Occurrence of two 5-aminolevulinate biosynthetic pathways in Streptomyces nodosus subsp. asukaensis is linked with the production of asukamycin

. 2006 Jul ; 188 (14) : 5113-23.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid16816183

We report the results of cloning genes for two key biosynthetic enzymes of different 5-aminolevulinic acid (ALA) biosynthetic routes from Streptomyces. The genes encode the glutamyl-tRNAGlu reductase (GluTR) of the C5 pathway and the ALA synthase (ALAS) of the Shemin pathway. While Streptomyces coelicolor A3(2) synthesizes ALA via the C5 route, both pathways are operational in Streptomyces nodosus subsp. asukaensis, a producer of asukamycin. In this strain, the C5 route produces ALA for tetrapyrrole biosynthesis; the ALA formed by the Shemin pathway serves as a precursor of the 2-amino-3-hydroxycyclopent-2-enone moiety (C5N unit), an antibiotic component. The growth of S. nodosus and S. coelicolor strains deficient in the GluTR genes (gtr) is strictly dependent on ALA or heme supplementation, whereas the defect in the ALAS-encoding gene (hemA-asuA) abolishes the asukamycin production in S. nodosus. The recombinant hemA-asuA gene was expressed in Escherichia coli and in Streptomyces, and the encoded enzyme activity was demonstrated both in vivo and in vitro. The hemA-asuA gene is situated within a putative cluster of asukamycin biosynthetic genes. This is the first report about the cloning of genes for two different ALA biosynthetic routes from a single bacterium.

Zobrazit více v PubMed

Altschul, S. F., M. S. Boguski, W. Gish, and J. C. Wootton. 1994. Issues in searching molecular sequence databases. Nat. Genet. 6:119-129. PubMed

Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403-410. PubMed

Astner, I., J. O. Schulze, J. van den Heuvel, D. Jahn, W. D. Schubert, and D. W. Heinz. 2005. Crystal structure of 5-aminolevulinate synthase, the first enzyme of heme biosynthesis, and its link to XLSA in humans. EMBO J. 24:3166-3177. PubMed PMC

Avissar, Y. J., J. G. Ormerod, and S. I. Beale. 1989. Distribution of δ-aminolevulinic acid biosynthetic pathways among phototrophic bacterial groups. Arch. Microbiol. 151:513-519. PubMed

Beale, J. M., J. P. Lee, A. Nakagawa, S. Omura, and H. G. Floss. 1986. Biosynthesis of the antibiotic reductiomycin. J. Am. Chem. Soc. 108:331-332.

Bentley, S. D., K. F. Chater, A. M. Cerdeno-Tarraga, G. L. Challis, N. R. Thomson, K. D. James, D. E. Harris, M. A. Quail, H. Kieser, D. Harper, A. Bateman, S. Brown, G. Chandra, C. W. Chen, M. Collins, A. Cronin, A. Fraser, A. Goble, J. Hidalgo, T. Hornsby, S. Howarth, C. H. Huang, T. Kieser, L. Larke, L. Murphy, K. Oliver, S. O'Neil, E. Rabbinowitsch, M. A. Rajandream, K. Rutherford, S. Rutter, K. Seeger, D. Saunders, S. Sharp, R. Squares, S. Squares, K. Taylor, T. Warren, A. Wietzorrek, J. Woodward, B. G. Barrell, J. Parkhill, and D. A. Hopwood. 2002. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141-147. PubMed

Bibb, M. J., G. R. Janssen, and J. M. Ward. 1985. Cloning and analysis of the promoter region of the erythromycin resistance gene (ermE) of Streptomyces erythraeus. Gene 38:215-226. PubMed

Bolt, E. L., L. Kryszak, J. Zeilstra-Ryalls, P. M. Shoolingin-Jordan, and M. J. Warren. 1999. Characterization of the Rhodobacter sphaeroides 5-aminolaevulinic acid synthase isoenzymes, HemA and HemT, isolated from recombinant Escherichia coli. Eur. J. Biochem. 265:290-299. PubMed

Bradford, M. M. 1976. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254. PubMed

Donnerstag, A., S. Marzian, D. Müller, P. Welzel, D. Bottger, A. Stark, H. W. Fehlhaber, A. Markus, Y. van Heijenoort, and J. van Heijenoort. 1995. A structurally and biogenetically interesting moenomycin antibiotic. Tetrahedron 51:1931-1940.

