749285. DOI

Risbud M.V., Dabhade R., Gangal S., Bhonde R.R. Radio-frequency plasma treatment improves the growth and attachment of endothelial cells on poly(methyl methacrylate) substrates: Implications in tissue engineering. J. Biomater. Sci. Polym. Ed. 2002;13:1067–1080. doi: 10.1163/156856202320813792. PubMed DOI

Shah A., Shah S., Mani G., Wenke J., Agrawal M. Endothelial cell behaviour on gas-plasma-treated PLA surfaces: The roles of surface chemistry and roughness. J. Tissue Eng. Regen. Med. 2011;5:301–312. doi: 10.1002/term.316. PubMed DOI

Wang Y., Lu L., Zheng Y., Chen X. Improvement in hydrophilicity of PHBV films by plasma treatment. J. Biomed. Mater. Res. Part A. 2006;76A:589–595. doi: 10.1002/jbm.a.30575. PubMed DOI

Daranarong D., Techaikool P., Intatue W., Daengngern R., Thomson K.A., Molloy R., Kungwan N., Foster L.J.R., Boonyawan D., Punyodom W. Effect of surface modification of poly(l-lactide-co-ε-caprolactone) membranes by low-pressure plasma on support cell biocompatibility. Surf. Coat. Technol. 2016;306:328–335. doi: 10.1016/j.surfcoat.2016.07.058. DOI

Lopez L.C., Belviso M.R., Gristina R., Nardulli M., d’Agostino R., Favia P. Plasma-treated nitrogen-containing surfaces for cell adhesion: The role of the polymeric substrate. Plasma Process. Polym. 2007;4:S402–S405. doi: 10.1002/ppap.200731008. DOI

Ramires P.A., Mirenghi L., Romano A.R., Palumbo F., Nicolardi G. Plasma-treated PET surfaces improve the biocompatibility of human endothelial cells. J. Biomed. Mater. Res. 2000;51:535–539. doi: 10.1002/1097-4636(20000905)51:3<535::AID-JBM31>3.0.CO;2-P. PubMed DOI

Mortazavi M., Nosonovsky M. A model for diffusion-driven hydrophobic recovery in plasma treated polymers. Appl. Surf. Sci. 2012;258:6876–6883. doi: 10.1016/j.apsusc.2012.03.122. DOI

Awaja F., Carletti E., Bonani W., Speranza G. Vinculin focal adhesion of osteoblast-like cells on PEEK coated with ultra-thin polymer nano films. J. Appl. Polym. Sci. 2015;132 doi: 10.1002/app.42181. DOI

Finke B., Hempel F., Testrich H., Artemenko A., Rebl H., Kylián O., Meichsner J., Biederman H., Nebe B., Weltmann K.D., et al. Plasma processes for cell-adhesive titanium surfaces based on nitrogen-containing coatings. Surf. Coat. Technol. 2011;205:S520–S524. doi: 10.1016/j.surfcoat.2010.12.044. DOI

Testrich H., Rebl H., Finke B., Hempel F., Nebe B., Meichsner J. Aging effects of plasma polymerized ethylenediamine (PPEDA) thin films on cell-adhesive implant coatings. Mater. Sci. Eng. C. 2013;33:3875–3880. doi: 10.1016/j.msec.2013.05.024. PubMed DOI

Crespin M., Moreau N., Masereel B., Feron O., Gallez B., Vander Borght T., Michiels C., Lucas S. Surface properties and cell adhesion onto allylamine-plasma and amine-plasma coated glass coverslips. J. Mater. Sci. Mater. Med. 2011;22:671–682. doi: 10.1007/s10856-011-4245-3. PubMed DOI

Javid A., Kumar M., Wen L., Yoon S., Jin S.B., Lee J.H., Han J.G. Surface energy and wettability control in bio-inspired PEG like thin films. Mater. Des. 2016;92:405–413. doi: 10.1016/j.matdes.2015.12.046. DOI

Mangindaan D., Kuo W.-H., Kurniawan H., Wang M.-J. Creation of biofunctionalized plasma polymerized allylamine gradients. J. Polym. Sci. Part B Polym. Phys. 2013;51:1361–1367. doi: 10.1002/polb.23341. DOI

Ren T.B., Weigel T., Groth T., Lendlein A. Microwave plasma surface modification of silicone elastomer with allylamine for improvement of biocompatibility. J. Biomed. Mater. Res. A. 2008;86:209–219. doi: 10.1002/jbm.a.31508. PubMed DOI

