Comparison of Different Approaches to Surface Functionalization of Biodegradable Polycaprolactone Scaffolds

. 2019 Dec 12 ; 9 (12) : . [epub] 20191212

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31842311

Grantová podpora
18-75-10057 Russian Science Foundation
K2-2018-012 Ministry of Education and Science of the Russian Federation (Increase Competitiveness Program of NUST "MISiS" )
CEITEC 2020 (LQ1601) Ministry of Education, Youth and Sports of the Czech Republic (MEYS CR)

Due to their good mechanical stability compared to gelatin, collagen or polyethylene glycol nanofibers and slow degradation rate, biodegradable poly-ε-caprolactone (PCL) nanofibers are promising material as scaffolds for bone and soft-tissue engineering. Here, PCL nanofibers were prepared by the electrospinning method and then subjected to surface functionalization aimed at improving their biocompatibility and bioactivity. For surface modification, two approaches were used: (i) COOH-containing polymer was deposited on the PCL surface using atmospheric pressure plasma copolymerization of CO2 and C2H4, and (ii) PCL nanofibers were coated with multifunctional bioactive nanostructured TiCaPCON film by magnetron sputtering of TiC-CaO-Ti3POx target. To evaluate bone regeneration ability in vitro, the surface-modified PCL nanofibers were immersed in simulated body fluid (SBF, 1×) for 21 days. The results obtained indicate different osteoblastic and epithelial cell response depending on the modification method. The TiCaPCON-coated PCL nanofibers exhibited enhanced adhesion and proliferation of MC3T3-E1 cells, promoted the formation of Ca-based mineralized layer in SBF and, therefore, can be considered as promising material for bone tissue regeneration. The PCL-COOH nanofibers demonstrated improved adhesion and proliferation of IAR-2 cells, which shows their high potential for skin reparation and wound dressing.

Zobrazit více v PubMed

Mao A.S., Mooney D.J. Regenerative medicine: Current therapies and future directions. Proc. Natl. Acad. Sci. USA. 2015;112:14452–14459. doi: 10.1073/pnas.1508520112. PubMed DOI PMC

Parvathi K., Krishnan A.G., Anitha A., Jayakumar R., Nair M.B. Poly(L-lactic acid) nanofibers containing Cissus quadrangularis induced osteogenic differentiation in vitro. Int. J. Biol. Macromol. 2018;110:514–521. doi: 10.1016/j.ijbiomac.2017.11.094. PubMed DOI

Al-Enizi A., Zagho M., Elzatahry A. Polymer-Based Electrospun Nanofibers for Biomedical Applications. Nanomaterials. 2018;8:259. doi: 10.3390/nano8040259. PubMed DOI PMC

Chen S.-H., Chen C.-H., Chen J.-P., Li M.-L., Kuo C.-Y. Response of Dermal Fibroblasts to Biochemical and Physical Cues in Aligned Polycaprolactone/Silk Fibroin Nanofiber Scaffolds for Application in Tendon Tissue Engineering. Nanomaterials. 2017;7:219. doi: 10.3390/nano7080219. PubMed DOI PMC

DeFrates K., Moore R., Lin G., Hu X., Beachley V., Borgesi J., Mulderig T. Protein-Based Fiber Materials in Medicine: A Review. Nanomaterials. 2018;8:457. doi: 10.3390/nano8070457. PubMed DOI PMC

Stocco T.D., Bassous N.J., Zhao S., Granato A.E.C., Webster T.J., Lobo A.O. Nanofibrous scaffolds for biomedical applications. Nanoscale. 2018;10:12228–12255. doi: 10.1039/C8NR02002G. PubMed DOI

Du Y., Chen X., Hag Koh Y., Lei B. Facilely fabricating PCL nanofibrous scaffolds with hierarchical pore structure for tissue engineering. Mater. Lett. 2014;122:62–65. doi: 10.1016/j.matlet.2014.02.031. DOI