Drolet, M., and A. Sasarman. 1991. Cloning and nucleotide sequence of the hemA gene of Agrobacterium radiobacter. Mol. Gen. Genet. 226:250-256. PubMed

Ebenezer, W. J. 1991. Colabomycin co-metabolites: synthesis of 2880-II, a metabolite related to ferulic acid. Synth. Commun. 21:351-358.

Endler, K., U. Schuricht, L. Hennig, and P. Welzel. 1998. Exploratory investigations into the biosynthesis of the antibiotic moenomycin A. Tetrahedron Lett. 39:13-16.

Ferreira, G. C., and H. A. Dailey. 1993. Expression of mammalian 5-aminolevulinate synthase in Escherichia coli: overproduction, purification, and characterization. J. Biol. Chem. 268:584-590. PubMed

Hanajima, S., K. Ishimaru, K. Sakano, S. K. Roy, Y. Inouye, and S. Nakamura. 1985. Inhibition of reverse transcriptase by limocrocin. J. Antibiot. (Tokyo) 38:803-805. PubMed

Hansson, M., L. Rutberg, I. Schröder, and L. Hederstedt. 1991. The Bacillus subtilis hemAXCDBL gene cluster, which encodes enzymes of the biosynthetic pathway from glutamate to uroporphyrinogen III. J. Bacteriol. 173:2590-2599. PubMed PMC

Hopwood, D. A., M. J. Bibb, K. F. Chater, T. Kieser, C. J. Bruton, H. M. Kieser, D. J. Lydiate, J. M. Ward, and H. Schrempf. 1985. Genetic manipulation of Streptomyces. A laboratory manual. The John Innes Foundation, Norwich, United Kingdom.

Hu, Y. 2000. The biosynthesis of manumycin type metabolites. Ph.D. thesis. Department of Chemistry, University of Washington, Seattle.

Hu, Y. D., and H. G. Floss. 2004. Further studies on the biosynthesis of the manumycin-type antibiotic, asukamycin, and the chemical synthesis of protoasukamycin. J. Am. Chem. Soc. 126:3837-3844. PubMed

Hunter, G. A., and G. C. Ferreira. 1995. A continuous spectrophotometric assay for 5-aminolevulinate synthase that utilizes substrate cycling. Anal. Biochem. 226:221-224. PubMed

Ikeda, H., J. Ishikawa, A. Hanamoto, M. Shinose, H. Kikuchi, T. Shiba, Y. Sakaki, M. Hattori, and S. Omura. 2003. Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat. Biotechnol. 21:526-531. PubMed

Kawasaki, T., T. Kuzuyama, K. Furihata, N. Itoh, H. Seto, and T. Dairi. 2003. A relationship between the mevalonate pathway and isoprenoid production in actinomycetes. J. Antibiot. (Tokyo) 56:957-966. PubMed

Kieser, T., and D. A. Hopwood. 1991. Genetic manipulation of Streptomyces: integrating vectors and gene replacement. Methods Enzymol. 204:430-458. PubMed

Koshino, H., H. Osada, T. Yano, J. Uzawa, and K. Isono. 1991. The structure of enopeptins A and B, novel depsipeptide antibiotics. Tetrahedron Lett. 32:7707-7710.

