Antisense Therapy for a Common Corneal Dystrophy Ameliorates TCF4 Repeat Expansion-Mediated Toxicity

. 2018 Apr 05 ; 102 (4) : 528-539. [epub] 20180308

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29526280

Grantová podpora
Wellcome Trust - United Kingdom
205041/Z/16/Z Wellcome Trust - United Kingdom

Odkazy

PubMed 29526280
PubMed Central PMC5985359
DOI 10.1016/j.ajhg.2018.02.010
PII: S0002-9297(18)30055-7
Knihovny.cz E-zdroje

Fuchs endothelial corneal dystrophy (FECD) is a common disease for which corneal transplantation is the only treatment option in advanced stages, and alternative treatment strategies are urgently required. Expansion (≥50 copies) of a non-coding trinucleotide repeat in TCF4 confers >76-fold risk for FECD in our large cohort of affected individuals. An FECD subject-derived corneal endothelial cell (CEC) model was developed to probe disease mechanism and investigate therapeutic approaches. The CEC model demonstrated that the repeat expansion leads to nuclear RNA foci, with the sequestration of splicing factor proteins (MBNL1 and MBNL2) to the foci and altered mRNA processing. Antisense oligonucleotide (ASO) treatment led to a significant reduction in the incidence of nuclear foci, MBNL1 recruitment to the foci, and downstream aberrant splicing events, suggesting functional rescue. This proof-of-concept study highlights the potential of a targeted ASO therapy to treat the accessible and tractable corneal tissue affected by this repeat expansion-mediated disease.

Zobrazit více v PubMed

Zoega G.M., Fujisawa A., Sasaki H., Kubota A., Sasaki K., Kitagawa K., Jonasson F. Prevalence and risk factors for cornea guttata in the Reykjavik Eye Study. Ophthalmology. 2006;113:565–569. PubMed

Kitagawa K., Kojima M., Sasaki H., Shui Y.B., Chew S.J., Cheng H.M., Ono M., Morikawa Y., Sasaki K. Prevalence of primary cornea guttata and morphology of corneal endothelium in aging Japanese and Singaporean subjects. Ophthalmic Res. 2002;34:135–138. PubMed

Lorenzetti D.W., Uotila M.H., Parikh N., Kaufman H.E. Central cornea guttata. Incidence in the general population. Am. J. Ophthalmol. 1967;64:1155–1158. PubMed

Vedana G., Villarreal G., Jr., Jun A.S. Fuchs endothelial corneal dystrophy: current perspectives. Clin. Ophthalmol. 2016;10:321–330. PubMed PMC

Eghrari A.O., Riazuddin S.A., Gottsch J.D. Fuchs corneal dystrophy. Prog. Mol. Biol. Transl. Sci. 2015;134:79–97. PubMed

Goldberg R.A., Raza S., Walford E., Feuer W.J., Goldberg J.L. Fuchs endothelial corneal dystrophy: clinical characteristics of surgical and nonsurgical patients. Clin. Ophthalmol. 2014;8:1761–1766. PubMed PMC

Golchet G., Carr J., Harris M.G. Why don’t we have enough cornea donors? A literature review and survey. Optometry. 2000;71:318–328. PubMed

Baratz K.H., Tosakulwong N., Ryu E., Brown W.L., Branham K., Chen W., Tran K.D., Schmid-Kubista K.E., Heckenlively J.R., Swaroop A. E2-2 protein and Fuchs’s corneal dystrophy. N. Engl. J. Med. 2010;363:1016–1024. PubMed

Wieben E.D., Aleff R.A., Tosakulwong N., Butz M.L., Highsmith W.E., Edwards A.O., Baratz K.H. A common trinucleotide repeat expansion within the transcription factor 4 (TCF4, E2-2) gene predicts Fuchs corneal dystrophy. PLoS ONE. 2012;7:e49083. PubMed PMC

Scoles D.R., Meera P., Schneider M.D., Paul S., Dansithong W., Figueroa K.P., Hung G., Rigo F., Bennett C.F., Otis T.S., Pulst S.M. Antisense oligonucleotide therapy for spinocerebellar ataxia type 2. Nature. 2017;544:362–366. PubMed PMC

Soliman A.Z., Xing C., Radwan S.H., Gong X., Mootha V.V. Correlation of severity of Fuchs endothelial corneal dystrophy with triplet repeat e`xpansion in TCF4. JAMA Ophthalmol. 2015;133:1386–1391. PubMed

Vasanth S., Eghrari A.O., Gapsis B.C., Wang J., Haller N.F., Stark W.J., Katsanis N., Riazuddin S.A., Gottsch J.D. Expansion of CTG18.1 trinucleotide repeat in TCF4 is a potent driver of Fuchs’ corneal dystrophy. Invest. Ophthalmol. Vis. Sci. 2015;56:4531–4536. PubMed PMC

