Genetic and Demographic Determinants of Fuchs Endothelial Corneal Dystrophy Risk and Severity
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, multicentrická studie, pozorovací studie
Grantová podpora
MR/S031820/1
Medical Research Council - United Kingdom
MR/X006271/1
Medical Research Council - United Kingdom
PubMed
40079965
PubMed Central
PMC11907363
DOI
10.1001/jamaophthalmol.2025.0109
PII: 2831355
Knihovny.cz E-zdroje
- MeSH
- celogenomová asociační studie MeSH
- dospělí MeSH
- Fuchsova endoteliální dystrofie * genetika chirurgie epidemiologie diagnóza MeSH
- genetická predispozice k nemoci * MeSH
- jednonukleotidový polymorfismus * MeSH
- lidé středního věku MeSH
- lidé MeSH
- retrospektivní studie MeSH
- rizikové faktory MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- stupeň závažnosti nemoci MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- pozorovací studie MeSH
IMPORTANCE: Understanding the pathogenic mechanisms of Fuchs endothelial corneal dystrophy (FECD) could contribute to developing gene-targeted therapies. OBJECTIVE: To investigate associations between demographic data and age at first keratoplasty in a genetically refined FECD cohort. DESIGN, SETTING, AND PARTICIPANTS: This retrospective cohort study recruited 894 individuals with FECD at Moorfields Eye Hospital (London) and General University Hospital (Prague) from September 2009 to July 2023. Ancestry was inferred from genome-wide single nucleotide polymorphism array data. CTG18.1 status was determined by short tandem repeat and/or triplet-primed polymerase chain reaction. One or more expanded alleles (≥50 repeats) were classified as expansion-positive (Exp+). Expansion-negative (Exp-) cases were exome sequenced. MAIN OUTCOMES AND MEASURES: Association between variants in FECD-associated genes, demographic data, and age at first keratoplasty. RESULTS: Within the total cohort (n = 894), 77.3% of patients were Exp+. Most European (668 of 829 [80.6%]) and South Asian (14 of 22 [63.6%]) patients were Exp+. The percentage of female patients was higher (151 [74.4%]) in the Exp- cohort compared to the Exp+ cohort (395 [57.2%]; difference, 17.2%; 95% CI, 10.1%-24.3%; P < .001). The median (IQR) age at first keratoplasty of the Exp + patients (68.2 years [63.2-73.6]) was older than the Exp- patients (61.3 years [52.6-70.4]; difference, 6.5 years; 95% CI, 3.4-9.7; P < .001). The CTG18.1 repeat length of the largest expanded allele within the Exp+ group was inversely correlated with the age at first keratoplasty (β, -0.087; 95% CI, -0.162 to -0.012; P = .02). The ratio of biallelic to monoallelic expanded alleles was higher in the FECD cohort (1:14) compared to an unaffected control group (1:94; P < .001), indicating that 2 Exp+ alleles were associated with increased disease penetrance compared with 1 expansion. Potentially pathogenic variants (minor allele frequency, <0.01; combined annotation dependent depletion, >15) were only identified in FECD-associated genes in 13 Exp- individuals (10.1%). CONCLUSIONS AND RELEVANCE: In this multicenter cohort study among individuals with FECD, CTG18.1 expansions were present in most European and South Asian patients, while CTG18.1 repeat length and zygosity status were associated with modifications in disease severity and penetrance. Known disease-associated genes accounted for only a minority of Exp- cases, with unknown risk factors associated with disease in the rest of this subgroup. These data may have implications for future FECD gene-targeted therapy development.
Eye Center Faculty of Medicine University of Freiburg Freiburg Germany
Zobrazit více v PubMed
Mathews P, Benbow A, Corcoran K, DeMatteo J, Philippy B, Van Meter W. 2022 Eye Banking Statistical Report—Executive Summary. Eye Banking and Corneal Transplantation. 2023;2(3):e0008. doi: 10.1097/ebct.0000000000000008. DOI
NHSBT. NHS Blood and Transplant Annual Activity Report: Cornea Activity. [Accessed May 1, 2024]. [Internet] http://nhsbtdbe.blob.core.windows.net/umbraco-assets-corp/27122/section-10-cornea-activity.pdf.
