Effect of Low Molecular Weight Oxidized Materials and Nitrogen Groups on Adhesive Joints of Polypropylene Treated by a Cold Atmospheric Plasma Jet

. 2021 Dec 15 ; 13 (24) : . [epub] 20211215

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34960945

Grantová podpora
20-14105S Czech Science Foundation
LM2018110 Ministry of Education Youth and Sports

Polypropylene is a typical representative of synthetic polymers that, for many applications including adhesive joints, requires an increase in wettability and chemical surface reactivity. Plasma processing offers efficient methods for such surface modifications. A particular disadvantage of the plasma jets can be the small plasma area. Here, we present a cold atmospheric plasma radio-frequency slit jet developed with a width of 150 mm applied to polypropylene plasma treatment in Ar, Ar/O2 and Ar/N2 We identified two main parameters influencing the tensile strength of adhesive joints mediated by epoxy adhesive DP 190, nitrogen content, and the amount of low molecular weight oxidized materials (LMWOMs). Nitrogen functional groups promoted adhesion between epoxy adhesive DP 190 and the PP by taking part in the curing process. LMWOMs formed a weak boundary layer, inhibiting adhesion by inducing a cohesive failure of the joint. A trade off between these two parameters determined the optimized conditions at which the strength of the adhesive joint increased 4.5 times. Higher adhesion strength was previously observed when using a translational plasma gliding arc plasma jet with higher plasma gas temperatures, resulting in better cross linking of polymer chains caused by local PP melting.

Zobrazit více v PubMed

Yasuda H. Plasma for modification of polymers. J. Macromol. Sci. 1976;10:383–420. doi: 10.1080/00222337608061190. DOI

Sharma A.K., Millich F., Hellmuth E.W. Wettability of glow discharge polymers. J. Appl. Polym. Sci. 1981;26:2205–2210. doi: 10.1002/app.1981.070260709. DOI

Coopes I., Gifkins K. Gas plasma treatment of polymer surfaces. J. Macromol. Sci. 1982;17:217–226. doi: 10.1080/00222338208063256. DOI

Karger-Kocsis J. Preface. In: Karger-Kocsis J., editor. Polypropylene Structure, Blends and Composites: Volume 3 Composites. Springer Science & Business Media; Dordrecht, The Netherland: 2012. pp. ix–x.

Singh N., Hui D., Singh R., Ahuja I., Feo L., Fraternali F. Recycling of plastic solid waste: A state of art review and future applications. Compos. Part B Eng. 2017;115:409–422. doi: 10.1016/j.compositesb.2016.09.013. DOI

Maddah H.A. Polypropylene as a promising plastic: A review. Am. J. Polym. Sci. 2016;6:1–11.

Massines F., Gouda G. A comparison of polypropylene-surface treatment by filamentary, homogeneous and glow discharges in helium at atmospheric pressure. J. Phys. D Appl. Phys. 1998;31:3411. doi: 10.1088/0022-3727/31/24/003. DOI

Elliot A.N.A. Automotive Applications of Polymers II. Rapra Technology Limited; Shawbury, UK: 1992. pp. 3–19.

Pijpers A., Meier R.J. Adhesion behaviour of polypropylenes after flame treatment determined by XPS (ESCA) spectral analysis. J. Electron Spectrosc. Relat. Phenom. 2001;121:299–313. doi: 10.1016/S0368-2048(01)00341-3. DOI

Williams D.F., Abel M.L., Grant E., Hrachova J., Watts J.F. Flame treatment of polypropylene: A study by electron and ion spectroscopies. Int. J. Adhes. Adhes. 2015;63:26–33. doi: 10.1016/j.ijadhadh.2015.07.009. DOI

Walzak M.J., Flynn S., Foerch R., Hill J.M., Karbashewski E., Lin A., Strobel M. UV and ozone treatment of polypropylene and poly (ethylene terephthalate) J. Adhes. Sci. Technol. 1995;9:1229–1248. doi: 10.1163/156856195X01012. DOI

Plasmatreat GmbH Plasma processes reduce costs in automotive manufacturing. IST Int. Surf. Technol. 2020;13:28–29. doi: 10.1007/s35724-020-0118-y. DOI

Mühlhan C., Friedrich J., Nowack H. Improvement of bonding properties of polypropylene by low-pressure plasma treatment. Surf. Coatings Technol. 1999;116:783–787. doi: 10.1016/S0257-8972(99)00203-0. DOI

Mandolfino C., Lertora E., Gambaro C., Pizzorni M. Functionalization of neutral polypropylene by using low pressure plasma treatment: Effects on surface characteristics and adhesion properties. Polymers. 2019;11:202. doi: 10.3390/polym11020202. PubMed DOI PMC

Mandolfino C. Polypropylene surface modification by low pressure plasma to increase adhesive bonding: Effect of process parameters. Surf. Coatings Technol. 2019;366:331–337. doi: 10.1016/j.surfcoat.2019.03.047. DOI

Sauerbier P., Köhler R., Renner G., Militz H. Plasma Treatment of Polypropylene-Based Wood–Plastic Composites (WPC): Influences of Working Gas. Polymers. 2020;12:1933. doi: 10.3390/polym12091933. PubMed DOI PMC

Kehrer M., Rottensteiner A., Hartl W., Duchoslav J., Thomas S., Stifter D. Cold atmospheric pressure plasma treatment for adhesion improvement on polypropylene surfaces. Surf. Coatings Technol. 2020;403:126389. doi: 10.1016/j.surfcoat.2020.126389. DOI

Kehrer M., Duchoslav J., Hinterreiter A., Mehic A., Stehrer T., Stifter D. Surface functionalization of polypropylene using a cold atmospheric pressure plasma jet with gas water mixtures. Surf. Coat. Technol. 2020;384:125170. doi: 10.1016/j.surfcoat.2019.125170. DOI

