A Multifunctional Graphene Oxide Platform for Targeting Cancer

. 2019 May 29 ; 11 (6) : . [epub] 20190529

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31146494

Grantová podpora
02/010/18 Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
2/033/19 Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
APVV-14-0120 Agentúra na Podporu Výskumu a Vývoja
APVV-15-0641 Agentúra na Podporu Výskumu a Vývoja
TE01020118 Technology Agency of the CR
POLYMAT LO1507 Ministry of Education, Youth and Sports of the CR, program NPU I

Diagnosis of oncological diseases remains at the forefront of current medical research. Carbonic Anhydrase IX (CA IX) is a cell surface hypoxia-inducible enzyme functionally involved in adaptation to acidosis that is expressed in aggressive tumors; hence, it can be used as a tumor biomarker. Herein, we propose a nanoscale graphene oxide (GO) platform functionalized with magnetic nanoparticles and a monoclonal antibody specific to the CA IX marker. The GO platforms were prepared by a modified Hummers and Offeman method from exfoliated graphite after several centrifugation and ultrasonication cycles. The magnetic nanoparticles were prepared by a chemical precipitation method and subsequently modified. Basic characterization of GO, such as the degree of oxidation, nanoparticle size and exfoliation, were determined by physical and chemical analysis, including X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), and atomic force microscopy (AFM). In addition, the size and properties of the poly-L-lysine-modified magnetic nanoparticles were characterized. The antibody specific to CA IX was linked via an amidic bond to the poly-L-lysine modified magnetic nanoparticles, which were conjugated to GO platform again via an amidic bond. The prepared GO-based platform with magnetic nanoparticles combined with a biosensing antibody element was used for a hypoxic cancer cell targeting study based on immunofluorescence.

Zobrazit více v PubMed

Pardo J., Peng Z., Leblanc R., Pardo J., Peng Z., Leblanc R.M. Cancer Targeting and Drug Delivery Using Carbon-Based Quantum Dots and Nanotubes. Molecules. 2018;23:378. doi: 10.3390/molecules23020378. PubMed DOI PMC

Moreno C., Vilas-Varela M., Kretz B., Garcia-Lekue A., Costache M.V., Paradinas M., Panighel M., Ceballos G., Valenzuela S.O., Peña D., et al. Bottom-up synthesis of multifunctional nanoporous graphene. Science. 2018;360:199–203. doi: 10.1126/science.aar2009. PubMed DOI

Geim A.K., Novoselov K.S. The rise of graphene. Nat. Mater. 2007;6:183–191. doi: 10.1038/nmat1849. PubMed DOI

Ghany N.A.A., Elsherif S.A., Handal H.T. Revolution of Graphene for different applications: State-of-the-art. Surfaces Interfaces. 2017;9:93–106. doi: 10.1016/j.surfin.2017.08.004. DOI

Ubani C.A., Ibrahim M.A., Teridi M.A.M., Sopian K., Ali J., Chaudhary K.T. Application of graphene in dye and quantum dots sensitized solar cell. Sol. Energy. 2016;137:531–550. doi: 10.1016/j.solener.2016.08.055. DOI

Hu Y., Sun X. Chemically Functionalized Graphene and Their Applications in Electrochemical Energy Conversion and Storage. In: Aliofkhazraei M., editor. Advances in Graphene Science. InTechOpen; London, UK: 2013. pp. 161–189.

Koyakutty M., Sasidharan A., Nair S. Biomedical Applications of Graphene: Opportunities and Challenges. In: Rao C.N.R., Sood A.K., editors. Graphene: Synthesis, Properties, and Phenomena. Wiley-VCH Verlag GmbH & Co. KGaA.; Weinheim, Germany: 2012. pp. 373–408.

Potts J.R., Dreyer D.R., Bielawski C.W., Ruoff R.S. Graphene-based polymer nanocomposites. Polymer (Guildf) 2011;52:5–25. doi: 10.1016/j.polymer.2010.11.042. DOI

Gao W. The chemistry of graphene oxide. Graphene Oxide Reduct. Recipes Spectrosc. Appl. 2015;39:61–95. doi: 10.1007/978-3-319-15500-5_3. DOI

Novoselov K.S., Fal’ko V.I., Colombo L., Gellert P.R., Schwab M.G., Kim K. A roadmap for graphene. Nature. 2012;490:192–200. doi: 10.1038/nature11458. PubMed DOI

Han W., Kawakami R.K., Gmitra M., Fabian J. Graphene spintronics. Nat. Nanotechnol. 2014;9:794–807. doi: 10.1038/nnano.2014.214. PubMed DOI

Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A. Electric field effect in atomically thin carbon films. Science. 2004;306:666–669. doi: 10.1126/science.1102896. PubMed DOI

Kostiuk D., Bodik M., Siffalovic P., Jergel M., Halahovets Y., Hodas M., Pelletta M., Pelach M., Hulman M., Spitalsky Z., et al. Reliable determination of the few-layer graphene oxide thickness using Raman spectroscopy. J. Raman Spectrosc. 2016;47:391–394. doi: 10.1002/jrs.4843. DOI

Hummers W.S., Offeman R.E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958;80:1339. doi: 10.1021/ja01539a017. DOI

Shin S.R., Li Y.-C., Jang H.L., Khoshakhlagh P., Akbari M., Nasajpour A., Zhang Y.S., Tamayol A., Khademhosseini A., Ryon S., et al. Graphene-based materials for tissue engineering. Adv. Drug Deliv. Rev. 2016;105:255–274. doi: 10.1016/j.addr.2016.03.007. PubMed DOI PMC

Goenka S., Sant V., Sant S. Graphene-based nanomaterials for drug delivery and tissue engineering. J. Control. Release. 2014;173:75–88. doi: 10.1016/j.jconrel.2013.10.017. PubMed DOI

Yang K., Gong H., Shi X., Wan J., Zhang Y., Liu Z. In vivo biodistribution and toxicology of functionalized nano-graphene oxide in mice after oral and intraperitoneal administration. Biomaterials. 2013;34:2787–2795. doi: 10.1016/j.biomaterials.2013.01.001. PubMed DOI

Rao C.N.R., Sood A.K. In: Graphene: Synthesis, Properties, and Phenomena. Rao C.N.R., Sood A.K., editors. Wiley-VCH Verlag GmbH and Co. KGaA.; Weinheim, Germany: 2012. First Edit.

Seabra A.B., Paula A.J., De Lima R., Alves O.L., Durán N. Nanotoxicity of graphene and graphene oxide. Chem. Res. Toxicol. 2014;27:159–168. doi: 10.1021/tx400385x. PubMed DOI

Ferrari A.C., Bonaccorso F., Falko V., Novoselov K.S., Roche S., Bøggild P., Borini S., Koppens F., Palermo V., Pugno N., et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale. 2014;7:4598–4810. doi: 10.1039/C4NR01600A. PubMed DOI

Zhang Y., Nayak T.R., Hong H., Cai W. Graphene: A versatile nanoplatform for biomedical applications. Nanoscale. 2012;4:3833–3842. doi: 10.1039/c2nr31040f. PubMed DOI PMC

Shen H., Zhang L., Liu M., Zhang Z. Biomedical applications of graphene. Theranostics. 2012;2:283–294. doi: 10.7150/thno.3642. PubMed DOI PMC

Xie J., Lee S., Chen X. Nanoparticle-based theranostic agents. Adv. Drug Deliv. Rev. 2010;62:1064–1079. doi: 10.1016/j.addr.2010.07.009. PubMed DOI PMC

Lonkar S.P., Deshmukh Y.S., Abdala A.A. Recent advances in chemical modifications of graphene. Nano Res. 2015;8:1039–1074. doi: 10.1007/s12274-014-0622-9. DOI

Chen Y., Su Y., Hu S., Chen S. Functionalized graphene nanocomposites for enhancing photothermal therapy in tumor treatment. Adv. Drug Deliv. Rev. 2016;105:190–204. doi: 10.1016/j.addr.2016.05.022. PubMed DOI

Yang Y., Asiri A.M., Tang Z., Du D., Lin Y. Graphene based materials for biomedical applications. Mater. Today. 2013;16:365–373. doi: 10.1016/j.mattod.2013.09.004. DOI

Shan C., Yang H., Han D., Zhang Q., Ivaska A., Niu L. Water-soluble graphene covalently functionalized by biocompatible poly-L-lysine. Langmuir. 2009;25:12030–12033. doi: 10.1021/la903265p. PubMed DOI

Shen J., Shi M., Ma H., Yan B., Li N., Hu Y., Ye M. Synthesis of hydrophilic and organophilic chemically modified graphene oxide sheets. J. Colloid Interface Sci. 2010;352:366–370. doi: 10.1016/j.jcis.2010.08.036. PubMed DOI

Li N., Jiang H.-L., Wang X.-L., Wang X., Xu G.-J., Zhang B.-B., Wang L.-J., Zhao R.-S., Lin J.-M. Recent advances in graphene-based magnetic composites for magnetic solid-phase extraction. TrAC Trends Anal. Chem. 2018;102:60–74. doi: 10.1016/j.trac.2018.01.009. DOI

Chen W., Yi P., Zhang Y., Zhang L., Deng Z., Zhang Z. Composites of Aminodextran-Coated Fe3O4 Nanoparticles and Graphene Oxide for Cellular Magnetic Resonance Imaging. ACS Appl. Mater. Interfaces. 2011;3:4085–4091. doi: 10.1021/am2009647. PubMed DOI

Yu D., Yang Y., Durstock M., Baek J.-B., Dai L. Soluble P3HT-Grafted Graphene for Efficient Bilayer–Heterojunction Photovoltaic Devices. ACS Nano. 2010;4:5633–5640. doi: 10.1021/nn101671t. PubMed DOI

Závišová V., Koneracká M., Múčková M., Kopčanský P., Tomašovičová N., Lancz G., Timko M., Pätoprstá B., Bartoš P., Fabián M. Synthesis and characterization of polymeric nanospheres loaded with the anticancer drug paclitaxel and magnetic particles. J. Magn. Magn. Mater. 2009;321:1613–1616. doi: 10.1016/j.jmmm.2009.02.097. DOI

Antal I., Kubovcikova M., Zavisova V., Koneracka M., Pechanova O., Barta A., Cebova M., Antal V., Diko P., Zduriencikova M., et al. Magnetic poly(d,l-lactide) nanoparticles loaded with aliskiren: A promising tool for hypertension treatment. J. Magn. Magn. Mater. 2015;380:280–284. doi: 10.1016/j.jmmm.2014.10.089. DOI

Koneracká M., Antošová A., Závišová V., Gažová Z., Lancz G., Juríková A., Tomašovčová N., Kováč J., Fabián M., Kopčanský P. Preparation and characterization of albumin containing magnetic fluid as potential drug for amyloid diseases treatment. Phys. Procedia. 2010;9:254–257. doi: 10.1016/j.phpro.2010.11.056. DOI

He F., Fan J., Ma D., Zhang L., Leung C., Chan H.L. The attachment of Fe3O4 nanoparticles to graphene oxide by covalent bonding. Carbon N. Y. 2010;48:3139–3144. doi: 10.1016/j.carbon.2010.04.052. DOI

Antal I., Koneracka M., Kubovcikova M., Zavisova V., Khmara I., Jelenska L., Vidlickova I., Pastorekova S., Zatovicova M., Bugarova N., et al. D,L-Lysine functionalized Fe3O4 nanoparticles for detection of cancer cells. Colloids Surfaces B Biointerfaces. 2018;163:236–245. doi: 10.1016/j.colsurfb.2017.12.022. PubMed DOI

Khmara I., Koneracka M., Kubovcikova M., Zavisova V., Antal I., Csach K., Kopcansky P., Vidlickova I., Csaderova L., Pastorekova S., et al. Preparation of poly-L-lysine functionalized magnetic nanoparticles and their influence on viability of cancer cells. J. Magn. Magn. Mater. 2017;427:114–121. doi: 10.1016/j.jmmm.2016.11.014. DOI

Tabish T., Pranjol M., Horsell D., Rahat A., Whatmore J., Winyard P., Zhang S., Tabish T.A., Pranjol M.Z.I., Horsell D.W., et al. Graphene Oxide-Based Targeting of Extracellular Cathepsin D and Cathepsin L As A Novel Anti-Metastatic Enzyme Cancer Therapy. Cancers (Basel) 2019;11:319. doi: 10.3390/cancers11030319. PubMed DOI PMC

Zatovicova M., Jelenska L., Hulikova A., Ditte P., Ditte Z., Csaderova L., Svastova E., Schmalix W., Boettger V., Bevan P., et al. Monoclonal antibody G250 targeting CA Ⅸ: Binding specificity, internalization and therapeutic effects in a non-renal cancer model. Int. J. Oncol. 2014;45:2455–2467. doi: 10.3892/ijo.2014.2658. PubMed DOI

Zatovicova M., Jelenska L., Hulikova A., Csaderova L., Ditte Z., Ditte P., Goliasova T., Pastorek J., Pastorekova S. Carbonic Anhydrase IX as an Anticancer Therapy Target: Preclinical Evaluation of Internalizing Monoclonal Antibody Directed to Catalytic Domain. Curr. Pharm. Des. 2010;16:3255–3263. doi: 10.2174/138161210793429832. PubMed DOI

Pastoreková S., Zaťovičová M., Pastorek J. Cancer-associated carbonic anhydrases and their inhibition. Curr. Pharm. Des. 2008;14:685–698. doi: 10.2174/138161208783877893. PubMed DOI

Chrastina A., Závada J., Parkkila S., Kaluz Š., Kaluzová M., Rajčáni J., Pastorek J., Pastoreková S. Biodistribution and pharmacokinetics of 125I-labeled monoclonal antibody M75 specific for carbonic anhydrase IX, an intrinsic marker of hypoxia, in nude mice xenografted with human colorectal carcinoma. Int. J. Cancer. 2003;105:873–881. doi: 10.1002/ijc.11142. PubMed DOI

Yu L., Li P., Ding X., Zhang Q. Graphene oxide and carboxylated graphene oxide: Viable two-dimensional nanolabels for lateral flow immunoassays. Talanta. 2017;165:167–175. doi: 10.1016/j.talanta.2016.12.042. PubMed DOI

Rauf S., Mishra G.K., Azhar J., Mishra R.K., Goud K.Y., Nawaz M.A.H., Marty J.L., Hayat A. Carboxylic group riched graphene oxide based disposable electrochemical immunosensor for cancer biomarker detection. Anal. Biochem. 2018;545:13–19. doi: 10.1016/j.ab.2018.01.007. PubMed DOI

Tatiparti K., Sau S., Gawde K.A., Iyer A.K. Copper-free ‘click’ chemistry-based synthesis and characterization of carbonic anhydrase-IX anchored albumin-paclitaxel nanoparticles for targeting tumor hypoxia. Int. J. Mol. Sci. 2018;19:838. doi: 10.3390/ijms19030838. PubMed DOI PMC

Shabana A.M., Mondal U.K., Alam M.R., Spoon T., Ross C.A., Madesh M., Supuran C.T., Ilies M.A. PH-Sensitive Multiligand Gold Nanoplatform Targeting Carbonic Anhydrase IX Enhances the Delivery of Doxorubicin to Hypoxic Tumor Spheroids and Overcomes the Hypoxia-Induced Chemoresistance. ACS Appl. Mater. Interfaces. 2018;10:17792–17808. doi: 10.1021/acsami.8b05607. PubMed DOI PMC

Liu S., Luo X., Liu S., Xu P., Wang J., Hu Y. Acetazolamide-Loaded pH-Responsive Nanoparticles Alleviating Tumor Acidosis to Enhance Chemotherapy Effects. Macromol. Biosci. 2019;19:1–11. doi: 10.1002/mabi.201800366. PubMed DOI

Jiang Y., Li J., Zeng Z., Xie C., Lyu Y., Pu K. Organic Photodynamic Nanoinhibitor for Synergistic Cancer Therapy. Angew. Chemie Int. Ed. 2019 doi: 10.1002/anie.201903968. PubMed DOI

Yamashita T., Hayes P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 2008;254:2441–2449. doi: 10.1016/j.apsusc.2007.09.063. DOI

