Evolution of cyclizing 5-aminolevulinate synthases in the biosynthesis of actinomycete secondary metabolites: outcomes for genetic screening techniques
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
26300877
PubMed Central
PMC4525017
DOI
10.3389/fmicb.2015.00814
Knihovny.cz E-zdroje
- Klíčová slova
- 5-aminolevulinate synthase, C5N unit, Streptomyces, gene evolution, genetic screening, horizontal gene transfer, secondary metabolites,
- Publikační typ
- časopisecké články MeSH
A combined approach, comprising PCR screening and genome mining, was used to unravel the diversity and phylogeny of genes encoding 5-aminolevulinic acid synthases (ALASs, hemA gene products) in streptomycetes-related strains. In actinomycetes, these genes were believed to be directly connected with the production of secondary metabolites carrying the C5N unit, 2-amino-3-hydroxycyclopent-2-enone, with biological activities making them attractive for future use in medicine and agriculture. Unlike "classical" primary metabolism ALAS, the C5N unit-forming cyclizing ALAS (cALAS) catalyses intramolecular cyclization of nascent 5-aminolevulinate. Specific amino acid sequence changes can be traced by comparison of "classical" ALASs against cALASs. PCR screening revealed 226 hemA gene-carrying strains from 1,500 tested, with 87% putatively encoding cALAS. Phylogenetic analysis of the hemA homologs revealed strain clustering according to putative type of metabolic product, which could be used to select producers of specific C5N compound classes. Supporting information was acquired through analysis of actinomycete genomic sequence data available in GenBank and further genetic or metabolic characterization of selected strains. Comparison of 16S rRNA taxonomic identification and BOX-PCR profiles provided evidence for numerous horizontal gene transfers of biosynthetic genes or gene clusters within actinomycete populations and even from non-actinomycete organisms. Our results underline the importance of environmental and evolutionary data in the design of efficient techniques for identification of novel producers.
Zobrazit více v PubMed
Astner I., Schulze J. O., van den Heuvel J., Jahn D., Schubert W. D., Heinz D. W. (2005). Crystal structure of 5-aminolevulinate synthase, the first enzyme of heme biosynthesis, and its link to XLSA in humans. EMBO J. 24 3166–3177. 10.1038/sj.emboj.7600792 PubMed DOI PMC
Blin K., Medema M. H., Kazempour D., Fischbach M. A., Breitling R., Takano E., et al. (2013). AntiSMASH 2.0-a versatile platform for genome mining of secondary metabolite producers. Nucleic Acids Res. 41 204–212. 10.1093/nar/gkt449 PubMed DOI PMC
Chroňáková A., Krištůfek V., Tichý M., Elhottová D. (2010). Biodiversity of streptomycetes isolated from a succession sequence at a post-mining site and their evidence in Miocene lacustrine sediment. Microbiol. Res. 165 594–608. 10.1016/j.micres.2009.10.002 PubMed DOI
Chun J., Lee J. H., Jung Y., Kim M., Kim S., Kim B. K., et al. (2007). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol. 57 2259–2261. 10.1099/ijs.0.64915-0 PubMed DOI
Deng M.-R., Guo J., Li X., Zhu C.-H., Zhu H.-H. (2011). Granaticins and their biosynthetic gene cluster from Streptomyces vietnamensis: evidence of horizontal gene transfer. Antonie Van Leeuwenhoek 100 607–617. 10.1007/s10482-011-9615-9 PubMed DOI
Doroghazi J. R., Buckley D. H. (2010). Widespread homologous recombination within and between Streptomyces species. ISME J. 4 1136–1143. 10.1038/ismej.2010.45 PubMed DOI
Edwards U., Rogall T., Blocker H., Emde M., Bottger E. C. (1989). Isolation and direct complete nucleotide determination of entire genes – characterization of a gene coding for 16S-Ribosomal RNA. Nucleic Acids Res. 17 7843–7853. 10.1093/nar/17.19.7843 PubMed DOI PMC
Egan S., Wiener P., Kallifidas D., Wellington E. M. (1998). Transfer of streptomycin biosynthesis gene clusters within streptomycetes isolated from soil. Appl. Environ. Microbiol. 64 5061–5063. PubMed PMC
Hall T. A. (1999). Bioedit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41 95–98.
