Inhibition of Pro-Inflammatory Cytokines by Metabolites of Streptomycetes-A Potential Alternative to Current Anti-Inflammatory Drugs?

. 2020 Apr 25 ; 8 (5) : . [epub] 20200425

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32344935

Grantová podpora
No. 17-30091A Agentura Pro Zdravotnický Výzkum České Republiky

Odkazy

PubMed 32344935
PubMed Central PMC7284804
DOI 10.3390/microorganisms8050621
PII: microorganisms8050621
Knihovny.cz E-zdroje

Current treatment of chronic diseases includes, among others, application of cytokines, monoclonal antibodies, cellular therapies, and immunostimulants. As all the underlying mechanisms of a particular diseases are not always fully clarified, treatment can be inefficient and associated with various, sometimes serious, side effects. Small secondary metabolites produced by various microbes represent an attractive alternative as future anti-inflammatory drug leads. Compared to current drugs, they are cheaper, can often be administered orally, but still can keep a high target-specificity. Some compounds produced by actinomycetes or fungi have already been used as immunomodulators-tacrolimus, sirolimus, and cyclosporine. This work documents strong anti-inflammatory features of another secondary metabolite of streptomycetes-manumycin-type polyketides. We compared the effect of four related compounds: manumycin A, manumycin B, asukamycin, and colabomycin E on activation and survival of human monocyte/macrophage cell line THP-1. The anti-cancer effect of manucycine A has been demonstrated; the immunomodulatory capacities of manumycin A are obvious when using micromolar concentrations. The application of all four compounds in 0.25-5 μM concentrations leads to efficient, concentration-dependent inhibition of IL-1β and TNF expression in THP-1 upon LPS stimulation, while the three latter compounds show a significantly lower pro-apoptotic effect than manumycin A. We have demonstrated the anti-inflammatory capacity of selected manumycin-type polyketides.

Zobrazit více v PubMed

Pahwa R., Jialal I. Statpearls. StatPearls Publishing; Treasure Island, FL, USA: 2019. Chronic inflammation.

Greten F.R., Grivennikov S.I. Inflammation and cancer: Triggers, mechanisms, and consequences. Immunity. 2019;51:27–41. doi: 10.1016/j.immuni.2019.06.025. PubMed DOI PMC

Grivennikov S.I., Greten F.R., Karin M. Immunity, inflammation, and cancer. Cell. 2010;140:883–899. doi: 10.1016/j.cell.2010.01.025. PubMed DOI PMC

Nguyen M.T., Fernando S., Schwarz N., Tan J.T.M., Bursill C.A., Psaltis P.J. Inflammation as a therapeutic target in atherosclerosis. J. Clin. Med. 2019;8:1109. doi: 10.3390/jcm8081109. PubMed DOI PMC

Ross R. Atherosclerosis--an inflammatory disease. N. Engl. J. Med. 1999;340:115–126. doi: 10.1056/NEJM199901143400207. PubMed DOI

Szollosi D.E., Manzoor M.K., Aquilato A., Jackson P., Ghoneim O.M., Edafiogho I.O. Current and novel anti-inflammatory drug targets for inhibition of cytokines and leucocyte recruitment in rheumatic diseases. J. Pharm. Pharmacol. 2018;70:18–26. doi: 10.1111/jphp.12811. PubMed DOI

Khajah M.A., Ananthalakshmi K.V., Edafiogho I. Anti-inflammatory properties of the enaminone E121 in the dextran sulfate sodium (DSS) colitis model. PLoS ONE. 2016;11:e0168567. doi: 10.1371/journal.pone.0168567. PubMed DOI PMC

Wang D., Tao K., Xion J., Xu S., Jiang Y., Chen Q., He S. TAK-242 attenuates acute cigarette smoke-induced pulmonary inflammation in mouse via the TLR4/NF-jB signaling pathway. Biochem. Biophys. Res. Commun. 2016;472:508–515. doi: 10.1016/j.bbrc.2016.03.001. PubMed DOI

Pham J.V., Yilma M.A., Feliz A., Majid M.T., Maffetone N., Walker J.R., Kim E., Cho H.J., Reynolds J.M., Song M.C., et al. A review of the microbial production of bioactive natural products and biologics. Front. Microbiol. 2019;10:1404. doi: 10.3389/fmicb.2019.01404. PubMed DOI PMC

Zotchev S.B. Marine actinomycetes as an emerging resource for the drug development pipelines. J. Biotechnol. 2012;158:168–175. doi: 10.1016/j.jbiotec.2011.06.002. PubMed DOI

Jerala R. Synthetic lipopeptides: A novel class of anti-infectives. Expert Opin. Investig. Drug. 2007;16:1159–1169. doi: 10.1517/13543784.16.8.1159. PubMed DOI

