The Phenotypic Spectrum of 47 Czech Patients with Single, Large-Scale Mitochondrial DNA Deletions
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
17-30965A
Agentura Pro Zdravotnický Výzkum České Republiky
64165
Rozvoj výzkumné organizace Všeobecné fakultní nemocnice
204064
Univerzitní výzkumná centra
Q26/LF1
Progress
260367
Specifický vysokoškolský výzkum
PubMed
33105723
PubMed Central
PMC7690373
DOI
10.3390/brainsci10110766
PII: brainsci10110766
Knihovny.cz E-zdroje
- Klíčová slova
- Kearns-Sayre Syndrome (KSS) Spectrum, Pearson Syndrome, Progressive External Ophthalmoplegia (PEO), Single, Large-Scale Mitochondrial DNA Deletions (SLSMD), mtDNA,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: In this retrospective study, we analysed clinical, biochemical and molecular genetic data of 47 Czech patients with Single, Large-Scale Mitochondrial DNA Deletions (SLSMD). METHODS: The diagnosis was based on the long-range PCR (LX-PCR) screening of mtDNA isolated from muscle biopsy in 15 patients, and from the buccal swab, urinary epithelial cells and blood in 32 patients. RESULTS: A total of 57% patients manifested before the age of 16. We did not find any significant difference between paediatric and adult manifestation in either the proportion of patients that would develop extraocular symptoms, or the timespan of its progression. The survival rate in patients with Pearson Syndrome reached 60%. Altogether, five patients manifested with atypical phenotype not fulfilling the latest criteria for SLSMD. No correlation was found between the disease severity and all heteroplasmy levels, lengths of the deletion and respiratory chain activities in muscle. CONCLUSIONS: Paediatric manifestation of Progressive External Ophthalmoplegia (PEO) is not associated with a higher risk of multisystemic involvement. Contrary to PEO and Kearns-Sayre Syndrome Spectrum, Pearson Syndrome still contributes to a significant childhood mortality. SLSMD should be considered even in cases with atypical presentation. To successfully identify carriers of SLSMD, a repeated combined analysis of buccal swab and urinary epithelial cells is needed.
Zobrazit více v PubMed
Holt I.J., Harding A.E., Morgan-Hughes J.A. Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature. 1988;331:717–719. doi: 10.1038/331717a0. PubMed DOI
Mancuso M., Orsucci D., Angelini C., Bertini E., Carelli V., Comi G.P., Donati M.A., Federico A., Minetti C., Moggio M., et al. Redefining phenotypes associated with mitochondrial DNA single deletion. J. Neurol. 2015;262:1301–1309. doi: 10.1007/s00415-015-7710-y. PubMed DOI
Pitceathly R.D., Rahman S., Hanna M.G. Single deletions in mitochondrial DNA--molecular mechanisms and disease phenotypes in clinical practice. Neuromuscul. Disord. 2012;22:577–586. doi: 10.1016/j.nmd.2012.03.009. PubMed DOI
Chinnery P.F., DiMauro S., Shanske S., Schon E.A., Zeviani M., Mariotti C., Carrara F., Lombes A., Laforet P., Ogier H., et al. Risk of developing a mitochondrial DNA deletion disorder. Lancet. 2004;364:592–596. doi: 10.1016/S0140-6736(04)16851-7. PubMed DOI
Gustafson M.A., McCormick E.M., Perera L., Longley M.J., Bai R., Kong J., Dulik M., Shen L., Goldstein A.C., McCormack S.E., et al. Mitochondrial single-stranded DNA binding protein novel de novo SSBP1 mutation in a child with single large-scale mtDNA deletion (SLSMD) clinically manifesting as Pearson, Kearns-Sayre, and Leigh syndromes. PLoS ONE. 2019;14:e0221829. doi: 10.1371/journal.pone.0221829. PubMed DOI PMC
Rocha M.C., Rosa H.S., Grady J.P., Blakely E.L., He L., Romain N., Haller R.G., Newman J., McFarland R., Ng Y.S., et al. Pathological mechanisms underlying single large-scale mitochondrial DNA deletions. Ann. Neurol. 2018;83:115–130. doi: 10.1002/ana.25127. PubMed DOI PMC