Xing C., Gong X., Hussain I., Khor C.C., Tan D.T., Aung T., Mehta J.S., Vithana E.N., Mootha V.V. Transethnic replication of association of CTG18.1 repeat expansion of TCF4 gene with Fuchs’ corneal dystrophy in Chinese implies common causal variant. Invest. Ophthalmol. Vis. Sci. 2014;55:7073–7078. PubMed PMC

Mootha V.V., Gong X., Ku H.C., Xing C. Association and familial segregation of CTG18.1 trinucleotide repeat expansion of TCF4 gene in Fuchs’ endothelial corneal dystrophy. Invest. Ophthalmol. Vis. Sci. 2014;55:33–42. PubMed PMC

Du J., Aleff R.A., Soragni E., Kalari K., Nie J., Tang X., Davila J., Kocher J.P., Patel S.V., Gottesfeld J.M. RNA toxicity and missplicing in the common eye disease fuchs endothelial corneal dystrophy. J. Biol. Chem. 2015;290:5979–5990. PubMed PMC

Mahadevan M., Tsilfidis C., Sabourin L., Shutler G., Amemiya C., Jansen G., Neville C., Narang M., Barceló J., O’Hoy K. Myotonic dystrophy mutation: an unstable CTG repeat in the 3′ untranslated region of the gene. Science. 1992;255:1253–1255. PubMed

Taneja K.L., McCurrach M., Schalling M., Housman D., Singer R.H. Foci of trinucleotide repeat transcripts in nuclei of myotonic dystrophy cells and tissues. J. Cell Biol. 1995;128:995–1002. PubMed PMC

Miller J.W., Urbinati C.R., Teng-Umnuay P., Stenberg M.G., Byrne B.J., Thornton C.A., Swanson M.S. Recruitment of human muscleblind proteins to (CUG)(n) expansions associated with myotonic dystrophy. EMBO J. 2000;19:4439–4448. PubMed PMC

Holt I., Jacquemin V., Fardaei M., Sewry C.A., Butler-Browne G.S., Furling D., Brook J.D., Morris G.E. Muscleblind-like proteins: similarities and differences in normal and myotonic dystrophy muscle. Am. J. Pathol. 2009;174:216–227. PubMed PMC

Ciesiolka A., Jazurek M., Drazkowska K., Krzyzosiak W.J. Structural characteristics of simple RNA repeats associated with disease and their deleterious protein interactions. Front. Cell. Neurosci. 2017;11:97. PubMed PMC

Charizanis K., Lee K.Y., Batra R., Goodwin M., Zhang C., Yuan Y., Shiue L., Cline M., Scotti M.M., Xia G. Muscleblind-like 2-mediated alternative splicing in the developing brain and dysregulation in myotonic dystrophy. Neuron. 2012;75:437–450. PubMed PMC

Du H., Cline M.S., Osborne R.J., Tuttle D.L., Clark T.A., Donohue J.P., Hall M.P., Shiue L., Swanson M.S., Thornton C.A., Ares M., Jr. Aberrant alternative splicing and extracellular matrix gene expression in mouse models of -myotonic dystrophy. Nat. Struct. Mol. Biol. 2010;17:187–193. PubMed PMC

Mulders S.A., van den Broek W.J., Wheeler T.M., Croes H.J., van Kuik-Romeijn P., de Kimpe S.J., Furling D., Platenburg G.J., Gourdon G., Thornton C.A. Triplet-repeat oligonucleotide-mediated reversal of RNA toxicity in myotonic dystrophy. Proc. Natl. Acad. Sci. USA. 2009;106:13915–13920. PubMed PMC

González-Barriga A., Mulders S.A., van de Giessen J., Hooijer J.D., Bijl S., van Kessel I.D., van Beers J., van Deutekom J.C., Fransen J.A., Wieringa B., Wansink D.G. Design and analysis of effects of triplet repeat oligonucleotides in cell models for myotonic dystrophy. Mol. Ther. Nucleic Acids. 2013;2:e81. PubMed PMC

Peh G.S., Chng Z., Ang H.P., Cheng T.Y., Adnan K., Seah X.Y., George B.L., Toh K.P., Tan D.T., Yam G.H. Propagation of human corneal endothelial cells: a novel dual media approach. Cell Transplant. 2015;24:287–304. PubMed

Carter D.A., Nommiste B., Coffey P.J., Carr A.-J.F. Working with Stem Cells. Springer International Publishing; Cham: 2016. Spontaneous generation of patient-specific retinal pigment epithelial cells using induced pluripotent stem cell technology; pp. 143–161.