Manakhov A., Kedronova E., Medalova J., Cernochova P., Obrusnik A., Michlicek M., Shtansky D.V., Zajickova L. Carboxyl-anhydride and amine plasma coating of PCL nanofibers to improve their bioactivity. Mater. Des. 2017;132:257–265. doi: 10.1016/j.matdes.2017.06.057. DOI

Manakhov A., Landova M., Medalova J., Michlicek M., Polcak J., Necas D., Zajickova L. Cyclopropylamine plasma polymers for increased cell adhesion and growth. Plasma Process. Polym. 2017;14:1600123. doi: 10.1002/ppap.201600123. DOI

Kwon S., Ban W., Lim H., Seo Y., Park H., Kim E.-J., Cho Y.K., Park S.G., Jung D. Effects of the generated functional groups by PECVD on adhesiveness of adipose derived mesenchymal stem cells. J. Vac. Sci. Technol. A. 2018;36:031403. doi: 10.1116/1.5020851. DOI

Conklin D.J., Boor P.J. Allylamine cardiovascular toxicity: Evidence for aberrant vasoreactivity in rats. Toxicol. Appl. Pharm. 1998;148:245–251. doi: 10.1006/taap.1997.8331. PubMed DOI

Manakhov A., Zajíčková L., Eliáš M., Čechal J., Polčák J., Hnilica J., Bittnerová Š., Nečas D. Optimization of cyclopropylamine plasma polymerization toward enhanced layer stability in contact with water. Plasma Process. Polym. 2014;11:532–544. doi: 10.1002/ppap.201300177. DOI

Siddiqui N., Asawa S., Birru B., Baadhe R., Rao S. PCL-based composite scaffold matrices for tissue engineering applications. Mol. Biotechnol. 2018;60:506–532. doi: 10.1007/s12033-018-0084-5. PubMed DOI

Thyberg J., Hedin U., Sjolund M., Palmberg L., Bottger B.A. Regulation of differentiated properties and proliferation of arterial smooth-muscle cells. Arteriosclerosis. 1990;10:966–990. doi: 10.1161/01.ATV.10.6.966. PubMed DOI

Cao Y., Poon Y.F., Feng J., Rayatpisheh S., Chan V., Chan-Park M.B. Regulating orientation and phenotype of primary vascular smooth muscle cells by biodegradable films patterned with arrays of microchannels and discontinuous microwalls. Biomaterials. 2010;31:6228–6238. doi: 10.1016/j.biomaterials.2010.04.059. PubMed DOI

Kiyan Y., Kurselis K., Kiyan R., Haller H., Chichkov B.N., Dumler I. Urokinase receptor counteracts vascular smooth muscle cell functional changes induced by surface topography. Theranostics. 2013;3:516–526. doi: 10.7150/thno.4119. PubMed DOI PMC

Yim E.K.F., Reano R.M., Pang S.W., Yee A.F., Chen C.S., Leong K.W. Nanopattern-induced changes in morphology and motility of smooth muscle cells. Biomaterials. 2005;26:5405–5413. doi: 10.1016/j.biomaterials.2005.01.058. PubMed DOI PMC

Inoue T., Node K. Molecular basis of restenosis and novel issues of drug-eluting stents. Circ. J. 2009;73:615–621. doi: 10.1253/circj.CJ-09-0059. PubMed DOI

Welt F.G.P., Rogers C. Inflammation and restenosis in the stent era. Arterioscler. Thromb. Vasc. Biol. 2002;22:1769–1776. doi: 10.1161/01.ATV.0000037100.44766.5B. PubMed DOI

Cernochova P., Blahova L., Medalova J., Necas D., Michlicek M., Kaushik P., Pribyl J., Bartosikova J., Manakhov A., Bacakova L., et al. Cell type specific adhesion to surfaces functionalised by amine plasma polymers. Sci. Rep. 2020;10:1–14. doi: 10.1038/s41598-020-65889-y. PubMed DOI PMC

Manakhov A., Nečas D., Čechal J., Pavliňák D., Eliáš M., Zajíčková L. Deposition of stable amine coating onto polycaprolactone nanofibers by low pressure cyclopropylamine plasma polymerization. Thin Solid Film. 2015;581:7–13. doi: 10.1016/j.tsf.2014.09.015. DOI

Beamson G., Briggs D. High Resolution XPS of Organic Polymers, the Scienta ESCA300 Database. John Wiley & Sons; Chichester, UK: 1992.