Lotfi M., Ghasemi N., Rahimi S., Vosoughhosseini S., Saghiri M.A., Shahidi A. Resilon: A comprehensive literature review. J. Dent. Res. Dent. Clin. Dent. Prospect. 2013;7:119–130. PubMed PMC

Forsgren J., Svahn F., Jarmar T., Engqvist H. Formation and adhesion of biomimetic hydroxyapatite deposited on titanium substrates. Acta Biomater. 2007;3:980–984. doi: 10.1016/j.actbio.2007.03.006. PubMed DOI

Contreras-Cáceres R., Cabeza L., Perazzoli G., Díaz A., López-Romero J.M., Melguizo C., Prados J. Electrospun nanofibers: Recent applications in drug delivery and cancer therapy. Nanomaterials. 2019;9:656. doi: 10.3390/nano9040656. PubMed DOI PMC

Kokubo T., Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27:2907–2915. doi: 10.1016/j.biomaterials.2006.01.017. PubMed DOI

Zhang C., Cao M., Lan J., Wei P., Cai Q., Yang X. Regulating proliferation and differentiation of osteoblasts on poly(l-lactide)/gelatin composite nanofibers via timed biomineralization. J. Biomed. Mater. Res. Part A. 2016;104:1968–1980. doi: 10.1002/jbm.a.35728. PubMed DOI

Nagarajan S., Belaid H., Pochat-Bohatier C., Teyssier C., Iatsunskyi I., Coy E., Balme S., Cornu D., Miele P., Kalkura N.S., et al. Design of boron nitride/gelatin electrospun nanofibers for bone tissue engineering. ACS Appl. Mater. Interfaces. 2017;9:33695–33706. doi: 10.1021/acsami.7b13199. PubMed DOI

Gao Y., Shao W., Qian W., He J., Zhou Y., Qi K., Wang L., Cui S., Wang R. Biomineralized poly (L-lactic-co-glycolic acid)-tussah silk fibroin nanofiber fabric with hierarchical architecture as a scaffold for bone tissue engineering. Mater. Sci. Eng. C. 2018;84:195–207. doi: 10.1016/j.msec.2017.11.047. PubMed DOI

Taguchi T., Kishida A., Akashi M. Hydroxyapatite formation on/in poly(vinyl alcohol) hydrogel matrices using a novel alternate soaking process. Chem. Lett. 1998;27:711–712. doi: 10.1246/cl.1998.711. DOI

Wei K., Li Y., Kim K.O., Nakagawa Y., Kim B.S., Abe K., Chen G.Q., Kim I.S. Fabrication of nano-hydroxyapatite on electrospun silk fibroin nanofiber and their effects in osteoblastic behavior. J. Biomed. Mater. Res. Part A. 2011;97:272–280. doi: 10.1002/jbm.a.33054. PubMed DOI

Nie W., Gao Y., McCoul D.J., Gillispie G.J., Zhang Y., Liang L., He C. Rapid mineralization of hierarchical poly(l-lactic acid)/poly(ε-caprolactone) nanofibrous scaffolds by electrodeposition for bone regeneration. Int. J. Nanomed. 2019;14:3929–3941. doi: 10.2147/IJN.S205194. PubMed DOI PMC

Melnik E.V., Shkarina S.N., Ivlev S.I., Weinhardt V., Baumbach T., Chaikina M.V., Surmeneva M.A., Surmenev R.A. In vitro degradation behaviour of hybrid electrospun scaffolds of polycaprolactone and strontium-containing hydroxyapatite microparticles. Polym. Degrad. Stab. 2019;167:21–32. doi: 10.1016/j.polymdegradstab.2019.06.017. DOI

Shtansky D.V., Grigoryan A.S., Toporkova A.K., Arkhipov A.V., Sheveyko A.N., Kiryukhantsev-Korneev P.V. Modification of polytetrafluoroethylene implants by depositing TiCaPCON films with and without stem cells. Surf. Coat. Technol. 2011;206:1188–1195. doi: 10.1016/j.surfcoat.2011.08.029. DOI