Lin X., Miller J.W., Mankodi A., Kanadia R.N., Yuan Y., Moxley R.T., Swanson M.S., Thornton C.A. Failure of MBNL1-dependent post-natal splicing transitions in myotonic dystrophy. Hum. Mol. Genet. 2006;15:2087–2097. PubMed

Carpenter A.E., Jones T.R., Lamprecht M.R., Clarke C., Kang I.H., Friman O., Guertin D.A., Chang J.H., Lindquist R.A., Moffat J. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 2006;7:R100. PubMed PMC

Afshari N.A., Igo R.P., Jr., Morris N.J., Stambolian D., Sharma S., Pulagam V.L., Dunn S., Stamler J.F., Truitt B.J., Rimmler J. Genome-wide association study identifies three novel loci in Fuchs endothelial corneal dystrophy. Nat. Commun. 2017;8:14898. PubMed PMC

He Z., Forest F., Gain P., Rageade D., Bernard A., Acquart S., Peoc’h M., Defoe D.M., Thuret G. 3D map of the human corneal endothelial cell. Sci. Rep. 2016;6:29047. PubMed PMC

Bartakova A., Alvarez-Delfin K., Weisman A.D., Salero E., Raffa G.A., Merkhofer R.M., Jr., Kunzevitzky N.J., Goldberg J.L. Novel identity and functional markers for human corneal endothelial cells. Invest. Ophthalmol. Vis. Sci. 2016;57:2749–2762. PubMed PMC

Ding V., Chin A., Peh G., Mehta J.S., Choo A. Generation of novel monoclonal antibodies for the enrichment and characterization of human corneal endothelial cells (hCENC) necessary for the treatment of corneal endothelial blindness. MAbs. 2014;6:1439–1452. PubMed PMC

Peh G.S., Toh K.P., Ang H.P., Seah X.Y., George B.L., Mehta J.S. Optimization of human corneal endothelial cell culture: density dependency of successful cultures in vitro. BMC Res. Notes. 2013;6:176. PubMed PMC

Peh G.S., Toh K.P., Wu F.Y., Tan D.T., Mehta J.S. Cultivation of human corneal endothelial cells isolated from paired donor corneas. PLoS ONE. 2011;6:e28310. PubMed PMC

Mootha V.V., Hussain I., Cunnusamy K., Graham E., Gong X., Neelam S., Xing C., Kittler R., Petroll W.M. TCF4 triplet repeat expansion and nuclear RNA foci in Fuchs’ endothelial corneal dystrophy. Invest. Ophthalmol. Vis. Sci. 2015;56:2003–2011. PubMed PMC

Konieczny P., Stepniak-Konieczna E., Sobczak K. MBNL expression in autoregulatory feedback loops. RNA Biol. 2017;15:1–8. PubMed PMC

Wieben E.D., Aleff R.A., Tang X., Butz M.L., Kalari K.R., Highsmith E.W., Jen J., Vasmatzis G., Patel S.V., Maguire L.J. Trinucleotide repeat expansion in the transcription factor 4 (TCF4) gene leads to widespread mRNA splicing changes in Fuchs’ endothelial corneal dystrophy. Invest. Ophthalmol. Vis. Sci. 2017;58:343–352. PubMed PMC

Gérard X., Perrault I., Munnich A., Kaplan J., Rozet J.M. Intravitreal injection of splice-switching oligonucleotides to manipulate splicing in retinal cells. Mol. Ther. Nucleic Acids. 2015;4:e250. PubMed PMC

Schoch K.M., Miller T.M. Antisense oligonucleotides: translation from mouse models to human neurodegenerative diseases. Neuron. 2017;94:1056–1070. PubMed PMC

Jiang J., Zhu Q., Gendron T.F., Saberi S., McAlonis-Downes M., Seelman A., Stauffer J.E., Jafar-Nejad P., Drenner K., Schulte D. Gain of toxicity from ALS/FTD-linked repeat expansions in C9ORF72 is alleviated by antisense oligonucleotides targeting GGGGCC-containing RNAs. Neuron. 2016;90:535–550. PubMed PMC

Wheeler T.M., Leger A.J., Pandey S.K., MacLeod A.R., Nakamori M., Cheng S.H., Wentworth B.M., Bennett C.F., Thornton C.A. Targeting nuclear RNA for in vivo correction of myotonic dystrophy. Nature. 2012;488:111–115. PubMed PMC

Kordasiewicz H.B., Stanek L.M., Wancewicz E.V., Mazur C., McAlonis M.M., Pytel K.A., Artates J.W., Weiss A., Cheng S.H., Shihabuddin L.S. Sustained therapeutic reversal of Huntington’s disease by transient repression of huntingtin synthesis. Neuron. 2012;74:1031–1044. PubMed PMC

