Occurrence of two 5-aminolevulinate biosynthetic pathways in Streptomyces nodosus subsp. asukaensis is linked with the production of asukamycin
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
16816183
PubMed Central
PMC1539946
DOI
10.1128/jb.01919-05
PII: 188/14/5113
Knihovny.cz E-zdroje
- MeSH
- 5-aminolevulátsynthetasa genetika metabolismus MeSH
- aminoacyl-tRNA metabolismus MeSH
- DNA primery MeSH
- kinetika MeSH
- klonování DNA MeSH
- kyselina aminolevulová metabolismus MeSH
- plazmidy MeSH
- polyeny metabolismus MeSH
- rekombinantní proteiny metabolismus MeSH
- restrikční mapování MeSH
- Streptomyces genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 5-aminolevulátsynthetasa MeSH
- aminoacyl-tRNA MeSH
- asukamycin MeSH Prohlížeč
- DNA primery MeSH
- glutamyl-tRNA(Gln) MeSH Prohlížeč
- kyselina aminolevulová MeSH
- polyeny MeSH
- rekombinantní proteiny MeSH
We report the results of cloning genes for two key biosynthetic enzymes of different 5-aminolevulinic acid (ALA) biosynthetic routes from Streptomyces. The genes encode the glutamyl-tRNAGlu reductase (GluTR) of the C5 pathway and the ALA synthase (ALAS) of the Shemin pathway. While Streptomyces coelicolor A3(2) synthesizes ALA via the C5 route, both pathways are operational in Streptomyces nodosus subsp. asukaensis, a producer of asukamycin. In this strain, the C5 route produces ALA for tetrapyrrole biosynthesis; the ALA formed by the Shemin pathway serves as a precursor of the 2-amino-3-hydroxycyclopent-2-enone moiety (C5N unit), an antibiotic component. The growth of S. nodosus and S. coelicolor strains deficient in the GluTR genes (gtr) is strictly dependent on ALA or heme supplementation, whereas the defect in the ALAS-encoding gene (hemA-asuA) abolishes the asukamycin production in S. nodosus. The recombinant hemA-asuA gene was expressed in Escherichia coli and in Streptomyces, and the encoded enzyme activity was demonstrated both in vivo and in vitro. The hemA-asuA gene is situated within a putative cluster of asukamycin biosynthetic genes. This is the first report about the cloning of genes for two different ALA biosynthetic routes from a single bacterium.
Zobrazit více v PubMed
Altschul, S. F., M. S. Boguski, W. Gish, and J. C. Wootton. 1994. Issues in searching molecular sequence databases. Nat. Genet. 6:119-129. PubMed
Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403-410. PubMed
Astner, I., J. O. Schulze, J. van den Heuvel, D. Jahn, W. D. Schubert, and D. W. Heinz. 2005. Crystal structure of 5-aminolevulinate synthase, the first enzyme of heme biosynthesis, and its link to XLSA in humans. EMBO J. 24:3166-3177. PubMed PMC
Avissar, Y. J., J. G. Ormerod, and S. I. Beale. 1989. Distribution of δ-aminolevulinic acid biosynthetic pathways among phototrophic bacterial groups. Arch. Microbiol. 151:513-519. PubMed
Beale, J. M., J. P. Lee, A. Nakagawa, S. Omura, and H. G. Floss. 1986. Biosynthesis of the antibiotic reductiomycin. J. Am. Chem. Soc. 108:331-332.