Shtansky D.V., Glushankova N.A., Kiryukhantsev-Korneev F.V., Sheveiko A.N., Sigarev A.A. A comparative study of the structure and cytotoxicity of polytetrafluoroethylene after ion etching and ion implantation. Phys. Solid State. 2011;53:638–642. doi: 10.1134/S1063783411030280. DOI

Manakhov A., Kedroňová E., Medalová J., Černochová P., Obrusník A., Michlíček M., Shtansky D.V., Zajíčková L. Carboxyl-anhydride and amine plasma coating of PCL nanofibers to improve their bioactivity. Mater. Des. 2017;132:257–265. doi: 10.1016/j.matdes.2017.06.057. DOI

Shtansky D.V., Levashov E.A., Batenina I.V., Gloushankova N.A., Anisimova N.Y., Kiselevsky M.V., Reshetov I.V. Recent progress in the field of multicomponent bioactive nanostructured films. RSC Adv. 2013;3:11107. doi: 10.1039/c3ra23325a. DOI

Manakhov A., Kiryukhantsev-Korneev P., Michlíček M., Permyakova E., Dvořáková E., Polčák J., Popov Z., Visotin M., Shtansky D.V. Grafting of carboxyl groups using CO2/C2H4/Ar pulsed plasma: Theoretical modeling and XPS derivatization. Appl. Surf. Sci. 2018;435:1220–1227. doi: 10.1016/j.apsusc.2017.11.174. DOI

Kokubo T., Kushitani H., Sakka S., Kitsugi T., Yamamuro T. Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W3. J. Biomed. Mater. Res. 1990;24:721–734. doi: 10.1002/jbm.820240607. PubMed DOI

Manakhov A., Michlíček M., Felten A., Pireaux J.-J., Nečas D., Zajíčková L. XPS depth profiling of derivatized amine and anhydride plasma polymers: Evidence of limitations of the derivatization approach. Appl. Surf. Sci. 2017;394:578–585. doi: 10.1016/j.apsusc.2016.10.099. DOI

Ponomarev V.A., Sukhorukova I.V., Sheveyko A.N., Permyakova E.S., Manakhov A.M., Ignatov S.G., Gloushankova N.A., Zhitnyak I.Y., Lebedev O.I., Polčak J., et al. Antibacterial Performance of TiCaPCON Films Incorporated with Ag, Pt, and Zn: Bactericidal Ions Versus Surface Microgalvanic Interactions. ACS Appl. Mater. Interfaces. 2018;10:24406–24420. doi: 10.1021/acsami.8b06671. PubMed DOI

Štrbková L., Manakhov A., Zajíčková L., Stoica A., Veselý P., Chmelík R. The adhesion of normal human dermal fibroblasts to the cyclopropylamine plasma polymers studied by holographic microscopy. Surf. Coat. Technol. 2016;295:70–77. doi: 10.1016/j.surfcoat.2015.10.076. DOI

Montesano R., Vincent L.S., Drevon C., Tomatis L. Production of epithelial and mesenchymal tumours with rat liver cells transformedin vitro. Int. J. Cancer. 1975;16:550–558. doi: 10.1002/ijc.2910160405. PubMed DOI

Roh H.S., Myung S.W., Jung S.C., Kim B.H. Fabrication of 3D scaffolds with nano-hydroxyapatite for improving the preosteoblast cell-biological performance. J. Nanosci. Nanotechnol. 2015;15:5585–5588. doi: 10.1166/jnn.2015.10451. PubMed DOI

Erbetta C.D.A.C., Alves R.J., Resende J.M., de Souza Freitas R.F., de Sousa R.G. Synthesis and Characterization of Poly(D,L-Lactide-co-Glycolide) Copolymer. J. Biomater. Nanobiotechnol. 2012;3:208–225. doi: 10.4236/jbnb.2012.32027. DOI