Zoega GM, Fujisawa A, Sasaki H, et al. Prevalence and risk factors for cornea guttata in the Reykjavik Eye Study. Ophthalmology. 2006;113(4):565–569. PubMed
Kitagawa K, Kojima M, Sasaki H, et al. Prevalence of primary cornea guttata and morphology of corneal endothelium in aging Japanese and Singaporean subjects. Ophthalmic Res. 2002;34(3):135–138. PubMed
Zhang X, Igo RP, Jr, Fondran J, et al. Association of smoking and other risk factors with Fuchs’ endothelial corneal dystrophy severity and corneal thickness. Invest Ophthalmol Vis Sci. 2013;54(8):5829–5835. doi: 10.1167/iovs.13-11918. PubMed DOI PMC
Rao BS, Tharigopala A, Rachapalli SR, Rajagopal R, Soumittra N. Association of polymorphisms in the intron of TCF4 gene to late-onset Fuchs endothelial corneal dystrophy: An Indian cohort study. Indian J Ophthalmol. 2017;65(10):931–935. doi: 10.4103/ijo.IJO_191_17. PubMed DOI PMC
Xing C, Gong X, Hussain I, et al. Transethnic Replication of Association of CTG18.1 Repeat Expansion of TCF4 Gene With Fuchs’ Corneal Dystrophy in Chinese Implies Common Causal Variant. Invest Ophthalmol Vis Sci. 2014;55(11):7073–7078. doi: 10.1167/iovs.14-15390. PubMed DOI PMC
Viberg A, Westin IM, Golovleva I, Bystro B. TCF4 trinucleotide repeat expansion in Swedish cases with Fuchs’ endothelial corneal dystrophy. Acta Ophthalmol. 8 Published online 2021. PubMed
Xu TT, Li YJ, Afshari NA, et al. Disease Expression and Familial Transmission of Fuchs Endothelial Corneal Dystrophy With and Without CTG18.1 Expansion. Invest Ophthalmol Vis Sci. 2021;62(1):17. doi: 10.1167/iovs.62.1.17. PubMed DOI PMC
Eghrari AO, Gottsch JD. Fuchs’ corneal dystrophy. Expert Rev Ophthalmol. 2010;5(2):147–159. doi: 10.1586/eop.10.8. PubMed DOI PMC
Krachmer JH, Purcell JJ, Jr, Young CW, Bucher KD. Corneal endothelial dystrophy. A study of 64 families. Arch Ophthalmol. 1978;96(11):2036–2039. PubMed
Lorenzetti DW, Uotila MH, Parikh N, Kaufman HE. Central cornea guttata. Incidence in the general population. Am J Ophthalmol. 1967;64(6):1155–1158. PubMed
Vithana EN, Morgan PE, Ramprasad V, et al. SLC4A11 mutations in Fuchs endothelial corneal dystrophy. Hum Mol Genet. 2008;17(5):656–666. PubMed
Aiello F, Gallo Afflitto G, Ceccarelli F, Cesareo M, Nucci C. Global Prevalence of Fuchs Endothelial Corneal Dystrophy (FECD) in Adult Population: A Systematic Review and Meta-Analysis. J Ophthalmol. 2022;2022:1–7. doi: 10.1155/2022/3091695. PubMed DOI PMC
Nealon CL, Halladay CW, Gorman BR, et al. Association Between Fuchs Endothelial Corneal Dystrophy, Diabetes Mellitus, and Multimorbidity. Cornea. 2023;42(9):1140–1149. doi: 10.1097/ICO.0000000000003311. PubMed DOI PMC
Wieben ED, Aleff RA, Tosakulwong N, et al. A common trinucleotide repeat expansion within the transcription factor 4 (TCF4, E2-2) gene predicts Fuchs corneal dystrophy. PLoS One. 2012;7(11):e49083. doi: 10.1371/journal.pone.0049083. PubMed DOI PMC