Bentley, S. D., K. F. Chater, A. M. Cerdeno-Tarraga, G. L. Challis, N. R. Thomson, K. D. James, D. E. Harris, M. A. Quail, H. Kieser, D. Harper, A. Bateman, S. Brown, G. Chandra, C. W. Chen, M. Collins, A. Cronin, A. Fraser, A. Goble, J. Hidalgo, T. Hornsby, S. Howarth, C. H. Huang, T. Kieser, L. Larke, L. Murphy, K. Oliver, S. O'Neil, E. Rabbinowitsch, M. A. Rajandream, K. Rutherford, S. Rutter, K. Seeger, D. Saunders, S. Sharp, R. Squares, S. Squares, K. Taylor, T. Warren, A. Wietzorrek, J. Woodward, B. G. Barrell, J. Parkhill, and D. A. Hopwood. 2002. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141-147. PubMed
Bibb, M. J., G. R. Janssen, and J. M. Ward. 1985. Cloning and analysis of the promoter region of the erythromycin resistance gene (ermE) of Streptomyces erythraeus. Gene 38:215-226. PubMed
Bolt, E. L., L. Kryszak, J. Zeilstra-Ryalls, P. M. Shoolingin-Jordan, and M. J. Warren. 1999. Characterization of the Rhodobacter sphaeroides 5-aminolaevulinic acid synthase isoenzymes, HemA and HemT, isolated from recombinant Escherichia coli. Eur. J. Biochem. 265:290-299. PubMed
Bradford, M. M. 1976. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254. PubMed
Donnerstag, A., S. Marzian, D. Müller, P. Welzel, D. Bottger, A. Stark, H. W. Fehlhaber, A. Markus, Y. van Heijenoort, and J. van Heijenoort. 1995. A structurally and biogenetically interesting moenomycin antibiotic. Tetrahedron 51:1931-1940.
Drolet, M., and A. Sasarman. 1991. Cloning and nucleotide sequence of the hemA gene of Agrobacterium radiobacter. Mol. Gen. Genet. 226:250-256. PubMed
Ebenezer, W. J. 1991. Colabomycin co-metabolites: synthesis of 2880-II, a metabolite related to ferulic acid. Synth. Commun. 21:351-358.
Endler, K., U. Schuricht, L. Hennig, and P. Welzel. 1998. Exploratory investigations into the biosynthesis of the antibiotic moenomycin A. Tetrahedron Lett. 39:13-16.
Ferreira, G. C., and H. A. Dailey. 1993. Expression of mammalian 5-aminolevulinate synthase in Escherichia coli: overproduction, purification, and characterization. J. Biol. Chem. 268:584-590. PubMed
Hanajima, S., K. Ishimaru, K. Sakano, S. K. Roy, Y. Inouye, and S. Nakamura. 1985. Inhibition of reverse transcriptase by limocrocin. J. Antibiot. (Tokyo) 38:803-805. PubMed
Hansson, M., L. Rutberg, I. Schröder, and L. Hederstedt. 1991. The Bacillus subtilis hemAXCDBL gene cluster, which encodes enzymes of the biosynthetic pathway from glutamate to uroporphyrinogen III. J. Bacteriol. 173:2590-2599. PubMed PMC
Hopwood, D. A., M. J. Bibb, K. F. Chater, T. Kieser, C. J. Bruton, H. M. Kieser, D. J. Lydiate, J. M. Ward, and H. Schrempf. 1985. Genetic manipulation of Streptomyces. A laboratory manual. The John Innes Foundation, Norwich, United Kingdom.
Hu, Y. 2000. The biosynthesis of manumycin type metabolites. Ph.D. thesis. Department of Chemistry, University of Washington, Seattle.
Hu, Y. D., and H. G. Floss. 2004. Further studies on the biosynthesis of the manumycin-type antibiotic, asukamycin, and the chemical synthesis of protoasukamycin. J. Am. Chem. Soc. 126:3837-3844. PubMed
Hunter, G. A., and G. C. Ferreira. 1995. A continuous spectrophotometric assay for 5-aminolevulinate synthase that utilizes substrate cycling. Anal. Biochem. 226:221-224. PubMed
Ikeda, H., J. Ishikawa, A. Hanamoto, M. Shinose, H. Kikuchi, T. Shiba, Y. Sakaki, M. Hattori, and S. Omura. 2003. Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat. Biotechnol. 21:526-531. PubMed
Kawasaki, T., T. Kuzuyama, K. Furihata, N. Itoh, H. Seto, and T. Dairi. 2003. A relationship between the mevalonate pathway and isoprenoid production in actinomycetes. J. Antibiot. (Tokyo) 56:957-966. PubMed
Kieser, T., and D. A. Hopwood. 1991. Genetic manipulation of Streptomyces: integrating vectors and gene replacement. Methods Enzymol. 204:430-458. PubMed
Koshino, H., H. Osada, T. Yano, J. Uzawa, and K. Isono. 1991. The structure of enopeptins A and B, novel depsipeptide antibiotics. Tetrahedron Lett. 32:7707-7710.