Corrales-Medina V.F., Musher D.M. Immunomodulatory agents in the treatment of community-acquired pneumonia: A systematic review. J. Infect. 2011;63:187–199. doi: 10.1016/j.jinf.2011.06.009. PubMed DOI

Murphy B.S., Sundareshan V., Cory T.J., Hayes D., Anstead M.I., Feola D.J. Azithromycin alters macrophage phenotype. J. Antimicrob. Chemother. 2008;61:554–560. doi: 10.1093/jac/dkn007. PubMed DOI

Tamaoki J., Kadota J., Takizawa H. Clinical implications of the immunomodulatory effects of macrolides. Am. J. Med. 2004;117:5–11. doi: 10.1016/j.amjmed.2004.07.023. PubMed DOI

Herbrík A., Corretto E., Chroňáková A., Langhansová H., Petrásková P., Hrdý J., Čihák M., Krištůfek V., Bobek J., Petříček M., et al. A Human Lung-Associated Streptomyces sp. TR1341 Produces Various Secondary Metabolites Responsible for Virulence, Cytotoxicity and Modulation of Immune Response. Front. Microbiol. 2020;10:3028. doi: 10.3389/fmicb.2019.03028. PubMed DOI PMC

Mahmoudi F., Baradaran B., Dehnad A., Shanehbandi D., Khosroshahi L.M., Aghapour M. The immunomodulatory activity of secondary metabolites isolated from streptomyces calvus on human peripheral blood mononuclear cells. Br. J. Biomed. Sci. 2016;73:97–103. doi: 10.1080/09674845.2016.1188476. PubMed DOI

Hasani A., Kariminik A., Issazadeh K. Streptomycetes: Characteristics and Their Antimicrobial Activities. Int. J. Adv. Biol. Biomed. Res. 2014;2:63–75.

Lalitha C., Raman T., Rathore S.S., Ramar M., Munusamy A., Ramakrishnan J. ASK2 Bioactive Compound Inhibits MDR Klebsiella pneumoniae by Antibiofilm Activity, Modulating Macrophage Cytokines and Opsonophagocytosis. Front. Cell Infect. Microbiol. 2017;7:346. doi: 10.3389/fcimb.2017.00346. PubMed DOI PMC

Laatsch H., Kellner M., Wolfá G., Leeá Y.S., Hansske1 F., Konetschny-Rappá S., Pessara1á U., Scheuer W., Stockinger H. Oligomycin F, a new immunosuppressive homologue of oligomycin A. J. Antibot. 1993;46:1334–1341. doi: 10.7164/antibiotics.46.1334. PubMed DOI

Hara M., Akasaka K., Akinaga S., Okabe M., Nakano H., Gomez R., Wood D., Uh M., Tamanoi F. Identification of ras farnesyltransferase inhibitors by microbial screening. Proc. Natl. Acad. Sci. USA. 1993;90:2281–2285. doi: 10.1073/pnas.90.6.2281. PubMed DOI PMC

Tuladhar A., Rein K.S. Manumycin a is a potent inhibitor of mammalian thioredoxin reductase-1 (trxr-1) ACS Med. Chem. Lett. 2018;9:318–322. doi: 10.1021/acsmedchemlett.7b00489. PubMed DOI PMC

Tanaka T., Tsukuda E., Uosaki Y., Matsuda Y. Ei-1511-3, -5 and ei-1625-2, novel interleukin-1 beta converting enzyme inhibitors produced by Streptomyces sp. e-1511 and e-1625.3. Biochemical properties of ei-1511-3, -5 and ei-1625-2. J. Antibiot. 1996;49:1085–1090. doi: 10.7164/antibiotics.49.1085. PubMed DOI

Striz I., Krasna E., Petrickova K., Brabcova E., Kolesar L., Slavcev A., Jaresova M., Petricek M. Manumycin and asukamycin inhibition of il-1beta and il-18 release from human macrophages by caspase-1 blocking. Allergy. 2008;63:142–143.

Cecrdlova E., Petrickova K., Kolesar L., Petricek M., Sekerkova A., Svachova V., Striz I. Manumycin a downregulates release of proinflammatory cytokines from tnf alpha stimulated human monocytes. Immunol. Lett. 2016;169:8–14. doi: 10.1016/j.imlet.2015.11.010. PubMed DOI

Bernier M., Kwon Y.K., Pandey S.K., Zhu T.N., Zhao R.J., Maciuk A., He H.J., DeCabo R., Kole S. Binding of manumycin a inhibits i kappa b kinase beta activity. J. Biol. Chem. 2006;281:2551–2561. doi: 10.1074/jbc.M511878200. PubMed DOI

Arenz C., Thutewohl M., Block O., Waldmann H., Altenbach H.J., Giannis A. Manumycin a and its analogues are irreversible inhibitors of neutral sphingomyelinase. Chembiochem. 2001;2:141–143. doi: 10.1002/1439-7633(20010202)2:2<141::AID-CBIC141>3.0.CO;2-P. PubMed DOI

Melvin W.S., Brandes J.S., Boros L.G., Johnson J.A., Ellison E.C. Manumycin inhibits pancreatic cancer cell growth. Gastroenterology. 1996;110:A557.

Di Paolo A., Danesi R., Nardini D., Bocci G., Innocenti F., Fogli S., Barachini S., Marchetti A., Bevilacqua G., Del Tacca M. Manumycin inhibits ras signal transduction pathway and induces apoptosis in colo320-dm human colon tumour cells. Br. J. Cancer. 2000;82:905–912. doi: 10.1054/bjoc.1999.1018. PubMed DOI PMC

Xu G.P., Pan J.X., Martin C., Yeung S.C.J. Angiogenesis inhibition in the in vivo antineoplastic effect of manumycin and paclitaxel against anaplastic thyroid carcinoma. J. Clin. Endocrinol. Metab. 2001;86:1769–1777. doi: 10.1210/jc.86.4.1769. PubMed DOI

Schroder K., Zeeck A. Manumycin. Tetrahedron Lett. 1973;14:4995–4998. doi: 10.1016/S0040-4039(01)87631-0. DOI

Zeeck A., Frobel K., Heusel C., Schroder K., Thiericke R. The structure of manumycin.2. Derivatives. J. Antibiot. 1987;40:1541–1548. doi: 10.7164/antibiotics.40.1541. PubMed DOI

Omura S., Kitao C., Tanaka H., Oiwa R., Takahashi Y. A new antibiotic, asukamycin, produced by streptomyces. J. Antibiot. 1976;29:876–881. doi: 10.7164/antibiotics.29.876. PubMed DOI

Petricek M., Petrickova K., Havlicek L., Felsberg J. Occurrence of two 5-aminolevulinate biosynthetic pathways in streptomyces nodosus subsp asukaensis is linked with the production of asukamycin. J. Bacteriol. 2006;188:5113–5123. doi: 10.1128/JB.01919-05. PubMed DOI PMC

Petrickova K., Pospisil S., Kuzma M., Tylova T., Jagr M., Tomek P., Chronakova A., Brabcova E., Andera L., Kristufek V., et al. Biosynthesis of colabomycin e, a new manumycin-family metabolite, involves an unusual chain-length factor. Chembiochem. 2014;15:1334–1345. doi: 10.1002/cbic.201400068. PubMed DOI

Hrdy J., Zanvit P., Novotna O., Kocourkova I., Zizka J., Prokesova L. Cytokine expression in cord blood cells of children of healthy and allergic mothers. Folia Microbiol. 2010;55:515–519. doi: 10.1007/s12223-010-0085-7. PubMed DOI

Zheng Z.H., Dong Y.S., Zhang H., Lu X.H., Ren X., Zhao G., He J.G., Si S.Y. Isolation and characterization of N98-1272 A, B and C, selective acetylcholinesterase inhibitors from metabolites of an actinomycete strain. J Enzyme Inhib. Med. Chem. 2007;22:43–49. doi: 10.1080/14756360600988781. PubMed DOI

Yeung S.C.J., Xu G.P., Pan J.X., Christgen M., Bamiagis A. Manumycin enhances the cytotoxic effect of paclitaxel on anaplastic thyroid carcinoma cells. Cancer Res. 2000;60:650–656. PubMed

Costa C.B., Casalta-Lopes J., Andrade C., Moreira D., Oliveira A., Goncalves A.C., Alves V., Silva T., Dourado M., Nascimento-Costa J.M., et al. Farnesyltransferase inhibitors: Molecular evidence of therapeutic efficacy in acute lymphoblastic leukemia through cyclin d1 inhibition. Anticancer Res. 2012;32:831–838. PubMed

Tuladhar A., Hondal R.J., Colon R., Hernandez E.L., Rein K.S. Effectors of thioredoxin reductase: Brevetoxins and manumycin-a. Comp. Biochem. Phys. C. 2019;217:76–86. doi: 10.1016/j.cbpc.2018.11.015. PubMed DOI PMC

Costantini C., Weindruch R., Della V.G., Puglielli L. A trka-to-p75ntr molecular switch activates amyloid beta-peptide generation during aging. Biochem. J. 2005;391:59–67. doi: 10.1042/BJ20050700. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...