Zarouchlioti C, Sanchez-Pintado B, Hafford Tear NJ, et al. Antisense Therapy for a Common Corneal Dystrophy Ameliorates TCF4 Repeat Expansion-Mediated Toxicity. Am J Hum Genet. 2018;102(4):528–539. doi: 10.1016/j.ajhg.2018.02.010. PubMed DOI PMC
Vasanth S, Eghrari AO, Gapsis BC, et al. Expansion of CTG18.1 Trinucleotide Repeat in TCF4 Is a Potent Driver of Fuchs’ Corneal Dystrophy. Invest Ophthalmol Vis Sci. 2015;56(8):4531–4536. doi: 10.1167/iovs.14-16122. PubMed DOI PMC
Okumura N, Hayashi R, Nakano M, et al. Association of rs613872 and Trinucleotide Repeat Expansion in the TCF4 Gene of German Patients With Fuchs Endothelial Corneal Dystrophy. Cornea. 2019;38(7):799–805. doi: 10.1097/ICO.0000000000001952. PubMed DOI PMC
Foja S, Luther M, Hoffmann K, Rupprecht A, Gruenauer-Kloevekorn C. CTG18.1 repeat expansion may reduce TCF4 gene expression in corneal endothelial cells of German patients with Fuchs’ dystrophy. Graefes Arch Clin Exp Ophthalmol. 2017;255(8):1621–1631. PubMed
Nanda GG, Padhy B, Samal S, Das S, Alone DP. Genetic Association of TCF4 Intronic Polymorphisms, CTG18.1 and rs17089887, With Fuchs’ Endothelial Corneal Dystrophy in an Indian Population. Invest Ophthalmol Vis Sci. 2014;55(11):7674–7680. PubMed
Eghrari AO, Vahedi S, Afshari NA, Riazuddin SA, Gottsch JD. CTG18.1 Expansion in TCF4 Among African Americans With Fuchs’ Corneal Dystrophy. Invest Ophthalmol Vis Sci. 2017;58(14):6046–6049. doi: 10.1167/iovs.17-21661. PubMed DOI PMC
Soliman AZ, Xing C, Radwan SH, Gong X, Mootha VV. Correlation of Severity of Fuchs Endothelial Corneal Dystrophy With Triplet Repeat Expansion in TCF4. JAMA Ophthalmol. 2015;133(12):1386. PubMed
Soh YQ, Peh Swee Lim G, Htoon HM, et al. Trinucleotide repeat expansion length as a predictor of the clinical progression of Fuchs’ Endothelial Corneal Dystrophy. PLoS One. 2019;14(1) doi: 10.1371/journal.pone.0210996. PubMed DOI PMC
Okumura N, Puangsricharern V, Jindasak R, et al. Trinucleotide repeat expansion in the transcription factor 4 (TCF4) gene in Thai patients with Fuchs endothelial corneal dystrophy. Eye. 2020;34(5):880–885. doi: 10.1038/s41433-019-0595-8. PubMed DOI PMC
Tsedilina TR, Sharova E, Iakovets V, Skorodumova LO. Systematic review of SLC4A11, ZEB1, LOXHD1, and AGBL1 variants in the development of Fuchs’ endothelial corneal dystrophy. Front Med. 2023;10:1153122. doi: 10.3389/fmed.2023.1153122. PubMed DOI PMC
Fautsch MP, Wieben ED, Baratz KH, et al. TCF4-mediated Fuchs endothelial corneal dystrophy: Insights into a common trinucleotide repeat-associated disease. Prog Retin Eye Res. 2021;81:100883. doi: 10.1016/j.preteyeres.2020.100883. PubMed DOI PMC
Biswas S, Munier FL, Yardley J, et al. Missense mutations in COL8A2, the gene encoding the alpha2 chain of type VIII collagen, cause two forms of corneal endothelial dystrophy. Hum Mol Genet. 2001;10(21):2415–2423. PubMed
