A Multifunctional Graphene Oxide Platform for Targeting Cancer
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
02/010/18
Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
2/033/19
Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
APVV-14-0120
Agentúra na Podporu Výskumu a Vývoja
APVV-15-0641
Agentúra na Podporu Výskumu a Vývoja
TE01020118
Technology Agency of the CR
POLYMAT LO1507
Ministry of Education, Youth and Sports of the CR, program NPU I
PubMed
31146494
PubMed Central
PMC6627436
DOI
10.3390/cancers11060753
PII: cancers11060753
Knihovny.cz E-zdroje
- Klíčová slova
- graphene oxide, magnetic nanoparticles, monoclonal antibodies, tumor targeting,
- Publikační typ
- časopisecké články MeSH
Diagnosis of oncological diseases remains at the forefront of current medical research. Carbonic Anhydrase IX (CA IX) is a cell surface hypoxia-inducible enzyme functionally involved in adaptation to acidosis that is expressed in aggressive tumors; hence, it can be used as a tumor biomarker. Herein, we propose a nanoscale graphene oxide (GO) platform functionalized with magnetic nanoparticles and a monoclonal antibody specific to the CA IX marker. The GO platforms were prepared by a modified Hummers and Offeman method from exfoliated graphite after several centrifugation and ultrasonication cycles. The magnetic nanoparticles were prepared by a chemical precipitation method and subsequently modified. Basic characterization of GO, such as the degree of oxidation, nanoparticle size and exfoliation, were determined by physical and chemical analysis, including X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), and atomic force microscopy (AFM). In addition, the size and properties of the poly-L-lysine-modified magnetic nanoparticles were characterized. The antibody specific to CA IX was linked via an amidic bond to the poly-L-lysine modified magnetic nanoparticles, which were conjugated to GO platform again via an amidic bond. The prepared GO-based platform with magnetic nanoparticles combined with a biosensing antibody element was used for a hypoxic cancer cell targeting study based on immunofluorescence.
Institute of Experimental Physics SAS Watsonova 47 040 01 Košice Slovakia
Institute of Macromolecular Chemistry AS CR Heyrovského nám 2 162 06 Prague 6 Czech Republic
Institute of Physics SAS Dúbravská cesta 9 845 11 Bratislava Slovakia
Institute of Virology Biomedical Research Center SAS Dúbravská cesta 9 845 11 Bratislava Slovakia
Polymer Institute SAS Dúbravská cesta 9 845 41 Bratislava Slovakia
Zobrazit více v PubMed
Pardo J., Peng Z., Leblanc R., Pardo J., Peng Z., Leblanc R.M. Cancer Targeting and Drug Delivery Using Carbon-Based Quantum Dots and Nanotubes. Molecules. 2018;23:378. doi: 10.3390/molecules23020378. PubMed DOI PMC
Moreno C., Vilas-Varela M., Kretz B., Garcia-Lekue A., Costache M.V., Paradinas M., Panighel M., Ceballos G., Valenzuela S.O., Peña D., et al. Bottom-up synthesis of multifunctional nanoporous graphene. Science. 2018;360:199–203. doi: 10.1126/science.aar2009. PubMed DOI
Geim A.K., Novoselov K.S. The rise of graphene. Nat. Mater. 2007;6:183–191. doi: 10.1038/nmat1849. PubMed DOI
Ghany N.A.A., Elsherif S.A., Handal H.T. Revolution of Graphene for different applications: State-of-the-art. Surfaces Interfaces. 2017;9:93–106. doi: 10.1016/j.surfin.2017.08.004. DOI
Ubani C.A., Ibrahim M.A., Teridi M.A.M., Sopian K., Ali J., Chaudhary K.T. Application of graphene in dye and quantum dots sensitized solar cell. Sol. Energy. 2016;137:531–550. doi: 10.1016/j.solener.2016.08.055. DOI
Hu Y., Sun X. Chemically Functionalized Graphene and Their Applications in Electrochemical Energy Conversion and Storage. In: Aliofkhazraei M., editor. Advances in Graphene Science. InTechOpen; London, UK: 2013. pp. 161–189.
Koyakutty M., Sasidharan A., Nair S. Biomedical Applications of Graphene: Opportunities and Challenges. In: Rao C.N.R., Sood A.K., editors. Graphene: Synthesis, Properties, and Phenomena. Wiley-VCH Verlag GmbH & Co. KGaA.; Weinheim, Germany: 2012. pp. 373–408.