Li, J. M., C. S. Russell, and S. D. Cosloy. 1989. Cloning and structure of the hemA gene of Escherichia coli K-12. Gene 82:209-217. PubMed
Lien, L. F., and D. S. Beattie. 1982. Comparisons and modifications of the colorimetric assay for δ-aminolevulinic acid synthase. Enzyme 28:120-132. PubMed
Mayer, S. M., and S. I. Beale. 1992. Succinyl-coenzyme A synthetase and its role in δ-aminolevulinic acid biosynthesis in Euglena gracilis. Plant Physiol. 99:482-487. PubMed PMC
McAlpine, J. B., B. O. Bachmann, M. Piraee, S. Tremblay, A. M. Alarco, E. Zazopoulos, and C. M. Farnet. 2005. Microbial genomics as a guide to drug discovery and structural elucidation: ECO-02301, a novel antifungal agent, as an example. J. Nat. Prod. 68:493-496. PubMed
McClung, C. R., J. E. Somerville, M. L. Guerinot, and B. K. Chelm. 1987. Structure of the Bradyrhizobium japonicum gene hemA encoding 5-aminolevulinic acid synthase. Gene 54:133-139. PubMed
McConville, M. L., and H. P. Charles. 1979. Isolation of haemin-requiring mutants of Escherichia coli K12. J. Gen. Microbiol. 113:155-164. PubMed
Moberg, P. A., and Y. J. Avissar. 1994. A gene cluster in Chlorobium vibrioforme encoding the first enzymes of chlorophyll biosynthesis. Photosynth. Res. 41:253-259. PubMed
Moser, J., W. D. Schubert, D. W. Heinz, and D. Jahn. 2002. Structure and function of glutamyl-tRNA reductase involved in 5-aminolaevulinic acid formation. Biochem. Soc. Trans. 30:579-584. PubMed
Muth, G., B. Nußbaumer, W. Wohlleben, and A. Pühler. 1989. A vector system with temperature-sensitive replication for gene disruption and mutational cloning in streptomycetes. Mol. Gen. Genet. 219:341-348.
Nakagawa, A., T.-S. Wu, P. J. Keller, J. P. Lee, S. Omura, and H. G. Floss. 1985. Biosynthesis of asukamycin. Formation of the 2-amino-3-hydroxycyclopent-2-enone moiety. J. Chem. Soc. Chem. Commun. p. 519-521.
Neidle, E. L., and S. Kaplan. 1993. Expression of the Rhodobacter sphaeroides hemA and hemT genes, encoding 2 5-aminolevulinic acid synthase isozymes. J. Bacteriol. 175:2292-2303. PubMed PMC
Omura, S., N. Imamura, K. Hinotozawa, K. Otoguro, G. Lukacs, R. Faghih, R. Tolmann, B. H. Arison, and J. L. Smith. 1983. The structure of virustomycin A. J. Antibiot. (Tokyo) 36:1783-1786. PubMed
Omura, S., C. Kitao, H. Tanaka, R. Oiwa, and Y. Takahashi. 1976. A new antibiotic, asukamycin, produced by Streptomyces. J. Antibiot. (Tokyo) 29:876-881. PubMed
Palmer, B. R., and M. G. Marinus. 1994. The dam and dcm strains of Escherichia coli—a review. Gene 143:1-12. PubMed
Petricek, M., L. Rutberg, I. Schröder, and L. Hederstedt. 1990. Cloning and characterization of the hemA region of the Bacillus subtilis chromosome. J. Bacteriol. 172:2250-2258. PubMed PMC
Petricek, M., P. Tichy, and M. Kuncova. 1992. Characterization of the α-amylase-encoding gene from Thermomonospora curvata. Gene 112:77-83. PubMed
Rao, R. N., M. A. Richardson, and S. Kuhstoss. 1987. Cosmid shuttle vectors for cloning and analysis of Streptomyces DNA. Methods Enzymol. 153:166-198. PubMed
Redenbach, M., H. M. Kieser, D. Denapaite, A. Eichner, J. Cullum, H. Kinashi, and D. A. Hopwood. 1996. A set of ordered cosmids and a detailed genetic and physical map for the 8 Mb Streptomyces coelicolor A3(2) chromosome. Mol. Microbiol. 21:77-96. PubMed