Gardy J., Hassanpour A., Lai X., Ahmed M.H. Synthesis of Ti(SO4)O solid acid nano-catalyst and its application for biodiesel production from used cooking oil. Appl. Catal. A Gen. 2016;527:81–95. doi: 10.1016/j.apcata.2016.08.031. DOI

Lin H.-Y., Peng Z.-X. Nanofibers grafted on titanium alloy: The effects of fiber alignment and density on osteoblast mineralization. J. Mater. Sci. Mater. Med. 2017;28:140. doi: 10.1007/s10856-017-5951-2. PubMed DOI

Zreiqat H., Standard O.G., Gengenbach T., Steele J.G., Howlett C.R. The role of surface characteristics in the initial adhesion of human bone-derived cells on ceramics. Cells Mater. 1996;6:45–56.

Onak G., Karaman O. Accelerated mineralization on nanofibers via non-thermal atmospheric plasma assisted glutamic acid templated peptide conjugation. Regen. Biomater. 2019;6:231–240. doi: 10.1093/rb/rbz014. PubMed DOI PMC

Brunette D.M., Chehroudi B. The effects of the surface topography of micromachined titanium substrata on cell behavior in vitro and in vivo. J. Biomech. Eng. 1999;121:49–57. doi: 10.1115/1.2798042. PubMed DOI

Warita K., Aoki R., Kitamura N., Shibuya I., Hosaka Y.Z. The precursor osteoblast-like cell, MC3T3-E1 cell line, enhances sodium–calcium exchanger 1 (Ncx1) gene expression by stretch stimuli prior to osteoblast differentiation. J. Vet. Med. Sci. 2019;81:508–512. doi: 10.1292/jvms.18-0766. PubMed DOI PMC

Yang X., Yang F., Walboomers X.F., Bian Z., Fan M., Jansen J.A. The performance of dental pulp stem cells on nanofibrous PCL/gelatin/nHA scaffolds. J. Biomed. Mater. Res. Part. A. 2010;93:247–257. doi: 10.1002/jbm.a.32535. PubMed DOI

Park H., Park H., Lim D.J., Lee S.H. Nanofibrous mineralized electrospun scaffold as a substrate for bone tissue regeneration. J. Biomed. Nanotechnol. 2016;12:2076–2082. doi: 10.1166/jbn.2016.2306. PubMed DOI

Fu Q.W., Zi Y.P., Xu W., Zhou R., Cai Z.Y., Zheng W.J., Chen F., Qian Q.R. Electrospinning of calcium phosphate-poly(D,L-lactic acid) nanofibers for sustained release of water-soluble drug and fast mineralization. Int. J. Nanomed. 2016;11:5087–5097. doi: 10.2147/IJN.S114224. PubMed DOI PMC

Miroshnichenko S., Timofeeva V., Permyakova E., Ershov S., Kiryukhantsev-Korneev P., Dvořaková E., Shtansky D., Zajíčková L., Solovieva A., Manakhov A. Plasma-Coated Polycaprolactone Nanofibers with Covalently Bonded Platelet-Rich Plasma Enhance Adhesion and Growth of Human Fibroblasts. Nanomaterials. 2019;9:637. doi: 10.3390/nano9040637. PubMed DOI PMC

Li C., Wang B., Liu X., Pan Z., Liu C., Ma H., Liu X., Liu L., Jiang C. The dosage effects of dexamethasone on osteogenic activity andbiocompatibility of poly(lactic-co-glycolic acid)/hydroxyapatite nanofibers. Artif. Cells Nanomed. Biotechnol. 2019;47:1823–1832. doi: 10.1080/21691401.2019.1609007. PubMed DOI

Kouhi M., Jayarama Reddy V., Ramakrishna S. GPTMS-Modified Bredigite/PHBV Nanofibrous Bone Scaffolds with Enhanced Mechanical and Biological Properties. Appl. Biochem. Biotechnol. 2019;188:357–368. doi: 10.1007/s12010-018-2922-0. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...