Gottsch JD, Sundin OH, Liu SH, et al. Inheritance of a novel COL8A2 mutation defines a distinct early-onset subtype of fuchs corneal dystrophy. Invest Ophthalmol Vis Sci. 2005;46(6):1934–1939. PubMed
Riazuddin SA, Parker DS, McGlumphy EJ, et al. Mutations in LOXHD1, a recessive-deafness locus, cause dominant late-onset Fuchs corneal dystrophy. Am J Hum Genet. 2012;90(3):533–539. doi: 10.1016/j.ajhg.2012.01.013. PubMed DOI PMC
Riazuddin SA, Vasanth S, Katsanis N, Gottsch JD. Mutations in AGBL1 cause dominant late-onset Fuchs corneal dystrophy and alter protein-protein interaction with TCF4. Am J Hum Genet. 2013;93(4):758–764. doi: 10.1016/j.ajhg.2013.08.010. PubMed DOI PMC
Mehta JS, Vithana EN, Tan DTH, et al. Analysis of the posterior polymorphous corneal dystrophy 3 gene, TCF8, in late-onset Fuchs endothelial corneal dystrophy. Invest Ophthalmol Vis Sci. 2008;49(1):184–188. PubMed
Bhattacharyya N, Chai N, Hafford-Tear NJ, et al. Deciphering novel TCF4-driven mechanisms underlying a common triplet repeat expansion-mediated disease. PLoS Genet. 2024;20(5):e1011230. doi: 10.1371/journal.pgen.1011230. PubMed DOI PMC
Afshari NA, Igo RP, Morris NJ, et al. Genome-wide association study identifies three novel loci in Fuchs endothelial corneal dystrophy. Nat Commun. 2017;8(1):14898. doi: 10.1038/ncomms14898. PubMed DOI PMC
Gorman BR, Francis M, Nealon CL, et al. A multi-ancestry GWAS of Fuchs corneal dystrophy highlights the contributions of laminins, collagen, and endothelial cell regulation. Commun Biol. 2024;7(1):418. doi: 10.1038/s42003-024-06046-3. PubMed DOI PMC
Baratz KH, Tosakulwong N, Ryu E, et al. E2-2 protein and Fuchs’s corneal dystrophy. N Engl J Med. 2010;363(11):1016–1024. PubMed
Hu J, Rong Z, Gong X, et al. Oligonucleotides targeting TCF4 triplet repeat expansion inhibit RNA foci and mis-splicing in Fuchs’ dystrophy. Hum Mol Genet. 2018;27(6):1015–1026. doi: 10.1093/hmg/ddy018. PubMed DOI PMC
Therapeutics P. Open-Label, Single-Dose, Exploratory Study With QR-504a to Evaluate Safety, Tolerability, and Corneal Endothelium Molecular Biomarker(s) in Subjects With Fuchs Endothelial Corneal Dystrophy With Trinucleotide Repeat Expansion in the TCF4 Gene (FECD3) [Accessed January 9, 2024]. [Internet]. Published 2022. https://clinicaltrials.gov/study/NCT05052554.
Powers A, Rinkoski TA, Cheung K, et al. GeneTAC™ small molecules reduce toxic nuclear foci and restore normal splicing in corneal endothelial cells derived from patients with Fuchs endothelial corneal dystrophy (FECD) harboring repeat expansions in transcription factor 4 (TCF4) [Accessed January 9, 2024];Invest Ophthalmol Vis Sci. 2022 63(7):2753–A0242. https://iovs.arvojournals.org/article.aspx?articleid=2780764 .