Sato A., Nakada K., Shitara H., Kasahara A., Yonekawa H., Hayashi J. Deletion-mutant mtDNA increases in somatic tissues but decreases in female germ cells with age. Genetics. 2007;177:2031–2037. doi: 10.1534/genetics.107.081026. PubMed DOI PMC
Gorman G.S., Schaefer A.M., Ng Y., Gomez N., Blakely E.L., Alston C.L., Feeney C., Horvath R., Yu-Wai-Man P., Chinnery P.F., et al. Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. Ann. Neurol. 2015;77:753–759. doi: 10.1002/ana.24362. PubMed DOI PMC
Drachman D.A. Ophthalmoplegia plus. The neurodegenerative disorders associated with progressive external ophthalmoplegia. Arch. Neurol. 1968;18:654–674. doi: 10.1001/archneur.1968.00470360076008. PubMed DOI
Rowland L.P. Molecular genetics, pseudogenetics, and clinical neurology. The Robert Wartenberg Lecture. Neurology. 1983;33:1179–1195. doi: 10.1212/WNL.33.9.1179. PubMed DOI
Pearson H.A., Lobel J.S., Kocoshis S.A., Naiman J.L., Windmiller J., Lammi A.T., Hoffman R., Marsh J.C. A new syndrome of refractory sideroblastic anemia with vacuolization of marrow precursors and exocrine pancreatic dysfunction. J. Pediatr. 1979;95:976–984. doi: 10.1016/S0022-3476(79)80286-3. PubMed DOI
Akman C.I., Sue C.M., Shanske S., Tanji K., Bonilla E., Ojaimi J., Krishna S., Schubert R., DiMauro S. Mitochondrial DNA deletion in a child with megaloblastic anemia and recurrent encephalopathy. J. Child Neurol. 2004;19:258–261. doi: 10.1177/088307380401900403. PubMed DOI
Tesarova M., Vondrackova A., Stufkova H., Veprekova L., Stranecky V., Berankova K., Hansikova H., Magner M., Galoova N., Honzik T., et al. Sideroblastic anemia associated with multisystem mitochondrial disorders. Pediatr. Blood Cancer. 2019;66:e27591. doi: 10.1002/pbc.27591. PubMed DOI
Amati-Bonneau P., Valentino M.L., Reynier P., Gallardo M.E., Bornstein B., Boissiere A., Campos Y., Rivera H., de la Aleja J.G., Carroccia R., et al. OPA1 mutations induce mitochondrial DNA instability and optic atrophy ‘plus’ phenotypes. Brain. 2008;131:338–351. doi: 10.1093/brain/awm298. PubMed DOI
Mazurova S., Tesarova M., Zeman J., Stranecky V., Hansikova H., Baxova A., Giertlova M., Lastuvkova J., Chovanova V., Rusnakova S., et al. Fatal neonatal nephrocutaneous syndrome in 18 Roma children with EGFR deficiency. J. Dermatol. 2020;47:663–668. doi: 10.1111/1346-8138.15317. PubMed DOI
Danhelovska T., Kolarova H., Zeman J., Hansikova H., Vaneckova M., Lambert L., Kucerova-Vidrova V., Berankova K., Honzik T., Tesarova M. Multisystem mitochondrial diseases due to mutations in mtDNA-encoded subunits of complex I. BMC Pediatr. 2020;20:41. doi: 10.1186/s12887-020-1912-x. PubMed DOI PMC
Yamashita S., Nishino I., Nonaka I., Goto Y. Genotype and phenotype analyses in 136 patients with single large-scale mitochondrial DNA deletions. J. Hum. Genet. 2008;53:598–606. doi: 10.1007/s10038-008-0289-8. PubMed DOI
Khambatta S., Nguyen D.L., Beckman T.J., Wittich C.M. Kearns-Sayre syndrome: A case series of 35 adults and children. Int. J. Gen. Med. 2014;7:325–332. doi: 10.2147/IJGM.S65560. PubMed DOI PMC
Dvorakova V., Kolarova H., Magner M., Tesarova M., Hansikova H., Zeman J., Honzik T. The phenotypic spectrum of fifty Czech m.3243A>G carriers. Mol. Genet. Metab. 2016;118:288–295. doi: 10.1016/j.ymgme.2016.06.003. PubMed DOI
Mancuso M., Klopstock T. Mitochondrial Myopathies, Chronic Progressive External Ophthalmoparesis, and Kearns-Sayre Syndrome. In: Mancuso M., Klopstock T., editors. Diagnosis and Management of Mitochondrial Disorders. Springer International Publishing; Cham, Switzerland: 2019. pp. 141–150.