Beaulleu I., Geissler M., Mauzeroll J. Oxygen plasma treatment of polystyrene and zeonor: Substrates for adhesion of patterned cells. Langmuir. 2009;25:7169–7176. doi: 10.1021/la9001972. PubMed DOI

Girardeaux C., Pireaux J.-J. Analysis of polystyrene (PS) by XPS. Surf. Sci. Spectra. 1996;4:130–133. doi: 10.1116/1.1247812. DOI

Recek N., Mozetic M., Jaganjac M., Milkovic L., Zarkovic N., Vesel A. Adsorption of proteins and cell adhesion to plasma treated polymer substrates. Int. J. Polym. Mater. Polym. Biomater. 2014;63:685–691. doi: 10.1080/00914037.2013.854243. DOI

Truica-Marasescu F., Wertheimer M.R. Nitrogen-rich plasma-polymer films for biomedical applications. Plasma Process. Polym. 2008;5:44–57. doi: 10.1002/ppap.200700077. DOI

Mangindaan D., Kuo W.-H., Chang C.-C., Wang S.-L., Liu H.-C., Wang M.-J. Plasma polymerization of amine-containing thin films and the studies on the deposition kinetics. Surf. Coat. Technol. 2011;206:1299–1306. doi: 10.1016/j.surfcoat.2011.08.046. DOI

France R.M., Short R.D., Dawson R.A., MacNeil S. Attachment of human keratinocytes to plasma co-polymers of acrylic acid octa-1,7-diene and allyl amine octa-1,7-diene. J. Mater. Chem. 1998;8:37–42. doi: 10.1039/a705098d. DOI

Li H.-L., Zhang H., Huang H., Liu Z.-Q., Li Y.-B., Yu H., An Y.-H. The effect of amino density on the attachment, migration, and differentiation of rat neural stem cells in vitro. Mol. Cells. 2013;35:436–443. doi: 10.1007/s10059-013-0046-5. PubMed DOI PMC

Chan K.V., Asadian M., Onyshchenko I., Declercq H., Morent R., De Geyter N. Biocompatibility of cyclopropylamine-based plasma polymers deposited at sub-atmospheric pressure on poly (epsilon-caprolactone) nanofiber meshes. Nanomaterials. 2019;9:1215. doi: 10.3390/nano9091215. PubMed DOI PMC

Jiang X., Christopherson G.T., Mao H.-Q. The effect of nanofibre surface amine density and conjugate structure on the adhesion and proliferation of human haematopoietic progenitor cells. Interface Focus. 2011;1:725–733. doi: 10.1098/rsfs.2011.0033. PubMed DOI PMC

Strbkova L., Manakhov A., Zajickova L., Stoica A., Vesely P., Chmelik R. The adhesion of normal human dermal fibroblasts to the cyclopropylamine plasma polymers studied by holographic microscopy. Surf. Coat. Technol. 2016;295:70–77. doi: 10.1016/j.surfcoat.2015.10.076. DOI

Ching J.Y., Lee C.H., Khung Y.L. Bioactivating silicon (100) surfaces with novel UV grafting of cyclopropylamine for promotion of cell adhesion. Materials. 2018;11:713. doi: 10.3390/ma11050713. PubMed DOI PMC

Cohen M., Joester D., Sabanay I., Addadi L., Geiger B. Hyaluronan in the pericellular coat: An additional layer of complexity in early cell adhesion events. Soft Matter. 2007;3:327–332. doi: 10.1039/b613770a. PubMed DOI

Zimmerman E., Geiger B., Addadi L. Initial stages of cell-matrix adhesion can be mediated and modulated by cell-surface hyaluronan. Biophys. J. 2002;82:1848–1857. doi: 10.1016/S0006-3495(02)75535-5. PubMed DOI PMC

Lee M.H., Brass D.A., Morris R., Composto R.J., Ducheyne P. The effect of non-specific interactions on cellular adhesion using model surfaces. Biomaterials. 2005;26:1721–1730. doi: 10.1016/j.biomaterials.2004.05.026. PubMed DOI

Hasan A., Pattanayek S.K., Pandey L.M. Effect of functional groups of self-assembled monolayers on protein adsorption and initial cell adhesion. ACS Biomater. Sci. Eng. 2018;4:3224–3233. doi: 10.1021/acsbiomaterials.8b00795. PubMed DOI

Bacakova L., Filova E., Rypacek F., Svorcik V., Stary V. Cell adhesion on artificial materials for tissue engineering. Physiol. Res. 2004;53:S35–S45. PubMed