Angelbello AJ, Benhamou RI, Rzuczek SG, et al. A Small Molecule that Binds an RNA Repeat Expansion Stimulates Its Decay via the Exosome Complex. Cell Chemical Biology. 2021;28(1):34–45.:e6. doi: 10.1016/j.chembiol.2020.10.007. PubMed DOI PMC
Hu J, Shen X, Kheirabadi M, et al. Targeting the Expanded TCF4/Fuchs’ Endothelial Corneal Dystrophy CUG Repeat with Morpholino Peptide Conjugates. ACS Omega. 2023;8(45):42797–42802. doi: 10.1021/acsomega.3c05634. PubMed DOI PMC
Zarouchlioti C, Efthymiou S, Facchini S, et al. Tissue-specific TCF4 triplet repeat instability revealed by optical genome mapping. EBioMedicine. 2024;108(105328):105328. doi: 10.1016/j.ebiom.2024.105328. PubMed DOI PMC
Zhang D, Dey R, Lee S. Fast and robust ancestry prediction using principal component analysis. Bioinformatics. 2020;36(11):3439–3446. doi: 10.1093/bioinformatics/btaa152. PubMed DOI PMC
Manichaikul A, Mychaleckyj JC, Rich SS, Daly K, Sale M, Chen WM. Robust relationship inference in genome-wide association studies. Bioinformatics. 2010;26(22):2867–2873. doi: 10.1093/bioinformatics/btq559. PubMed DOI PMC
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754–1760. doi: 10.1093/bioinformatics/btp324. PubMed DOI PMC
Pontikos N, Yu J, Moghul I, et al. Phenopolis: an open platform for harmonization and analysis of genetic and phenotypic data. Bioinformatics. 2017;33(15):2421–2423. PubMed
DePristo MA, Banks E, Poplin R, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011;43(5):491–498. doi: 10.1038/ng.806. PubMed DOI PMC
McLaren W, Gil L, Hunt SE, et al. The Ensembl Variant Effect Predictor. Genome Biol. 2016;17(1):122. doi: 10.1186/s13059-016-0974-4. PubMed DOI PMC
Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M. CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 2019;47(D1):D886–D894. doi: 10.1093/nar/gky1016. PubMed DOI PMC
Ioannidis NM, Rothstein JH, Pejaver V, et al. REVEL: An ensemble method for predicting the pathogenicity of rare missense variants. Am J Hum Genet. 2016;99(4):877–885. doi: 10.1016/j.ajhg.2016.08.016. PubMed DOI PMC
Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014;46(3):310–315. doi: 10.1038/ng.2892. PubMed DOI PMC
Jaganathan K, Kyriazopoulou Panagiotopoulou S, McRae JF, et al. Predicting Splicing from Primary Sequence with Deep Learning. Cell. 2019;176(3):535–548.:e24. PubMed
Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods. 2017;14(4):417–419. doi: 10.1038/nmeth.4197. PubMed DOI PMC
Soneson C, Love MI, Robinson MD. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res. 2015;4:1521. doi: 10.12688/f1000research.7563.2. PubMed DOI PMC
STRipy - STRs database (TCF4 locus) [Accessed May 28, 2024]. https://stripy.org/database/TCF4 .
Sex by single year of age - Office for National Statistics. [Accessed July 26, 2024]. https://www.ons.gov.uk/datasets/TS009/editions/2021/versions/2 .