Siciliano G., Viacava P., Rossi B., Andreani D., Muratorio A., Bevilacqua G. Ocular myopathy without ophthalmoplegia can be a form of mitochondrial myopathy. Clin. Neurol. Neurosurg. 1992;94:133–141. doi: 10.1016/0303-8467(92)90070-J. PubMed DOI
Broomfield A., Sweeney M.G., Woodward C.E., Fratter C., Morris A.M., Leonard J.V., Abulhoul L., Grunewald S., Clayton P.T., Hanna M.G., et al. Paediatric single mitochondrial DNA deletion disorders: An overlapping spectrum of disease. J. Inherit. Metab. Dis. 2015;38:445–457. doi: 10.1007/s10545-014-9778-4. PubMed DOI PMC
Manea E.M., Leverger G., Bellmann F., Stanescu P.A., Mircea A., Lebre A.S., Rotig A., Munnich A. Pearson syndrome in the neonatal period: Two case reports and review of the literature. J. Pediatr. Hematol. Oncol. 2009;31:947–951. doi: 10.1097/MPH.0b013e3181bbc4ef. PubMed DOI
Lee S.J., Na J.H., Han J., Lee Y.M. Ophthalmoplegia in Mitochondrial Disease. Yonsei Med. J. 2018;59:1190–1196. doi: 10.3349/ymj.2018.59.10.1190. PubMed DOI PMC
Farruggia P., Di Cataldo A., Pinto R.M., Palmisani E., Macaluso A., Valvo L.L., Cantarini M.E., Tornesello A., Corti P., Fioredda F., et al. JIMD Reports. Volume 26. Springer; Berlin/Heidelberg, Germany: 2016. Pearson Syndrome: A Retrospective Cohort Study from the Marrow Failure Study Group of A.I.E.O.P. (Associazione Italiana Emato-Oncologia Pediatrica) pp. 37–43. PubMed DOI PMC
Bosbach S., Kornblum C., Schroder R., Wagner M. Executive and visuospatial deficits in patients with chronic progressive external ophthalmoplegia and Kearns-Sayre syndrome. Brain. 2003;126:1231–1240. doi: 10.1093/brain/awg101. PubMed DOI
Garcia-Cazorla A., Quadros E.V., Nascimento A., Garcia-Silva M.T., Briones P., Montoya J., Ormazabal A., Artuch R., Sequeira J.M., Blau N., et al. Mitochondrial diseases associated with cerebral folate deficiency. Neurology. 2008;70:1360–1362. doi: 10.1212/01.wnl.0000309223.98616.e4. PubMed DOI
Ormazabal A., Garcia-Cazorla A., Perez-Duenas B., Gonzalez V., Fernandez-Alvarez E., Pineda M., Campistol J., Artuch R. Determination of 5-methyltetrahydrofolate in cerebrospinal fluid of paediatric patients: Reference values for a paediatric population. Clin. Chim. Acta. 2006;371:159–162. doi: 10.1016/j.cca.2006.03.004. PubMed DOI
Pineda M., Ormazabal A., Lopez-Gallardo E., Nascimento A., Solano A., Herrero M.D., Vilaseca M.A., Briones P., Ibanez L., Montoya J., et al. Cerebral folate deficiency and leukoencephalopathy caused by a mitochondrial DNA deletion. Ann. Neurol. 2006;59:394–398. doi: 10.1002/ana.20746. PubMed DOI
Quijada-Fraile P., O’Callaghan M., Martin-Hernandez E., Montero R., Garcia-Cazorla A., de Aragon A.M., Muchart J., Malaga I., Pardo R., Garcia-Gonzalez P., et al. Follow-up of folinic acid supplementation for patients with cerebral folate deficiency and Kearns-Sayre syndrome. Orphanet. J. Rare Dis. 2014;9:217. doi: 10.1186/s13023-014-0217-2. PubMed DOI PMC
Serrano M., Garcia-Silva M.T., Martin-Hernandez E., O’Callaghan Mdel M., Quijada P., Martinez-Aragon A., Ormazabal A., Blazquez A., Martin M.A., Briones P., et al. Kearns-Sayre syndrome: Cerebral folate deficiency, MRI findings and new cerebrospinal fluid biochemical features. Mitochondrion. 2010;10:429–432. doi: 10.1016/j.mito.2010.04.001. PubMed DOI
Pardo Ruiz E., Maturana Martinez D., Vazquez Lopez M., Ruiz Martin Y. Kearns-Sayre syndrome: Absence of clinical response to treatment with oral folinic acid. Neurologia. 2019;34:618–620. doi: 10.1016/j.nrl.2017.01.005. PubMed DOI
Tanji K., Schon E.A., DiMauro S., Bonilla E. Kearns-sayre syndrome: Oncocytic transformation of choroid plexus epithelium. J. Neurol. Sci. 2000;178:29–36. doi: 10.1016/S0022-510X(00)00354-3. PubMed DOI
Allen R.J., DiMauro S., Coulter D.L., Papadimitriou A., Rothenberg S.P. Kearns-Sayre syndrome with reduced plasma and cerebrospinal fluid folate. Ann. Neurol. 1983;13:679–682. doi: 10.1002/ana.410130620. PubMed DOI
Lopez-Gallardo E., Lopez-Perez M.J., Montoya J., Ruiz-Pesini E. CPEO and KSS differ in the percentage and location of the mtDNA deletion. Mitochondrion. 2009;9:314–317. doi: 10.1016/j.mito.2009.04.005. PubMed DOI
Varhaug K.N., Nido G.S., de Coo I., Isohanni P., Suomalainen A., Tzoulis C., Knappskog P., Bindoff L.A. Using urine to diagnose large-scale mtDNA deletions in adult patients. Ann. Clin. Transl. Neurol. 2020;7:1318–1326. doi: 10.1002/acn3.51119. PubMed DOI PMC