Potts J.R., Dreyer D.R., Bielawski C.W., Ruoff R.S. Graphene-based polymer nanocomposites. Polymer (Guildf) 2011;52:5–25. doi: 10.1016/j.polymer.2010.11.042. DOI
Gao W. The chemistry of graphene oxide. Graphene Oxide Reduct. Recipes Spectrosc. Appl. 2015;39:61–95. doi: 10.1007/978-3-319-15500-5_3. DOI
Novoselov K.S., Fal’ko V.I., Colombo L., Gellert P.R., Schwab M.G., Kim K. A roadmap for graphene. Nature. 2012;490:192–200. doi: 10.1038/nature11458. PubMed DOI
Han W., Kawakami R.K., Gmitra M., Fabian J. Graphene spintronics. Nat. Nanotechnol. 2014;9:794–807. doi: 10.1038/nnano.2014.214. PubMed DOI
Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A. Electric field effect in atomically thin carbon films. Science. 2004;306:666–669. doi: 10.1126/science.1102896. PubMed DOI
Kostiuk D., Bodik M., Siffalovic P., Jergel M., Halahovets Y., Hodas M., Pelletta M., Pelach M., Hulman M., Spitalsky Z., et al. Reliable determination of the few-layer graphene oxide thickness using Raman spectroscopy. J. Raman Spectrosc. 2016;47:391–394. doi: 10.1002/jrs.4843. DOI
Hummers W.S., Offeman R.E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958;80:1339. doi: 10.1021/ja01539a017. DOI
Shin S.R., Li Y.-C., Jang H.L., Khoshakhlagh P., Akbari M., Nasajpour A., Zhang Y.S., Tamayol A., Khademhosseini A., Ryon S., et al. Graphene-based materials for tissue engineering. Adv. Drug Deliv. Rev. 2016;105:255–274. doi: 10.1016/j.addr.2016.03.007. PubMed DOI PMC
Goenka S., Sant V., Sant S. Graphene-based nanomaterials for drug delivery and tissue engineering. J. Control. Release. 2014;173:75–88. doi: 10.1016/j.jconrel.2013.10.017. PubMed DOI
Yang K., Gong H., Shi X., Wan J., Zhang Y., Liu Z. In vivo biodistribution and toxicology of functionalized nano-graphene oxide in mice after oral and intraperitoneal administration. Biomaterials. 2013;34:2787–2795. doi: 10.1016/j.biomaterials.2013.01.001. PubMed DOI
Rao C.N.R., Sood A.K. In: Graphene: Synthesis, Properties, and Phenomena. Rao C.N.R., Sood A.K., editors. Wiley-VCH Verlag GmbH and Co. KGaA.; Weinheim, Germany: 2012. First Edit.
Seabra A.B., Paula A.J., De Lima R., Alves O.L., Durán N. Nanotoxicity of graphene and graphene oxide. Chem. Res. Toxicol. 2014;27:159–168. doi: 10.1021/tx400385x. PubMed DOI
Ferrari A.C., Bonaccorso F., Falko V., Novoselov K.S., Roche S., Bøggild P., Borini S., Koppens F., Palermo V., Pugno N., et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale. 2014;7:4598–4810. doi: 10.1039/C4NR01600A. PubMed DOI
Zhang Y., Nayak T.R., Hong H., Cai W. Graphene: A versatile nanoplatform for biomedical applications. Nanoscale. 2012;4:3833–3842. doi: 10.1039/c2nr31040f. PubMed DOI PMC
Shen H., Zhang L., Liu M., Zhang Z. Biomedical applications of graphene. Theranostics. 2012;2:283–294. doi: 10.7150/thno.3642. PubMed DOI PMC
Xie J., Lee S., Chen X. Nanoparticle-based theranostic agents. Adv. Drug Deliv. Rev. 2010;62:1064–1079. doi: 10.1016/j.addr.2010.07.009. PubMed DOI PMC
Lonkar S.P., Deshmukh Y.S., Abdala A.A. Recent advances in chemical modifications of graphene. Nano Res. 2015;8:1039–1074. doi: 10.1007/s12274-014-0622-9. DOI
