Should Patients with Kearns-Sayre Syndrome and Corneal Endothelial Failure Be Genotyped for a TCF4 Trinucleotide Repeat, Commonly Associated with Fuchs Endothelial Corneal Dystrophy?

. 2021 Nov 29 ; 12 (12) : . [epub] 20211129

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu kazuistiky, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34946867

Grantová podpora
MR/S031820/1 Medical Research Council - United Kingdom

The aim of this study was to describe the ocular phenotype in a case with Kearns-Sayre syndrome (KSS) spectrum and to determine if corneal endothelial cell dysfunction could be attributed to other known distinct genetic causes. Herein, genomic DNA was extracted from blood and exome sequencing was performed. Non-coding gene regions implicated in corneal endothelial dystrophies were screened by Sanger sequencing. In addition, a repeat expansion situated within an intron of TCF4 (termed CTG18.1) was genotyped using the short tandem repeat assay. The diagnosis of KSS spectrum was based on the presence of ptosis, chronic progressive external ophthalmoplegia, pigmentary retinopathy, hearing loss, and muscle weakness, which were further supported by the detection of ~6.5 kb mtDNA deletion. At the age of 33 years, the proband's best corrected visual acuity was reduced to 0.04 in the right eye and 0.2 in the left eye. Rare ocular findings included marked corneal oedema with central corneal thickness of 824 and 844 µm in the right and left eye, respectively. No pathogenic variants in the genes, which are associated with corneal endothelial dystrophies, were identified. Furthermore, the CTG18.1 genotype was 12/33, which exceeds a previously determined critical threshold for toxic RNA foci appearance in corneal endothelial cells.

Zobrazit více v PubMed

Rowland L.P. Molecular genetics, pseudogenetics, and clinical neurology. The Robert Wartenberg Lecture. Neurology. 1983;33:1179–1195. doi: 10.1212/WNL.33.9.1179. PubMed DOI

Mancuso M., Orsucci D., Angelini C., Bertini E., Carelli V., Comi G.P., Donati M.A., Federico A., Minetti C., Moggio M., et al. Redefining phenotypes associated with mitochondrial DNA single deletion. J. Neurol. 2015;262:1301–1309. doi: 10.1007/s00415-015-7710-y. PubMed DOI

Finsterer J., Zarrouk-Mahjoub S. Corneal Involvement in Kearns-Sayre Syndrome Responsive to Coenzyme-Q? Cornea. 2016;35:e39. doi: 10.1097/ICO.0000000000001043. PubMed DOI

Ortiz A., Arias J., Cardenas P., Villamil J., Peralta M., Escaf L.C., Ortiz J. Macular findings in Spectral Domain Optical Coherence Tomography and OCT Angiography in a patient with Kearns-Sayre syndrome. Int. J. Retin. Vitr. 2017;3:24. doi: 10.1186/s40942-017-0077-8. PubMed DOI PMC

Kim J., Medsinge A., Chauhan B., Wiest C., Scanga H., Monaghan R., Moore W.H., Nischal K.K. Coenzyme Q10 in the Treatment of Corneal Edema in Kearns-Sayre: Is There an Application in Fuchs Endothelial Corneal Dystrophy? Cornea. 2016;35:1250–1254. doi: 10.1097/ICO.0000000000000927. PubMed DOI

Gonnermann J., Klamann M.K., Maier A.K., Bertelmann E., Schroeter J., von Au K., Joussen A.M., Torun N. Descemet membrane endothelial keratoplasty in a child with corneal endothelial dysfunction in Kearns-Sayre syndrome. Cornea. 2014;33:1232–1234. doi: 10.1097/ICO.0000000000000252. PubMed DOI

Evans C.J., Liskova P., Dudakova L., Hrabcikova P., Horinek A., Jirsova K., Filipec M., Hardcastle A.J., Davidson A.E., Tuft S.J. Identification of six novel mutations in ZEB1 and description of the associated phenotypes in patients with posterior polymorphous corneal dystrophy 3. Ann. Hum. Genet. 2015;79:1–9. doi: 10.1111/ahg.12090. PubMed DOI

Fautsch M.P., Wieben E.D., Baratz K.H., Bhattacharyya N., Sadan A.N., Hafford-Tear N.J., Tuft S.J., Davidson A.E. TCF4-mediated Fuchs endothelial corneal dystrophy: Insights into a common trinucleotide repeat-associated disease. Prog. Retin. Eye Res. 2021;81:100883. doi: 10.1016/j.preteyeres.2020.100883. PubMed DOI PMC