Huelsenbeck J. P., Ronquist F. (2005). “Bayesian analysis of molecular evolution using MrBayes,” in Statistical Methods in Molecular Evolution ed. Nielsen R. (Berlin: Springer; ) 183–226. 10.1007/0-387-27733-1_7 DOI
Hwang J. Y., Kim H. S., Kim S. H., Oh H. R., Nam D. H. (2013). Organization and characterization of a biosynthetic gene cluster for bafilomycin from Streptomyces griseus DSM 2608. AMB Exp. 3:24 10.1186/2191-0855-3-24 PubMed DOI PMC
Hwang J. Y., Kim S. H., Oh H. R., Kwon E., Nam D. H. (2015). Analysis of a draft genome sequence of Kitasatospora cheerisanensis KCTC 2395 producing bafilomycin antibiotics. J. Microbiol. 53 84–89. 10.1007/s12275-015-4340-0 PubMed DOI
Ichikawa N., Oguchi A., Ikeda H., Ishikawa J., Kitani S., Watanabe Y., et al. (2010). Genome sequence of Kitasatospora setae NBRC 14216(T): an evolutionary snapshot of the family Streptomycetaceae. DNA Res. 17 393–406. 10.1093/dnares/dsq026 PubMed DOI PMC
Kalan L., Gessner A., Thaker M. N., Waglechner N., Zhu X. M., Szawiola A., et al. (2013). A cryptic polyene biosynthetic gene cluster in Streptomyces calvus is expressed upon complementation with a aunctional bldA Gene. Chem. Biol. 20 1214–1224. 10.1016/j.chembiol.2013.09.006 PubMed DOI
Kaufholz A. L., Hunter G. A., Ferreira G. C., Lendrihas T., Hering V., Layer G., et al. (2013). Aminolaevulinic acid synthase of Rhodobacter capsulatus: high-resolution kinetic investigation of the structural basis for substrate binding and catalysis. Biochem. J. 451 205–216. 10.1042/BJ20121041 PubMed DOI
Kim E. Y., Han J. W., Lee J. Y., Kim B. S. (2012). Identification of the biosynthetic gene cluster for the antibiotic polyketide L-155,175 in Streptomyces hygroscopicus. Folia Microbiol. 57 543–550. 10.1007/s12223-012-0173-y PubMed DOI
Krištůfek V., Elhottová D., Chroňáková A., Dostálková I., Picek T., Kalčík J. (2005). Growth strategy of heterotrophic bacterial population along successional sequence on spoil of brown coal colliery substrate. Folia Microbiol. 50 427–435. 10.1007/BF02931425 PubMed DOI
Kyselková M., Chroňáková A., Volna L., Němec J., Ulmann V., Scharfen J., et al. (2012). Tetracycline resistance and presence of tetracycline resistance determinants tet(V) and tap in rapidly growing mycobacteria from agricultural soils and clinical isolates. Microbes Environ. 27 413–422. 10.1264/jsme2.ME12028 PubMed DOI PMC
Labeda D. P., Goodfellow M., Brown R., Ward A. C., Lanoot B., Vanncanneyt M., et al. (2012). Phylogenetic study of the species within the family Streptomycetaceae. Antonie Van Leeuwenhoek 101 73–104. 10.1007/s10482-011-9656-0 PubMed DOI
Lanoot B., Vancanneyt M., Dawyndt P., Cnockaert M., Zhang J. L., Huang Y., et al. (2004). BOX-PCR fingerprinting as a powerful tool to reveal synonymous names in the genus Streptomyces. Emended descriptions are proposed for the species Streptomyces cinereorectus, S. fradiae, S. tricolor, S. colombiensis, S. filamentosus, S. vinaceus and S. phaeopurpureus. Syst. Appl. Microbiol. 27 84–92. 10.1078/0723-2020-00257 PubMed DOI