Strobel M., Lyons C.S. The role of low-molecular-weight oxidized materials in the adhesion properties of corona-treated polypropylene film. J. Adhes. Sci. Technol. 2003;17:15–23. doi: 10.1163/15685610360472411. DOI

Li X., Liu Y., Wang L., Liu F., Fang Z. Uniformity improvement of plumes in an atmospheric pressure argon plasma jet array by electric field optimization. Eur. Phys. J. D. 2019;73:1–10. doi: 10.1140/epjd/e2019-90643-9. DOI

Jelínek P., Polášková K., Jeník F., Jeníková Z., Dostál L., Dvořáková E., Cerman J., Šourková H., Buršíková V., Špatenka P., et al. Effects of additives on atmospheric pressure gliding arc applied to the modification of polypropylene. Surf. Coat. Technol. 2019;372:45–55. doi: 10.1016/j.surfcoat.2019.04.035. DOI

Owens D.K., Wendt R. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 1969;13:1741–1747. doi: 10.1002/app.1969.070130815. DOI

Nečas D., Klapetek P. Gwyddion: An open-source software for SPM data analysis. Cent. Eur. J. Phys. 2012;10:181–188. doi: 10.2478/s11534-011-0096-2. DOI

Adhesives—Determination of Tensile Lap-Shear Strength of Bonded Assemblies. Standard, European Committee for Standardization; Brussels, Belgium: 2009. (Sorting no. 66 8501).

Pearse R., Gaydon A. The Identification of Molecular Spectra. 2nd ed. Chapman & Hall Ltd.; London, UK: 1950.

Dorai R., Kushner M.J. A model for plasma modification of polypropylene using atmospheric pressure discharges. J. Phys. D Appl. Phys. 2003;36:666. doi: 10.1088/0022-3727/36/6/309. DOI

Park G., Lee H., Kim G., Lee J.K. Global model of He/O2 and Ar/O2 atmospheric pressure glow discharges. Plasma Process. Polym. 2008;5:569–576. doi: 10.1002/ppap.200800019. DOI

Van Gaens W., Iseni S., Schmidt-Bleker A., Weltmann K.D., Reuter S., Bogaerts A. Numerical analysis of the effect of nitrogen and oxygen admixtures on the chemistry of an argon plasma jet operating at atmospheric pressure. New J. Phys. 2015;17:033003. doi: 10.1088/1367-2630/17/3/033003. DOI

Bravo J., Rincón R., Muñoz J., Sánchez A., Calzada M. Spectroscopic characterization of argon–nitrogen surface-wave discharges in dielectric tubes at atmospheric pressure. Plasma Chem. Plasma Process. 2015;35:993–1014. doi: 10.1007/s11090-015-9647-4. DOI

Ricard A., Besner A., Hubert J., Moisan M. High nitrogen atom yield downstream of an atmospheric pressure flowing Ar-N2 microwave discharge. J. Phys. B At. Mol. Opt. Phys. 1988;21:L579. doi: 10.1088/0953-4075/21/18/006. DOI

Moravej M., Yang X., Barankin M., Penelon J., Babayan S., Hicks R. Properties of an atmospheric pressure radio-frequency argon and nitrogen plasma. Plasma Sources Sci. Technol. 2006;15:204. doi: 10.1088/0963-0252/15/2/005. DOI

Briggs D., Beamson G. XPS studies of the oxygen 1s and 2s levels in a wide range of functional polymers. Anal. Chem. 1993;65:1517–1523. doi: 10.1021/ac00059a006. DOI

Lynch J.B., Spence P.D., Baker D.E., Postlethwaite T.A. Atmospheric pressure plasma treatment of polyethylene via a pulse dielectric barrier discharge: Comparison using various gas compositions versus corona discharge in air. J. Appl. Polym. Sci. 1999;71:319–331. doi: 10.1002/(SICI)1097-4628(19990110)71:2<319::AID-APP16>3.0.CO;2-T. DOI

Kehrer M., Duchoslav J., Hinterreiter A., Cobet M., Mehic A., Stehrer T., Stifter D. XPS investigation on the reactivity of surface imine groups with TFAA. Plasma Process. Polym. 2019;16:1800160. doi: 10.1002/ppap.201800160. DOI

Kwon O.J., Tang S., Myung S.W., Lu N., Choi H.S. Surface characteristics of polypropylene film treated by an atmospheric pressure plasma. Surf. Coat. Technol. 2005;192:1–10. doi: 10.1016/j.surfcoat.2004.09.018. DOI

Hegemann D., Lorusso E., Butron-Garcia M.I., Blanchard N.E., Rupper P., Favia P., Heuberger M., Vandenbossche M. Suppression of hydrophobic recovery by plasma polymer films with vertical chemical gradients. Langmuir. 2016;32:651–654. doi: 10.1021/acs.langmuir.5b03913. PubMed DOI

Rupper P., Vandenbossche M., Bernard L., Hegemann D., Heuberger M. Composition and stability of plasma polymer films exhibiting vertical chemical gradients. Langmuir. 2017;33:2340–2352. doi: 10.1021/acs.langmuir.6b04600. PubMed DOI

Strobel M., Dunatov C., Strobel J.M., Lyons C.S., Perron S.J., Morgen M.C. Low-molecular-weight materials on corona-treated polypropylene. J. Adhes. Sci. Technol. 1989;3:321–335. doi: 10.1163/156856189X00245. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Enhanced Adhesion of Electrospun Polycaprolactone Nanofibers to Plasma-Modified Polypropylene Fabric

. 2023 Mar 28 ; 15 (7) : . [epub] 20230328

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...