Aldave AJ, Rayner SA, Salem AK, et al. No pathogenic mutations identified in the COL8A1 and COL8A2 genes in familial Fuchs corneal dystrophy. Invest Ophthalmol Vis Sci. 2006;47(9):3787–3790. PubMed
Eghrari AO, Vasanth S, Wang J, Vahedi F, Riazuddin SA, Gottsch JD. CTG18.1 Expansion in TCF4 increases likelihood of transplantation in Fuchs Corneal Dystrophy. Cornea. 2017;36(1):40–43. doi: 10.1097/ICO.0000000000001049. PubMed DOI PMC
Snell RG, MacMillan JC, Cheadle JP, et al. Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington’s disease. Nat Genet. 1993;4(4):393–397. PubMed
Morales F, Couto JM, Higham CF, et al. Somatic instability of the expanded CTG triplet repeat in myotonic dystrophy type 1 is a heritable quantitative trait and modifier of disease severity. Hum Mol Genet. 2012;21(16):3558–3567. PubMed
Pellerin D, Danzi MC, Renaud M, et al. Spinocerebellar ataxia 27B: A novel, frequent and potentially treatable ataxia. Clin Transl Med. 2024;14(1):e1504. doi: 10.1002/ctm2.1504. PubMed DOI PMC
Currò R, Dominik N, Facchini S, et al. Role of the repeat expansion size in predicting age of onset and severity in RFC1 disease. Brain. 2024;147(5):1887–1898. doi: 10.1093/brain/awad436. PubMed DOI PMC
Day JW, Ricker K, Jacobsen JF, et al. Myotonic dystrophy type 2: molecular, diagnostic and clinical spectrum. Neurology. 2003;60(4):657–664. PubMed
Izumi Y, Maruyama H, Oda M, et al. SCA8 repeat expansion: large CTA/CTG repeat alleles are more common in ataxic patients, including those with SCA6. Am J Hum Genet. 2003;72(3):704–709. doi: 10.1086/367775. PubMed DOI PMC
Fournier C, Barbier M, Camuzat A, et al. Relations between C9orf72 expansion size in blood, age at onset, age at collection and transmission across generations in patients and presymptomatic carriers. Neurobiol Aging. 2019;74:234.e1–e234.e8. PubMed
Cumming SA, Jimenez-Moreno C, Okkersen K, et al. Genetic determinants of disease severity in the myotonic dystrophy type 1 OPTIMISTIC cohort. Neurology. 2019;93(10):e995. doi: 10.1212/WNL.0000000000008056. PubMed DOI PMC
Meng H, Matthaei M, Ramanan N, et al. L450W and Q455K Col8a2 knock-in mouse models of Fuchs endothelial corneal dystrophy show distinct phenotypes and evidence for altered autophagy. Invest Ophthalmol Vis Sci. 2013;54(3):1887–1897. doi: 10.1167/iovs.12-11021. PubMed DOI PMC
Miyajima T, Melangath G, Zhu S, et al. Loss of NQO1 generates genotoxic estrogen-DNA adducts in Fuchs Endothelial Corneal Dystrophy. Free Radic Biol Med. 2020;147:69–79. doi: 10.1016/j.freeradbiomed.2019.12.014. PubMed DOI PMC
Han S, Mueller C, Wuebbolt C, et al. Selective effects of estradiol on human corneal endothelial cells. Sci Rep. 2023;13(1):15279. doi: 10.1038/s41598-023-42290-z. PubMed DOI PMC
Liu C, Miyajima T, Melangath G, et al. Ultraviolet A light induces DNA damage and estrogen-DNA adducts in Fuchs endothelial corneal dystrophy causing females to be more affected. Proc Natl Acad Sci U S A. 2020;117(1):573–583. doi: 10.1073/pnas.1912546116. PubMed DOI PMC
Kumar V, Deshpande N, Parekh M, et al. Estrogen genotoxicity causes preferential development of Fuchs endothelial corneal dystrophy in females. Redox Biol. 2023;69:102986. doi: 10.1016/j.redox.2023.102986. PubMed DOI PMC
Dunlop S, Coyte PC, McIsaac W. Socio-economic status and the utilisation of physicians’ services: results from the Canadian National Population Health Survey. Soc Sci Med. 2000;51(1):123–133. PubMed
Rong Z, Gong X, Hulleman JD, Corey DR, Mootha VV. Trinucleotide Repeat-Targeting dCas9 as a Therapeutic Strategy for Fuchs’ Endothelial Corneal Dystrophy. Transl Vis Sci Technol. 2020;9(9):47. doi: 10.1167/tvst.9.9.47. PubMed DOI PMC
Powers A, Cheung K, Osgood N, et al. Pharmacological and molecular features of DT-168, a topical GeneTACTM small molecule being developed as potential treatment for Fuchs Endothelial Corneal Dystrophy caused by CTG repeat expansions in the TCF4 gene. [Accessed August 29, 2024];Invest Ophthalmol Vis Sci. 2023 64(8):1333. https://iovs.arvojournals.org/article.aspx?articleid=2786494 .