Mayer S. M., Beale S. I. (1992). Succinyl-coenzyme A synthetase and its role in delta-aminolevulinic acid biosynthesis in Euglena gracilis. Plant Physiol. 99 482–487. 10.1104/pp.99.2.482 PubMed DOI PMC
McAlpine J. B., Bachmann B. O., Piraee M., Tremblay S., Alarco A. M., Zazopoulos E., et al. (2005). Microbial genomics as a guide to drug discovery and structural elucidation: ECO-02301, a novel antifungal agent, as an example. J. Nat. Prod. 68 493–496. 10.1021/np0401664 PubMed DOI
Medema M. H., Blin K., Cimermancic P., de Jager V., Zakrzewski P., Fischbach M. A., et al. (2011). antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res. 39 W339–W346. 10.1093/nar/gkr466 PubMed DOI PMC
Ostash B., Saghatelian A., Walker S. (2007). A streamlined metabolic pathway for the biosynthesis of moenomycin A. Chem. Biol. 14 257–267. 10.1016/j.chembiol.2007.01.008 PubMed DOI PMC
Ostash B., Walker S. (2010). Moenomycin family antibiotics: chemical synthesis, biosynthesis, and biological activity. Nat. Prod. Rep. 27 1594–1617. 10.1039/c001461n PubMed DOI PMC
Petříček M., Petříčková K., Havlíček L., Felsberg J. (2006). Occurrence of two 5-aminolevulinate biosynthetic pathways in Streptomyces nodosus subsp. asukaensis is linked with the production of asukamycin. J. Bacteriol. 188 5113–5123. 10.1128/JB.01919-05 PubMed DOI PMC
Petříčková K., Pospíšil S., Kuzma M., Tylová T., Jágr M., Tomek P., et al. (2014). Biosynthesis of colabomycin E, a new manumycin-family metabolite, involves an unusual chain-length factor. Chembiochem 15 1334–1345. 10.1002/cbic.201400068 PubMed DOI
Schmitt I., Lumbsch H. T. (2009). Ancient horizontal gene transfer from bacteria enhances biosynthetic capabilities of Fungi. PLoS ONE 4:e4437 10.1371/journal.pone.0004437 PubMed DOI PMC
Shintani M., Matsui K., Inoue J., Hosoyama A., Ohji S., Yamazoe A., et al. (2014). Single-cell analyses revealed transfer ranges of IncP-1, IncP-7, and IncP-9 plasmids in a soil bacterial community. Appl. Environ. Microbiol. 80 138–145. 10.1128/AEM.02571-13 PubMed DOI PMC
Shirling E. B., Gottlieb D. (1966). Methods for characterization of streptomycetes. Int. J. Syst. Bacteriol. 16 313–340. 10.1099/00207713-16-3-313 DOI
Versalovic J., Schneider M., Bruijn F. J., Lupski J. R. (1994). Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol. Cell. Biol. 5 25–40.
Weinstein J. D., Beale S. I. (1983). Separate physiological roles and subcelullar compartments for two tetrapyrrole biosynthetic pathways in Euglena gracilis. J. Biol. Chem. 72 6799–6807. PubMed
Yang H. S., Hoober J. K. (1995). Divergent pathways for δ-aminolevulinic acid synthesis in 2 Species of Arthrobacter. FEMS Microbiol. Lett. 134 259–263. 10.1016/0378-1097(95)00417-4 DOI
Zhang W. J., Bolla M. L., Kahne D., Walsh C. T. (2010). A three enzyme pathway for 2-amino-3-hydroxycyclopent-2-enone formation and incorporation in natural product biosynthesis. J. Am. Chem. Soc. 132 6402–6411. 10.1021/ja1002845 PubMed DOI PMC
Zhang W., Fortman J. L., Carlson J. C., Yan J. Y., Liu Y., Bai F. L., et al. (2013). Characterization of the bafilomycin biosynthetic gene cluster from Streptomyces lohii. Chembiochem 14 301–306. 10.1002/cbic.201200743 PubMed DOI PMC