Gipson I.K. Age-related changes and diseases of the ocular surface and cornea. Invest. Ophthalmol. Vis. Sci. 2013;54 ORSF48-53. PubMed

Amiel J., Rio M., de Pontual L., Redon R., Malan V., Boddaert N., Plouin P., Carter N.P., Lyonnet S., Munnich A., Colleaux L. Mutations in TCF4, encoding a class I basic helix-loop-helix transcription factor, are responsible for Pitt-Hopkins syndrome, a severe epileptic encephalopathy associated with autonomic dysfunction. Am. J. Hum. Genet. 2007;80:988–993. PubMed PMC

Zweier C., Peippo M.M., Hoyer J., Sousa S., Bottani A., Clayton-Smith J., Reardon W., Saraiva J., Cabral A., Gohring I. Haploinsufficiency of TCF4 causes syndromal mental retardation with intermittent hyperventilation (Pitt-Hopkins syndrome) Am. J. Hum. Genet. 2007;80:994–1001. PubMed PMC

Mootha V.V., Hansen B., Rong Z., Mammen P.P., Zhou Z., Xing C., Gong X. Fuchs’ endothelial corneal dystrophy and RNA foci in patients with myotonic dystrophy. Invest. Ophthalmol. Vis. Sci. 2017;58:4579–4585. PubMed PMC

Jain A., Vale R.D. RNA phase transitions in repeat expansion disorders. Nature. 2017;546:243–247. PubMed PMC

Henry S.P., Miner R.C., Drew W.L., Fitchett J., York-Defalco C., Rapp L.M., Levin A.A. Antiviral activity and ocular kinetics of antisense oligonucleotides designed to inhibit CMV replication. Invest. Ophthalmol. Vis. Sci. 2001;42:2646–2651. PubMed

Murray S.F., Jazayeri A., Matthes M.T., Yasumura D., Yang H., Peralta R., Watt A., Freier S., Hung G., Adamson P.S. Allele-specific inhibition of rhodopsin with an antisense oligonucleotide slows photoreceptor cell degeneration. Invest. Ophthalmol. Vis. Sci. 2015;56:6362–6375. PubMed PMC

Lentz J.J., Jodelka F.M., Hinrich A.J., McCaffrey K.E., Farris H.E., Spalitta M.J., Bazan N.G., Duelli D.M., Rigo F., Hastings M.L. Rescue of hearing and vestibular function by antisense oligonucleotides in a mouse model of human deafness. Nat. Med. 2013;19:345–350. PubMed PMC

Garanto A., Chung D.C., Duijkers L., Corral-Serrano J.C., Messchaert M., Xiao R., Bennett J., Vandenberghe L.H., Collin R.W. In vitro and in vivo rescue of aberrant splicing in CEP290-associated LCA by antisense oligonucleotide delivery. Hum. Mol. Genet. 2016;25:2552–2563. PubMed PMC

Parfitt D.A., Lane A., Ramsden C.M., Carr A.J., Munro P.M., Jovanovic K., Schwarz N., Kanuga N., Muthiah M.N., Hull S. Identification and correction of mechanisms underlying inherited blindness in human iPSC-derived optic cups. Cell Stem Cell. 2016;18:769–781. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Genetic and Demographic Determinants of Fuchs Endothelial Corneal Dystrophy Risk and Severity

. 2025 Mar 13 ; () : . [epub] 20250313

Tissue-specific TCF4 triplet repeat instability revealed by optical genome mapping

. 2024 Oct ; 108 () : 105328. [epub] 20240914

Deciphering novel TCF4-driven mechanisms underlying a common triplet repeat expansion-mediated disease

. 2024 May ; 20 (5) : e1011230. [epub] 20240507

Snail Track Lesion with Flat Keratometry in Anterior Segment Dysgenesis Caused by a Novel FOXC1 Variant

. 2022 Aug 31 ; 11 (17) : . [epub] 20220831

Should Patients with Kearns-Sayre Syndrome and Corneal Endothelial Failure Be Genotyped for a TCF4 Trinucleotide Repeat, Commonly Associated with Fuchs Endothelial Corneal Dystrophy?

. 2021 Nov 29 ; 12 (12) : . [epub] 20211129

CRISPR/Cas9-targeted enrichment and long-read sequencing of the Fuchs endothelial corneal dystrophy-associated TCF4 triplet repeat

. 2019 Sep ; 21 (9) : 2092-2102. [epub] 20190208

IPSC-Derived Corneal Endothelial-like Cells Act as an Appropriate Model System to Assess the Impact of SLC4A11 Variants on Pre-mRNA Splicing

. 2019 Jul 01 ; 60 (8) : 3084-3090.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...