Fujii T., de Groot F.M.F., Sawatzky G.A., Voogt F.C., Hibma T., Okada K. In situ XPS analysis of various iron oxide films grown by NO2-assisted molecular-beam epitaxy. Phys. Rev. B. 1999;59:3195–3202. doi: 10.1103/PhysRevB.59.3195. DOI

Bodik M., Zahoranova A., Micusik M., Bugarova N., Spitalsky Z., Omastova M., Majkova E., Jergel M., Siffalovic P. Fast low-temperature plasma reduction of monolayer graphene oxide at atmospheric pressure. Nanotechnology. 2017;28:145601. doi: 10.1088/1361-6528/aa60ef. PubMed DOI

Nečas D., Klapetek P. Gwyddion: An open-source software for SPM data analysis. Open Phys. 2012;10:181–188. doi: 10.2478/s11534-011-0096-2. DOI

Kadu P.J., Kushare S.S., Thacker D.D., Gattani S.G. Enhancement of oral bioavailability of atorvastatin calcium by self-emulsifying drug delivery systems (SEDDS) Pharm. Dev. Technol. 2011;16:65–74. doi: 10.3109/10837450903499333. PubMed DOI

Malvern Instruments Ltd. Stabilita Suspenzí a Disperzí—Proč Jsou Parametry jako Velikost Částic, Zeta Potenciál a Reologické Vlastnosti tak Důležité? Chemagazín. 2011;21:14–16.

Hermanson G.T. In: Bioconjugate Technicques, 3rd Edition. Audet J., Preap M., editors. Elsevier Inc.; Amsterdam, The Netherlands: 2013. Third edit.

Sohová M.E., Bodík M., Siffalovic P., Bugarova N., Zaťovičová M., Hianik T., Omastová M., Majkova E. Label-Free Tracking of Nanosized Graphene Oxide Cellular Uptake by Confocal Raman Microscopy. Analyst. 2018;143:3686–3692. doi: 10.1039/C8AN00225H. PubMed DOI

Liu Z., Robinson J.T., Sun X., Dai H. PEGylated Nanographene Oxide for Delivery of Water-Insoluble Cancer Drugs. J. Am. Chem. Soc. 2008;130:10876–10877. doi: 10.1021/ja803688x. PubMed DOI PMC

Sasidharan A., Panchakarla L.S., Chandran P., Menon D., Nair S., Rao C.N.R., Koyakutty M. Differential nano-bio interactions and toxicity effects of pristine versus functionalized graphene. Nanoscale. 2011;3:2461–2464. doi: 10.1039/c1nr10172b. PubMed DOI

Singh S.K., Singh M.K., Kulkarni P.P., Sonkar V.K., Grácio J.J.A., Dash D. Amine-Modified Graphene: Thrombo-Protective Safer Alternative to Graphene Oxide for Biomedical. ACS Nano. 2012;6:2731–2740. doi: 10.1021/nn300172t. PubMed DOI

Van Kuijk S.J.A., Yaromina A., Houben R., Niemans R., Lambin P., Dubois L.J. Prognostic Significance of Carbonic Anhydrase IX Expression in Cancer Patients: A Meta-Analysis. Front. Oncol. 2016;6:69. doi: 10.3389/fonc.2016.00069. PubMed DOI PMC

Pastorekova S., Gillies R.J. The role of carbonic anhydrase IX in cancer development: Links to hypoxia, acidosis and beyond. Cancer Metastasis Rev. 2019 doi: 10.1007/s10555-019-09799-0. (in press) PubMed DOI PMC

Tokárová V., Pittermannová A., Král V., Řezáčová P., Štěpánek F. Feasibility and constraints of particle targeting using the antigen-antibody interaction. Nanoscale. 2013;5:11490–11498. doi: 10.1039/c3nr04340a. PubMed DOI PMC

Kostiv U., Patsula V., Šlouf M., Pongrac I.M., Škokić S., Radmilović M.D., Pavičić I., Vrček I.V., Gajović S., Horák D. Physico-chemical characteristics, biocompatibility, and MRI applicability of novel monodisperse PEG-modified magnetic Fe3O4 &SiO 2 core–shell nanoparticles. RSC Adv. 2017;7:8786–8797. doi: 10.1039/C7RA00224F. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...