Rhie, G. E., Y. J. Avissar, and S. I. Beale. 1996. Structure and expression of the Chlorobium vibrioforme hemB gene and characterization of its encoded enzyme, porphobilinogen synthase. J. Biol. Chem. 271:8176-8182. PubMed
Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
Sattler, I., R. Thiericke, and A. Zeeck. 1998. The manumycin-group metabolites. Nat. Prod. Rep. 15:221-240. PubMed
Schägger, H., W. A. Cramer, and G. VonJagow. 1994. Analysis of molecular masses and oligomeric states of protein complexes by blue native electrophoresis and isolation of membrane protein complexes by two-dimensional native electrophoresis. Anal. Biochem. 217:220-230. PubMed
Schröder, I., L. Hederstedt, G. Kannangara, and S. Gough. 1992. Glutamyl-tRNA reductase activity in Bacillus subtilis is dependent on the hemA gene product. Biochem. J. 281:843-850. PubMed PMC
Shima, J., A. Hesketh, S. Okamoto, S. Kawamoto, and K. Ochi. 1996. Induction of actinorhodin production by rpsL (encoding ribosomal protein S12) mutations that confer streptomycin resistance in Streptomyces lividans and Streptomyces coelicolor A3(2). J. Bacteriol. 178:7276-7284. PubMed PMC
Shoolingin-Jordan, P. M., S. Al Daihan, D. Alexeev, R. L. Baxter, S. S. Bottomley, I. D. Kahari, I. Roy, M. Sarwar, L. Sawyer, and S. F. Wang. 2003. 5-Aminolevulinic acid synthase: mechanism, mutations and medicine. Biochim. Biophys. Acta 1647:361-366. PubMed
Srivastava, A., V. Lake, L. A. Nogaj, S. M. Mayer, R. D. Willows, and S. I. Beale. 2005. The Chlamydomonas reinhardtii gtr gene encoding the tetrapyrrole biosynthetic enzyme glutamyl-tRNA reductase: structure of the gene and properties of the expressed enzyme. Plant Mol. Biol. 58:643-658. PubMed
Strohl, W. R. 1992. Compilation and analysis of DNA sequences associated with apparent streptomycete promoters. Nucleic Acids Res. 20:961-974. PubMed PMC
Tai, T. N., M. D. Moore, and S. Kaplan. 1988. Cloning and characterization of the 5-aminolevulinate synthase gene(s) from Rhodobacter sphaeroides. Gene 70:139-151. PubMed
Thiericke, R., A. Zeeck, A. Nakagawa, S. Omura, R. E. Herrold, S. T. S. Wu, J. M. Beale, and H. G. Floss. 1990. Biosynthesis of the manumycin group antibiotics. J. Am. Chem. Soc. 112:3979-3987.
Ward, J. M., G. R. Janssen, T. Kieser, M. J. Bibb, and M. J. Buttner. 1986. Construction and characterisation of a series of multi-copy promoter-probe plasmid vectors for Streptomyces using the aminoglycoside phosphotransferase gene from Tn5 as indicator. Mol. Gen. Genet. 203:468-478. PubMed
Weinstein, J. D., and S. I. Beale. 1983. Separate physiological roles and subcellular compartments for two tetrapyrrole biosynthetic pathways in Euglena gracilis. J. Biol. Chem. 258:6799-6807. PubMed
Werner, G., H. Hagenmaier, H. Drautz, A. Baumgartner, and H. Zähner. 1984. Metabolic products of microorganisms. 224. Bafilomycins, a new group of macrolide antibiotics. Production, isolation, chemical structure and biological activity. J. Antibiot. (Tokyo) 37:110-117. PubMed
Yang, H. S., and J. K. Hoober. 1995. Divergent pathways for δ-aminolevulinic acid synthesis in two species of Arthrobacter. FEMS Microbiol. Lett. 134:259-263.
Sequence evidence for the presence of two tetrapyrrole pathways in Euglena gracilis