Bene J., Nadasi E., Kosztolanyi G., Mehes K., Melegh B. Congenital cataract as the first symptom of a neuromuscular disease caused by a novel single large-scale mitochondrial DNA deletion. Eur. J. Hum. Genet. 2003;11:375–379. doi: 10.1038/sj.ejhg.5200975. PubMed DOI

Anteneova N., Kelifova S., Kolarova H., Vondrackova A., Tothova I., Liskova P., Magner M., Zamecnik J., Hansikova H., Zeman J., et al. The Phenotypic Spectrum of 47 Czech Patients with Single, Large-Scale Mitochondrial DNA Deletions. Brain Sci. 2020;10:766. doi: 10.3390/brainsci10110766. PubMed DOI PMC

Dudakova L., Evans C.J., Pontikos N., Hafford-Tear N.J., Malinka F., Skalicka P., Horinek A., Munier F.L., Voide N., Studeny P., et al. The utility of massively parallel sequencing for posterior polymorphous corneal dystrophy type 3 molecular diagnosis. Exp. Eye Res. 2019;182:160–166. doi: 10.1016/j.exer.2019.03.002. PubMed DOI

Karczewski K.J., Francioli L.C., Tiao G., Cummings B.B., Alfoldi J., Wang Q., Collins R.L., Laricchia K.M., Ganna A., Birnbaum D.P., et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581:434–443. doi: 10.1038/s41586-020-2308-7. PubMed DOI PMC

Martin A.R., Williams E., Foulger R.E., Leigh S., Daugherty L.C., Niblock O., Leong I.U.S., Smith K.R., Gerasimenko O., Haraldsdottir E., et al. PanelApp crowdsources expert knowledge to establish consensus diagnostic gene panels. Nat. Genet. 2019;51:1560–1565. doi: 10.1038/s41588-019-0528-2. PubMed DOI

Liskova P., Dudakova L., Evans C.J., Rojas Lopez K.E., Pontikos N., Athanasiou D., Jama H., Sach J., Skalicka P., Stranecky V., et al. Ectopic GRHL2 Expression Due to Non-coding Mutations Promotes Cell State Transition and Causes Posterior Polymorphous Corneal Dystrophy 4. Am. J. Hum. Genet. 2018;102:447–459. doi: 10.1016/j.ajhg.2018.02.002. PubMed DOI PMC

Davidson A.E., Liskova P., Evans C.J., Dudakova L., Noskova L., Pontikos N., Hartmannova H., Hodanova K., Stranecky V., Kozmik Z., et al. Autosomal-Dominant Corneal Endothelial Dystrophies CHED1 and PPCD1 Are Allelic Disorders Caused by Non-coding Mutations in the Promoter of OVOL2. Am. J. Hum. Genet. 2016;98:75–89. doi: 10.1016/j.ajhg.2015.11.018. PubMed DOI PMC

Wieben E.D., Aleff R.A., Tosakulwong N., Butz M.L., Highsmith W.E., Edwards A.O., Baratz K.H. A common trinucleotide repeat expansion within the transcription factor 4 (TCF4, E2-2) gene predicts Fuchs corneal dystrophy. PLoS ONE. 2012;7:e49083. doi: 10.1371/journal.pone.0049083. PubMed DOI PMC

Gilani F., Cortese M., Ambrosio R.R., Jr., Lopes B., Ramos I., Harvey E.M., Belin M.W. Comprehensive anterior segment normal values generated by rotating Scheimpflug tomography. J. Cataract Refract. Surg. 2013;39:1707–1712. doi: 10.1016/j.jcrs.2013.05.042. PubMed DOI

Zarouchlioti C., Sanchez-Pintado B., Hafford Tear N.J., Klein P., Liskova P., Dulla K., Semo M., Vugler A.A., Muthusamy K., Dudakova L., et al. Antisense Therapy for a Common Corneal Dystrophy Ameliorates TCF4 Repeat Expansion-Mediated Toxicity. Am. J. Hum. Genet. 2018;102:528–539. doi: 10.1016/j.ajhg.2018.02.010. PubMed DOI PMC

Bourne W.M. Biology of the corneal endothelium in health and disease. Eye. 2003;17:912–918. doi: 10.1038/sj.eye.6700559. PubMed DOI

Chang T.S., Johns D.R., Stark W.J., Drachman D.B., Green W.R. Corneal decompensation in mitochondrial ophthalmoplegia plus (Kearns-Sayre) syndrome. A clinicopathologic case report. Cornea. 1994;13:269–273. doi: 10.1097/00003226-199405000-00014. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...