Li, J. M., C. S. Russell, and S. D. Cosloy. 1989. Cloning and structure of the hemA gene of Escherichia coli K-12. Gene 82:209-217. PubMed

Lien, L. F., and D. S. Beattie. 1982. Comparisons and modifications of the colorimetric assay for δ-aminolevulinic acid synthase. Enzyme 28:120-132. PubMed

Mayer, S. M., and S. I. Beale. 1992. Succinyl-coenzyme A synthetase and its role in δ-aminolevulinic acid biosynthesis in Euglena gracilis. Plant Physiol. 99:482-487. PubMed PMC

McAlpine, J. B., B. O. Bachmann, M. Piraee, S. Tremblay, A. M. Alarco, E. Zazopoulos, and C. M. Farnet. 2005. Microbial genomics as a guide to drug discovery and structural elucidation: ECO-02301, a novel antifungal agent, as an example. J. Nat. Prod. 68:493-496. PubMed

McClung, C. R., J. E. Somerville, M. L. Guerinot, and B. K. Chelm. 1987. Structure of the Bradyrhizobium japonicum gene hemA encoding 5-aminolevulinic acid synthase. Gene 54:133-139. PubMed

McConville, M. L., and H. P. Charles. 1979. Isolation of haemin-requiring mutants of Escherichia coli K12. J. Gen. Microbiol. 113:155-164. PubMed

Moberg, P. A., and Y. J. Avissar. 1994. A gene cluster in Chlorobium vibrioforme encoding the first enzymes of chlorophyll biosynthesis. Photosynth. Res. 41:253-259. PubMed

Moser, J., W. D. Schubert, D. W. Heinz, and D. Jahn. 2002. Structure and function of glutamyl-tRNA reductase involved in 5-aminolaevulinic acid formation. Biochem. Soc. Trans. 30:579-584. PubMed

Muth, G., B. Nußbaumer, W. Wohlleben, and A. Pühler. 1989. A vector system with temperature-sensitive replication for gene disruption and mutational cloning in streptomycetes. Mol. Gen. Genet. 219:341-348.

Nakagawa, A., T.-S. Wu, P. J. Keller, J. P. Lee, S. Omura, and H. G. Floss. 1985. Biosynthesis of asukamycin. Formation of the 2-amino-3-hydroxycyclopent-2-enone moiety. J. Chem. Soc. Chem. Commun. p. 519-521.

Neidle, E. L., and S. Kaplan. 1993. Expression of the Rhodobacter sphaeroides hemA and hemT genes, encoding 2 5-aminolevulinic acid synthase isozymes. J. Bacteriol. 175:2292-2303. PubMed PMC

Omura, S., N. Imamura, K. Hinotozawa, K. Otoguro, G. Lukacs, R. Faghih, R. Tolmann, B. H. Arison, and J. L. Smith. 1983. The structure of virustomycin A. J. Antibiot. (Tokyo) 36:1783-1786. PubMed

Omura, S., C. Kitao, H. Tanaka, R. Oiwa, and Y. Takahashi. 1976. A new antibiotic, asukamycin, produced by Streptomyces. J. Antibiot. (Tokyo) 29:876-881. PubMed

Palmer, B. R., and M. G. Marinus. 1994. The dam and dcm strains of Escherichia coli—a review. Gene 143:1-12. PubMed

Petricek, M., L. Rutberg, I. Schröder, and L. Hederstedt. 1990. Cloning and characterization of the hemA region of the Bacillus subtilis chromosome. J. Bacteriol. 172:2250-2258. PubMed PMC

Petricek, M., P. Tichy, and M. Kuncova. 1992. Characterization of the α-amylase-encoding gene from Thermomonospora curvata. Gene 112:77-83. PubMed

Rao, R. N., M. A. Richardson, and S. Kuhstoss. 1987. Cosmid shuttle vectors for cloning and analysis of Streptomyces DNA. Methods Enzymol. 153:166-198. PubMed

Redenbach, M., H. M. Kieser, D. Denapaite, A. Eichner, J. Cullum, H. Kinashi, and D. A. Hopwood. 1996. A set of ordered cosmids and a detailed genetic and physical map for the 8 Mb Streptomyces coelicolor A3(2) chromosome. Mol. Microbiol. 21:77-96. PubMed