Makhneva E., Manakhov A., Skládal P., Zajíčková L. Development of effective QCM biosensors by cyclopropylamine plasma polymerization and antibody immobilization using cross-linking reactions. Surf. Coat. Technol. 2016;290:116–123. doi: 10.1016/j.surfcoat.2015.09.035. DOI

Vanwachem P.B., Beugeling T., Feijen J., Bantjes A., Detmers J.P., Vanaken W.G. Interaction of cultured human-endothelial cells with polymeric surfaces of different wettabilities. Biomaterials. 1985;6:403–408. doi: 10.1016/0142-9612(85)90101-2. PubMed DOI

Liu X., Lim J.Y., Donahue H.J., Dhurjati R., Mastro A.M., Vogler E.A. Influence of substratum surface chemistry/energy and topography on the human fetal osteoblastic cell line hFOB 1.19: Phenotypic and genotypic responses observed in vitro. Biomaterials. 2007;28:4535–4550. doi: 10.1016/j.biomaterials.2007.06.016. PubMed DOI PMC

Santos M., Reeves B., Michael P., Tan R., Wise S.G., Bilek M.M.M. Substrate geometry modulates self-assembly and collection of plasma polymerized nanoparticles. Commun. Phys. 2019;2 doi: 10.1038/s42005-019-0153-5. DOI

Chen W., Qi W., Lu W., Chaudhury N.R., Yuan J., Qin L., Lou J. Direct assessment of the toxicity of molybdenum disulfide atomically thin film and microparticles via cytotoxicity and patch testing. Small. 2018;14:1702600. doi: 10.1002/smll.201702600. PubMed DOI

Sahu D., Kannan G.M., Tailang M., Vijayaraghavan R. In vitro cytotoxicity of nanoparticles: A comparison between particle size and cell type. J. Nanosci. 2016;2016:4023852. doi: 10.1155/2016/4023852. DOI

Santos H.A., Riikonen J., Salonen J., Mäkilä E., Heikkilä T., Laaksonen T., Peltonen L., Lehto V.-P., Hirvonen J. In vitro cytotoxicity of porous silicon microparticles: Effect of the particle concentration, surface chemistry and size. Acta Biomater. 2010;6:2721–2731. doi: 10.1016/j.actbio.2009.12.043. PubMed DOI

Tolli M.A., Ferreira M.P., Kinnunen S.M., Rysa J., Makila E.M., Szabo Z., Serpi R.E., Ohukainen P.J., Valimaki M.J., Correia A.M., et al. In vivo biocompatibility of porous silicon biomaterials for drug delivery to the heart. Biomaterials. 2014;35:8394–8405. doi: 10.1016/j.biomaterials.2014.05.078. PubMed DOI

Mumjitha M., Raj V. Fabrication of TiO2–SiO2 bioceramic coatings on Ti alloy and its synergetic effect on biocompatibility and corrosion resistance. J. Mech. Behav. Biomed. Mater. 2015;46:205–221. doi: 10.1016/j.jmbbm.2015.02.006. PubMed DOI

Roy S., Fleischman A.J. Cytotoxicity evaluation of microsystems materials using human cells. Sens. Mater. 2003;15:335–340.

Voicu G., Miu D., Ghitulica C.-D., Jinga S.-I., Nicoara A.-I., Busuioc C., Holban A.-M. Co doped ZnO thin films deposited by spin coating as antibacterial coating for metallic implants. Ceram. Int. 2020;46:3904–3911. doi: 10.1016/j.ceramint.2019.10.118. DOI

Yao L., Wu X., Wu S., Pan X., Tu J., Chen M., Al-Bishari A.M., Al-Baadani M.A., Yao L., Shen X., et al. Atomic layer deposition of zinc oxide on microrough zirconia to enhance osteogenesis and antibiosis. Ceram. Int. 2019;45:24757–24767. doi: 10.1016/j.ceramint.2019.08.216. DOI

Taylor J., Anyango J.O., Potgieter M., Kallmeyer K., Naidoo V., Pepper M.S., Taylor J.R. Biocompatibility and biodegradation of protein microparticle and film scaffolds made from kafirin (sorghum prolamin protein) subcutaneously implanted in rodent models. J. Biomed. Mater. Res. A. 2015;103:2582–2590. doi: 10.1002/jbm.a.35394. PubMed DOI

Bacakova L., Filova E., Liskova J., Kopova I., Vandrovcova M., Havlikova J. Nanostructured materials as substrates for the adhesion, growth, and osteogenic differentiation of bone cells. In: Grumezescu A.M., editor. Nanobiomaterials in Hard Tissue Engineering. Applications of Nanobiomaterials. Volume 4. Elsevier Inc., William Andrew Publishing; Norwich, NY, USA: 2016. pp. 103–153.

Dong Y.X., Yong T., Liao S., Chan C.K., Stevens M.M., Ramakrishna S. Distinctive degradation behaviors of electrospun polyglycolide, poly(dl-lactide-co-glycolide), and poly(l-lactide-co-epsilon-caprolactone) nanofibers cultured with/without porcine smooth muscle cells. Tissue Eng. Part A. 2010;16:283–298. doi: 10.1089/ten.tea.2008.0537. PubMed DOI

Jia L., Prabhakaran M.P., Qin X., Ramakrishna S. Guiding the orientation of smooth muscle cells on random and aligned polyurethane/collagen nanofibers. J. Biomater. Appl. 2014;29:364–377. doi: 10.1177/0885328214529002. PubMed DOI

Lamichhane S., Anderson J.A., Remund T., Sun H., Larson M.K., Kelly P., Mani G. Responses of endothelial cells, smooth muscle cells, and platelets dependent on the surface topography of polytetrafluoroethylene. J. Biomed. Mater. Res. Part A. 2016;104:2291–2304. doi: 10.1002/jbm.a.35763. PubMed DOI

Vatankhah E., Prabhakaran M.P., Semnani D., Razavi S., Zamani M., Ramakrishna S. Phenotypic modulation of smooth muscle cells by chemical and mechanical cues of electrospun tecophilic/gelatin nanofibers. ACS Appl. Mater. Interfaces. 2014;6:4089–4101. doi: 10.1021/am405673h. PubMed DOI

Zhang H., Jia X., Han F., Zhao J., Zhao Y., Fan Y., Yuan X. Dual-delivery of VEGF and PDGF by double-layered electrospun membranes for blood vessel regeneration. Biomaterials. 2013;34:2202–2212. doi: 10.1016/j.biomaterials.2012.12.005. PubMed DOI

Brown X.Q., Bartolak-Suki E., Williams C., Walker M.L., Weaver V.M., Wong J.Y. Effect of substrate stiffness and PDGF on the behavior of vascular smooth muscle cells: Implications for atherosclerosis. J. Cell. Physiol. 2010;225:115–122. doi: 10.1002/jcp.22202. PubMed DOI PMC

McDaniel D.P., Shaw G.A., Elliott J.T., Bhadriraju K., Meuse C., Chung K.H., Plant A.L. The stiffness of collagen fibrils influences vascular smooth muscle cell phenotype. Biophys. J. 2007;92:1759–1769. doi: 10.1529/biophysj.106.089003. PubMed DOI PMC

Xie S.-A., Zhang T., Wang J., Zhao F., Zhang Y.-P., Yao W.-J., Hur S.S., Yeh Y.-T., Pang W., Zheng L.-S., et al. Matrix stiffness determines the phenotype of vascular smooth muscle cell in vitro and in vivo: Role of DNA methyltransferase 1. Biomaterials. 2018;155:203–216. doi: 10.1016/j.biomaterials.2017.11.033. PubMed DOI

Yi B.C., Shen Y.B., Tang H., Wang X.L., Li B., Zhang Y.Z. Stiffness of aligned fibers regulates the phenotypic expression of vascular smooth muscle cells. ACS Appl. Mater. Interfaces. 2019;11:6867–6880. doi: 10.1021/acsami.9b00293. PubMed DOI

Girard-Lauriault P.L., Dietrich P.M., Gross T., Wirth T., Unger W.E.S. Chemical characterization of the long-term ageing of nitrogen-rich plasma polymer films under various ambient conditions. Plasma Process. Polym. 2013;10:388–395. doi: 10.1002/ppap.201200118. DOI

Bacakova L., Lisa V., Pellicciari C., Mares V., Bottone M.G., Kocourek F. Sex related differences in the adhesion, migration, and growth of rat aortic smooth muscle cells in culture. In Vitro Cell. Dev. Biol. Anim. 1997;33:410–413. doi: 10.1007/s11626-997-0055-9. PubMed DOI

Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Enhanced Adhesion of Electrospun Polycaprolactone Nanofibers to Plasma-Modified Polypropylene Fabric

. 2023 Mar 28 ; 15 (7) : . [epub] 20230328

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...