Chen Y., Su Y., Hu S., Chen S. Functionalized graphene nanocomposites for enhancing photothermal therapy in tumor treatment. Adv. Drug Deliv. Rev. 2016;105:190–204. doi: 10.1016/j.addr.2016.05.022. PubMed DOI
Yang Y., Asiri A.M., Tang Z., Du D., Lin Y. Graphene based materials for biomedical applications. Mater. Today. 2013;16:365–373. doi: 10.1016/j.mattod.2013.09.004. DOI
Shan C., Yang H., Han D., Zhang Q., Ivaska A., Niu L. Water-soluble graphene covalently functionalized by biocompatible poly-L-lysine. Langmuir. 2009;25:12030–12033. doi: 10.1021/la903265p. PubMed DOI
Shen J., Shi M., Ma H., Yan B., Li N., Hu Y., Ye M. Synthesis of hydrophilic and organophilic chemically modified graphene oxide sheets. J. Colloid Interface Sci. 2010;352:366–370. doi: 10.1016/j.jcis.2010.08.036. PubMed DOI
Li N., Jiang H.-L., Wang X.-L., Wang X., Xu G.-J., Zhang B.-B., Wang L.-J., Zhao R.-S., Lin J.-M. Recent advances in graphene-based magnetic composites for magnetic solid-phase extraction. TrAC Trends Anal. Chem. 2018;102:60–74. doi: 10.1016/j.trac.2018.01.009. DOI
Chen W., Yi P., Zhang Y., Zhang L., Deng Z., Zhang Z. Composites of Aminodextran-Coated Fe3O4 Nanoparticles and Graphene Oxide for Cellular Magnetic Resonance Imaging. ACS Appl. Mater. Interfaces. 2011;3:4085–4091. doi: 10.1021/am2009647. PubMed DOI
Yu D., Yang Y., Durstock M., Baek J.-B., Dai L. Soluble P3HT-Grafted Graphene for Efficient Bilayer–Heterojunction Photovoltaic Devices. ACS Nano. 2010;4:5633–5640. doi: 10.1021/nn101671t. PubMed DOI
Závišová V., Koneracká M., Múčková M., Kopčanský P., Tomašovičová N., Lancz G., Timko M., Pätoprstá B., Bartoš P., Fabián M. Synthesis and characterization of polymeric nanospheres loaded with the anticancer drug paclitaxel and magnetic particles. J. Magn. Magn. Mater. 2009;321:1613–1616. doi: 10.1016/j.jmmm.2009.02.097. DOI
Antal I., Kubovcikova M., Zavisova V., Koneracka M., Pechanova O., Barta A., Cebova M., Antal V., Diko P., Zduriencikova M., et al. Magnetic poly(d,l-lactide) nanoparticles loaded with aliskiren: A promising tool for hypertension treatment. J. Magn. Magn. Mater. 2015;380:280–284. doi: 10.1016/j.jmmm.2014.10.089. DOI
Koneracká M., Antošová A., Závišová V., Gažová Z., Lancz G., Juríková A., Tomašovčová N., Kováč J., Fabián M., Kopčanský P. Preparation and characterization of albumin containing magnetic fluid as potential drug for amyloid diseases treatment. Phys. Procedia. 2010;9:254–257. doi: 10.1016/j.phpro.2010.11.056. DOI
He F., Fan J., Ma D., Zhang L., Leung C., Chan H.L. The attachment of Fe3O4 nanoparticles to graphene oxide by covalent bonding. Carbon N. Y. 2010;48:3139–3144. doi: 10.1016/j.carbon.2010.04.052. DOI
Antal I., Koneracka M., Kubovcikova M., Zavisova V., Khmara I., Jelenska L., Vidlickova I., Pastorekova S., Zatovicova M., Bugarova N., et al. D,L-Lysine functionalized Fe3O4 nanoparticles for detection of cancer cells. Colloids Surfaces B Biointerfaces. 2018;163:236–245. doi: 10.1016/j.colsurfb.2017.12.022. PubMed DOI
Khmara I., Koneracka M., Kubovcikova M., Zavisova V., Antal I., Csach K., Kopcansky P., Vidlickova I., Csaderova L., Pastorekova S., et al. Preparation of poly-L-lysine functionalized magnetic nanoparticles and their influence on viability of cancer cells. J. Magn. Magn. Mater. 2017;427:114–121. doi: 10.1016/j.jmmm.2016.11.014. DOI