Rhie, G. E., Y. J. Avissar, and S. I. Beale. 1996. Structure and expression of the Chlorobium vibrioforme hemB gene and characterization of its encoded enzyme, porphobilinogen synthase. J. Biol. Chem. 271:8176-8182. PubMed

Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

Sattler, I., R. Thiericke, and A. Zeeck. 1998. The manumycin-group metabolites. Nat. Prod. Rep. 15:221-240. PubMed

Schägger, H., W. A. Cramer, and G. VonJagow. 1994. Analysis of molecular masses and oligomeric states of protein complexes by blue native electrophoresis and isolation of membrane protein complexes by two-dimensional native electrophoresis. Anal. Biochem. 217:220-230. PubMed

Schröder, I., L. Hederstedt, G. Kannangara, and S. Gough. 1992. Glutamyl-tRNA reductase activity in Bacillus subtilis is dependent on the hemA gene product. Biochem. J. 281:843-850. PubMed PMC

Shima, J., A. Hesketh, S. Okamoto, S. Kawamoto, and K. Ochi. 1996. Induction of actinorhodin production by rpsL (encoding ribosomal protein S12) mutations that confer streptomycin resistance in Streptomyces lividans and Streptomyces coelicolor A3(2). J. Bacteriol. 178:7276-7284. PubMed PMC

Shoolingin-Jordan, P. M., S. Al Daihan, D. Alexeev, R. L. Baxter, S. S. Bottomley, I. D. Kahari, I. Roy, M. Sarwar, L. Sawyer, and S. F. Wang. 2003. 5-Aminolevulinic acid synthase: mechanism, mutations and medicine. Biochim. Biophys. Acta 1647:361-366. PubMed

Srivastava, A., V. Lake, L. A. Nogaj, S. M. Mayer, R. D. Willows, and S. I. Beale. 2005. The Chlamydomonas reinhardtii gtr gene encoding the tetrapyrrole biosynthetic enzyme glutamyl-tRNA reductase: structure of the gene and properties of the expressed enzyme. Plant Mol. Biol. 58:643-658. PubMed

Strohl, W. R. 1992. Compilation and analysis of DNA sequences associated with apparent streptomycete promoters. Nucleic Acids Res. 20:961-974. PubMed PMC

Tai, T. N., M. D. Moore, and S. Kaplan. 1988. Cloning and characterization of the 5-aminolevulinate synthase gene(s) from Rhodobacter sphaeroides. Gene 70:139-151. PubMed

Thiericke, R., A. Zeeck, A. Nakagawa, S. Omura, R. E. Herrold, S. T. S. Wu, J. M. Beale, and H. G. Floss. 1990. Biosynthesis of the manumycin group antibiotics. J. Am. Chem. Soc. 112:3979-3987.

Ward, J. M., G. R. Janssen, T. Kieser, M. J. Bibb, and M. J. Buttner. 1986. Construction and characterisation of a series of multi-copy promoter-probe plasmid vectors for Streptomyces using the aminoglycoside phosphotransferase gene from Tn5 as indicator. Mol. Gen. Genet. 203:468-478. PubMed

Weinstein, J. D., and S. I. Beale. 1983. Separate physiological roles and subcellular compartments for two tetrapyrrole biosynthetic pathways in Euglena gracilis. J. Biol. Chem. 258:6799-6807. PubMed

Werner, G., H. Hagenmaier, H. Drautz, A. Baumgartner, and H. Zähner. 1984. Metabolic products of microorganisms. 224. Bafilomycins, a new group of macrolide antibiotics. Production, isolation, chemical structure and biological activity. J. Antibiot. (Tokyo) 37:110-117. PubMed

Yang, H. S., and J. K. Hoober. 1995. Divergent pathways for δ-aminolevulinic acid synthesis in two species of Arthrobacter. FEMS Microbiol. Lett. 134:259-263.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace