Effect of Low Molecular Weight Oxidized Materials and Nitrogen Groups on Adhesive Joints of Polypropylene Treated by a Cold Atmospheric Plasma Jet
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-14105S
Czech Science Foundation
LM2018110
Ministry of Education Youth and Sports
PubMed
34960945
PubMed Central
PMC8704572
DOI
10.3390/polym13244396
PII: polym13244396
Knihovny.cz E-zdroje
- Klíčová slova
- X-ray photoelectron spectroscopy, adhesion, cold atmospheric plasma, plasma treatment, polypropylene, water contact angle,
- Publikační typ
- časopisecké články MeSH
Polypropylene is a typical representative of synthetic polymers that, for many applications including adhesive joints, requires an increase in wettability and chemical surface reactivity. Plasma processing offers efficient methods for such surface modifications. A particular disadvantage of the plasma jets can be the small plasma area. Here, we present a cold atmospheric plasma radio-frequency slit jet developed with a width of 150 mm applied to polypropylene plasma treatment in Ar, Ar/O2 and Ar/N2 We identified two main parameters influencing the tensile strength of adhesive joints mediated by epoxy adhesive DP 190, nitrogen content, and the amount of low molecular weight oxidized materials (LMWOMs). Nitrogen functional groups promoted adhesion between epoxy adhesive DP 190 and the PP by taking part in the curing process. LMWOMs formed a weak boundary layer, inhibiting adhesion by inducing a cohesive failure of the joint. A trade off between these two parameters determined the optimized conditions at which the strength of the adhesive joint increased 4.5 times. Higher adhesion strength was previously observed when using a translational plasma gliding arc plasma jet with higher plasma gas temperatures, resulting in better cross linking of polymer chains caused by local PP melting.
Zobrazit více v PubMed
Yasuda H. Plasma for modification of polymers. J. Macromol. Sci. 1976;10:383–420. doi: 10.1080/00222337608061190. DOI
Sharma A.K., Millich F., Hellmuth E.W. Wettability of glow discharge polymers. J. Appl. Polym. Sci. 1981;26:2205–2210. doi: 10.1002/app.1981.070260709. DOI
Coopes I., Gifkins K. Gas plasma treatment of polymer surfaces. J. Macromol. Sci. 1982;17:217–226. doi: 10.1080/00222338208063256. DOI
Karger-Kocsis J. Preface. In: Karger-Kocsis J., editor. Polypropylene Structure, Blends and Composites: Volume 3 Composites. Springer Science & Business Media; Dordrecht, The Netherland: 2012. pp. ix–x.
Singh N., Hui D., Singh R., Ahuja I., Feo L., Fraternali F. Recycling of plastic solid waste: A state of art review and future applications. Compos. Part B Eng. 2017;115:409–422. doi: 10.1016/j.compositesb.2016.09.013. DOI
Maddah H.A. Polypropylene as a promising plastic: A review. Am. J. Polym. Sci. 2016;6:1–11.
Massines F., Gouda G. A comparison of polypropylene-surface treatment by filamentary, homogeneous and glow discharges in helium at atmospheric pressure. J. Phys. D Appl. Phys. 1998;31:3411. doi: 10.1088/0022-3727/31/24/003. DOI
Elliot A.N.A. Automotive Applications of Polymers II. Rapra Technology Limited; Shawbury, UK: 1992. pp. 3–19.
Pijpers A., Meier R.J. Adhesion behaviour of polypropylenes after flame treatment determined by XPS (ESCA) spectral analysis. J. Electron Spectrosc. Relat. Phenom. 2001;121:299–313. doi: 10.1016/S0368-2048(01)00341-3. DOI
Williams D.F., Abel M.L., Grant E., Hrachova J., Watts J.F. Flame treatment of polypropylene: A study by electron and ion spectroscopies. Int. J. Adhes. Adhes. 2015;63:26–33. doi: 10.1016/j.ijadhadh.2015.07.009. DOI
Walzak M.J., Flynn S., Foerch R., Hill J.M., Karbashewski E., Lin A., Strobel M. UV and ozone treatment of polypropylene and poly (ethylene terephthalate) J. Adhes. Sci. Technol. 1995;9:1229–1248. doi: 10.1163/156856195X01012. DOI
Plasmatreat GmbH Plasma processes reduce costs in automotive manufacturing. IST Int. Surf. Technol. 2020;13:28–29. doi: 10.1007/s35724-020-0118-y. DOI
Mühlhan C., Friedrich J., Nowack H. Improvement of bonding properties of polypropylene by low-pressure plasma treatment. Surf. Coatings Technol. 1999;116:783–787. doi: 10.1016/S0257-8972(99)00203-0. DOI
Mandolfino C., Lertora E., Gambaro C., Pizzorni M. Functionalization of neutral polypropylene by using low pressure plasma treatment: Effects on surface characteristics and adhesion properties. Polymers. 2019;11:202. doi: 10.3390/polym11020202. PubMed DOI PMC
Mandolfino C. Polypropylene surface modification by low pressure plasma to increase adhesive bonding: Effect of process parameters. Surf. Coatings Technol. 2019;366:331–337. doi: 10.1016/j.surfcoat.2019.03.047. DOI
Sauerbier P., Köhler R., Renner G., Militz H. Plasma Treatment of Polypropylene-Based Wood–Plastic Composites (WPC): Influences of Working Gas. Polymers. 2020;12:1933. doi: 10.3390/polym12091933. PubMed DOI PMC
Kehrer M., Rottensteiner A., Hartl W., Duchoslav J., Thomas S., Stifter D. Cold atmospheric pressure plasma treatment for adhesion improvement on polypropylene surfaces. Surf. Coatings Technol. 2020;403:126389. doi: 10.1016/j.surfcoat.2020.126389. DOI
Kehrer M., Duchoslav J., Hinterreiter A., Mehic A., Stehrer T., Stifter D. Surface functionalization of polypropylene using a cold atmospheric pressure plasma jet with gas water mixtures. Surf. Coat. Technol. 2020;384:125170. doi: 10.1016/j.surfcoat.2019.125170. DOI
Strobel M., Lyons C.S. The role of low-molecular-weight oxidized materials in the adhesion properties of corona-treated polypropylene film. J. Adhes. Sci. Technol. 2003;17:15–23. doi: 10.1163/15685610360472411. DOI
Li X., Liu Y., Wang L., Liu F., Fang Z. Uniformity improvement of plumes in an atmospheric pressure argon plasma jet array by electric field optimization. Eur. Phys. J. D. 2019;73:1–10. doi: 10.1140/epjd/e2019-90643-9. DOI
Jelínek P., Polášková K., Jeník F., Jeníková Z., Dostál L., Dvořáková E., Cerman J., Šourková H., Buršíková V., Špatenka P., et al. Effects of additives on atmospheric pressure gliding arc applied to the modification of polypropylene. Surf. Coat. Technol. 2019;372:45–55. doi: 10.1016/j.surfcoat.2019.04.035. DOI
Owens D.K., Wendt R. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 1969;13:1741–1747. doi: 10.1002/app.1969.070130815. DOI
Nečas D., Klapetek P. Gwyddion: An open-source software for SPM data analysis. Cent. Eur. J. Phys. 2012;10:181–188. doi: 10.2478/s11534-011-0096-2. DOI
Adhesives—Determination of Tensile Lap-Shear Strength of Bonded Assemblies. Standard, European Committee for Standardization; Brussels, Belgium: 2009. (Sorting no. 66 8501).
Pearse R., Gaydon A. The Identification of Molecular Spectra. 2nd ed. Chapman & Hall Ltd.; London, UK: 1950.
Dorai R., Kushner M.J. A model for plasma modification of polypropylene using atmospheric pressure discharges. J. Phys. D Appl. Phys. 2003;36:666. doi: 10.1088/0022-3727/36/6/309. DOI
Park G., Lee H., Kim G., Lee J.K. Global model of He/O2 and Ar/O2 atmospheric pressure glow discharges. Plasma Process. Polym. 2008;5:569–576. doi: 10.1002/ppap.200800019. DOI
Van Gaens W., Iseni S., Schmidt-Bleker A., Weltmann K.D., Reuter S., Bogaerts A. Numerical analysis of the effect of nitrogen and oxygen admixtures on the chemistry of an argon plasma jet operating at atmospheric pressure. New J. Phys. 2015;17:033003. doi: 10.1088/1367-2630/17/3/033003. DOI
Bravo J., Rincón R., Muñoz J., Sánchez A., Calzada M. Spectroscopic characterization of argon–nitrogen surface-wave discharges in dielectric tubes at atmospheric pressure. Plasma Chem. Plasma Process. 2015;35:993–1014. doi: 10.1007/s11090-015-9647-4. DOI
Ricard A., Besner A., Hubert J., Moisan M. High nitrogen atom yield downstream of an atmospheric pressure flowing Ar-N2 microwave discharge. J. Phys. B At. Mol. Opt. Phys. 1988;21:L579. doi: 10.1088/0953-4075/21/18/006. DOI
Moravej M., Yang X., Barankin M., Penelon J., Babayan S., Hicks R. Properties of an atmospheric pressure radio-frequency argon and nitrogen plasma. Plasma Sources Sci. Technol. 2006;15:204. doi: 10.1088/0963-0252/15/2/005. DOI
Briggs D., Beamson G. XPS studies of the oxygen 1s and 2s levels in a wide range of functional polymers. Anal. Chem. 1993;65:1517–1523. doi: 10.1021/ac00059a006. DOI
Lynch J.B., Spence P.D., Baker D.E., Postlethwaite T.A. Atmospheric pressure plasma treatment of polyethylene via a pulse dielectric barrier discharge: Comparison using various gas compositions versus corona discharge in air. J. Appl. Polym. Sci. 1999;71:319–331. doi: 10.1002/(SICI)1097-4628(19990110)71:2<319::AID-APP16>3.0.CO;2-T. DOI
Kehrer M., Duchoslav J., Hinterreiter A., Cobet M., Mehic A., Stehrer T., Stifter D. XPS investigation on the reactivity of surface imine groups with TFAA. Plasma Process. Polym. 2019;16:1800160. doi: 10.1002/ppap.201800160. DOI
Kwon O.J., Tang S., Myung S.W., Lu N., Choi H.S. Surface characteristics of polypropylene film treated by an atmospheric pressure plasma. Surf. Coat. Technol. 2005;192:1–10. doi: 10.1016/j.surfcoat.2004.09.018. DOI
Hegemann D., Lorusso E., Butron-Garcia M.I., Blanchard N.E., Rupper P., Favia P., Heuberger M., Vandenbossche M. Suppression of hydrophobic recovery by plasma polymer films with vertical chemical gradients. Langmuir. 2016;32:651–654. doi: 10.1021/acs.langmuir.5b03913. PubMed DOI
Rupper P., Vandenbossche M., Bernard L., Hegemann D., Heuberger M. Composition and stability of plasma polymer films exhibiting vertical chemical gradients. Langmuir. 2017;33:2340–2352. doi: 10.1021/acs.langmuir.6b04600. PubMed DOI
Strobel M., Dunatov C., Strobel J.M., Lyons C.S., Perron S.J., Morgen M.C. Low-molecular-weight materials on corona-treated polypropylene. J. Adhes. Sci. Technol. 1989;3:321–335. doi: 10.1163/156856189X00245. DOI