Tabish T., Pranjol M., Horsell D., Rahat A., Whatmore J., Winyard P., Zhang S., Tabish T.A., Pranjol M.Z.I., Horsell D.W., et al. Graphene Oxide-Based Targeting of Extracellular Cathepsin D and Cathepsin L As A Novel Anti-Metastatic Enzyme Cancer Therapy. Cancers (Basel) 2019;11:319. doi: 10.3390/cancers11030319. PubMed DOI PMC
Zatovicova M., Jelenska L., Hulikova A., Ditte P., Ditte Z., Csaderova L., Svastova E., Schmalix W., Boettger V., Bevan P., et al. Monoclonal antibody G250 targeting CA Ⅸ: Binding specificity, internalization and therapeutic effects in a non-renal cancer model. Int. J. Oncol. 2014;45:2455–2467. doi: 10.3892/ijo.2014.2658. PubMed DOI
Zatovicova M., Jelenska L., Hulikova A., Csaderova L., Ditte Z., Ditte P., Goliasova T., Pastorek J., Pastorekova S. Carbonic Anhydrase IX as an Anticancer Therapy Target: Preclinical Evaluation of Internalizing Monoclonal Antibody Directed to Catalytic Domain. Curr. Pharm. Des. 2010;16:3255–3263. doi: 10.2174/138161210793429832. PubMed DOI
Pastoreková S., Zaťovičová M., Pastorek J. Cancer-associated carbonic anhydrases and their inhibition. Curr. Pharm. Des. 2008;14:685–698. doi: 10.2174/138161208783877893. PubMed DOI
Chrastina A., Závada J., Parkkila S., Kaluz Š., Kaluzová M., Rajčáni J., Pastorek J., Pastoreková S. Biodistribution and pharmacokinetics of 125I-labeled monoclonal antibody M75 specific for carbonic anhydrase IX, an intrinsic marker of hypoxia, in nude mice xenografted with human colorectal carcinoma. Int. J. Cancer. 2003;105:873–881. doi: 10.1002/ijc.11142. PubMed DOI
Yu L., Li P., Ding X., Zhang Q. Graphene oxide and carboxylated graphene oxide: Viable two-dimensional nanolabels for lateral flow immunoassays. Talanta. 2017;165:167–175. doi: 10.1016/j.talanta.2016.12.042. PubMed DOI
Rauf S., Mishra G.K., Azhar J., Mishra R.K., Goud K.Y., Nawaz M.A.H., Marty J.L., Hayat A. Carboxylic group riched graphene oxide based disposable electrochemical immunosensor for cancer biomarker detection. Anal. Biochem. 2018;545:13–19. doi: 10.1016/j.ab.2018.01.007. PubMed DOI
Tatiparti K., Sau S., Gawde K.A., Iyer A.K. Copper-free ‘click’ chemistry-based synthesis and characterization of carbonic anhydrase-IX anchored albumin-paclitaxel nanoparticles for targeting tumor hypoxia. Int. J. Mol. Sci. 2018;19:838. doi: 10.3390/ijms19030838. PubMed DOI PMC
Shabana A.M., Mondal U.K., Alam M.R., Spoon T., Ross C.A., Madesh M., Supuran C.T., Ilies M.A. PH-Sensitive Multiligand Gold Nanoplatform Targeting Carbonic Anhydrase IX Enhances the Delivery of Doxorubicin to Hypoxic Tumor Spheroids and Overcomes the Hypoxia-Induced Chemoresistance. ACS Appl. Mater. Interfaces. 2018;10:17792–17808. doi: 10.1021/acsami.8b05607. PubMed DOI PMC
Liu S., Luo X., Liu S., Xu P., Wang J., Hu Y. Acetazolamide-Loaded pH-Responsive Nanoparticles Alleviating Tumor Acidosis to Enhance Chemotherapy Effects. Macromol. Biosci. 2019;19:1–11. doi: 10.1002/mabi.201800366. PubMed DOI
Jiang Y., Li J., Zeng Z., Xie C., Lyu Y., Pu K. Organic Photodynamic Nanoinhibitor for Synergistic Cancer Therapy. Angew. Chemie Int. Ed. 2019 doi: 10.1002/anie.201903968. PubMed DOI
Yamashita T., Hayes P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 2008;254:2441–2449. doi: 10.1016/j.apsusc.2007.09.063. DOI
Fujii T., de Groot F.M.F., Sawatzky G.A., Voogt F.C., Hibma T., Okada K. In situ XPS analysis of various iron oxide films grown by NO2-assisted molecular-beam epitaxy. Phys. Rev. B. 1999;59:3195–3202. doi: 10.1103/PhysRevB.59.3195. DOI
Bodik M., Zahoranova A., Micusik M., Bugarova N., Spitalsky Z., Omastova M., Majkova E., Jergel M., Siffalovic P. Fast low-temperature plasma reduction of monolayer graphene oxide at atmospheric pressure. Nanotechnology. 2017;28:145601. doi: 10.1088/1361-6528/aa60ef. PubMed DOI
Nečas D., Klapetek P. Gwyddion: An open-source software for SPM data analysis. Open Phys. 2012;10:181–188. doi: 10.2478/s11534-011-0096-2. DOI
Kadu P.J., Kushare S.S., Thacker D.D., Gattani S.G. Enhancement of oral bioavailability of atorvastatin calcium by self-emulsifying drug delivery systems (SEDDS) Pharm. Dev. Technol. 2011;16:65–74. doi: 10.3109/10837450903499333. PubMed DOI
Malvern Instruments Ltd. Stabilita Suspenzí a Disperzí—Proč Jsou Parametry jako Velikost Částic, Zeta Potenciál a Reologické Vlastnosti tak Důležité? Chemagazín. 2011;21:14–16.
Hermanson G.T. In: Bioconjugate Technicques, 3rd Edition. Audet J., Preap M., editors. Elsevier Inc.; Amsterdam, The Netherlands: 2013. Third edit.
Sohová M.E., Bodík M., Siffalovic P., Bugarova N., Zaťovičová M., Hianik T., Omastová M., Majkova E. Label-Free Tracking of Nanosized Graphene Oxide Cellular Uptake by Confocal Raman Microscopy. Analyst. 2018;143:3686–3692. doi: 10.1039/C8AN00225H. PubMed DOI
Liu Z., Robinson J.T., Sun X., Dai H. PEGylated Nanographene Oxide for Delivery of Water-Insoluble Cancer Drugs. J. Am. Chem. Soc. 2008;130:10876–10877. doi: 10.1021/ja803688x. PubMed DOI PMC
Sasidharan A., Panchakarla L.S., Chandran P., Menon D., Nair S., Rao C.N.R., Koyakutty M. Differential nano-bio interactions and toxicity effects of pristine versus functionalized graphene. Nanoscale. 2011;3:2461–2464. doi: 10.1039/c1nr10172b. PubMed DOI
Singh S.K., Singh M.K., Kulkarni P.P., Sonkar V.K., Grácio J.J.A., Dash D. Amine-Modified Graphene: Thrombo-Protective Safer Alternative to Graphene Oxide for Biomedical. ACS Nano. 2012;6:2731–2740. doi: 10.1021/nn300172t. PubMed DOI
Van Kuijk S.J.A., Yaromina A., Houben R., Niemans R., Lambin P., Dubois L.J. Prognostic Significance of Carbonic Anhydrase IX Expression in Cancer Patients: A Meta-Analysis. Front. Oncol. 2016;6:69. doi: 10.3389/fonc.2016.00069. PubMed DOI PMC
Pastorekova S., Gillies R.J. The role of carbonic anhydrase IX in cancer development: Links to hypoxia, acidosis and beyond. Cancer Metastasis Rev. 2019 doi: 10.1007/s10555-019-09799-0. (in press) PubMed DOI PMC
Tokárová V., Pittermannová A., Král V., Řezáčová P., Štěpánek F. Feasibility and constraints of particle targeting using the antigen-antibody interaction. Nanoscale. 2013;5:11490–11498. doi: 10.1039/c3nr04340a. PubMed DOI PMC
Kostiv U., Patsula V., Šlouf M., Pongrac I.M., Škokić S., Radmilović M.D., Pavičić I., Vrček I.V., Gajović S., Horák D. Physico-chemical characteristics, biocompatibility, and MRI applicability of novel monodisperse PEG-modified magnetic Fe3O4 &SiO 2 core–shell nanoparticles. RSC Adv. 2017;7:8786–8797. doi: 10.1039/C7RA00224F. DOI