Identification of the biosynthetic gene cluster for the antibiotic polyketide L-155,175 in Streptomyces hygroscopicus
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- Anti-Infective Agents metabolism MeSH
- Biosynthetic Pathways genetics MeSH
- DNA, Bacterial chemistry genetics MeSH
- Gene Library MeSH
- Gene Knockout Techniques MeSH
- Macrolides metabolism MeSH
- Molecular Sequence Data MeSH
- Multigene Family * MeSH
- Open Reading Frames MeSH
- Polyketides metabolism MeSH
- Sequence Analysis, DNA MeSH
- Streptomyces genetics metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Anti-Infective Agents MeSH
- DNA, Bacterial MeSH
- hygrolidin K2 MeSH Browser
- Macrolides MeSH
- Polyketides MeSH
The antibiotic L-155,175, a potent antiparasitic and antifungal compound, has an unusual structure involving 16-membered macrolides that contain a tetrahydropyran ring connected through a three-carbon linker chain. To identify the biosynthetic gene cluster for L-155,175, a genomic DNA library of Streptomyces hygroscopicus ATCC31955 was constructed and screened with a degenerate primer set designed from a conserved region of the ketosynthase (KS) domain. Sequence analysis of a fosmid clone, pEY1D8 (34 kb), revealed multiple open reading frames (ORFs) encoding type I polyketide synthase (PKS). To determine whether the cloned genes are involved in L-155,175 biosynthesis, a deletion mutant (1D8m) was generated by homologous recombination, in which the gene encoding the KS domain was substituted with an apramycin-resistance gene by PCR-targeted Streptomyces gene replacement. LC-MS analysis showed that L-155,175 production was completely abolished in the 1D8m strain, thereby proving that the cloned gene is responsible for L-155,175 biosynthesis. The sequencing of two other fosmid clones (pEY8B10 and pEY1C9) harboring overlapping sequences from pEY1D8 revealed a 60-kb DNA segment encoding six ORFs for type I PKS harboring 12 modules. The domain organization of the PKS modules encoded by PKS exactly matched the structure of L-155,175. This is the first report on the gene cluster involved in the biosynthesis of L-155,175.
See more in PubMed
J Am Chem Soc. 2002 May 15;124(19):5268-9 PubMed
Microbiology (Reading). 2005 Oct;151(Pt 10):3161-3169 PubMed
Nat Prod Rep. 2001 Aug;18(4):380-416 PubMed
Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1541-6 PubMed
Angew Chem Int Ed Engl. 2009;48(26):4688-716 PubMed
Gene. 2000 Jun 13;251(1):81-90 PubMed
Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):4853-8 PubMed
Nat Prod Rep. 2009 Jan;26(1):90-114 PubMed
Gene. 2000 Mar 7;245(1):203-11 PubMed
FEMS Microbiol Lett. 2003 Jan 28;218(2):223-30 PubMed
Gene. 2002 Feb 20;285(1-2):257-67 PubMed
Structure. 2010 Jan 13;18(1):94-105 PubMed
J Am Chem Soc. 2010 May 12;132(18):6402-11 PubMed
Antimicrob Agents Chemother. 2002 May;46(5):1174-82 PubMed
J Antibiot (Tokyo). 2004 Oct;57(10):655-61 PubMed
Curr Opin Chem Biol. 2012 Apr;16(1-2):117-23 PubMed
Biochemistry. 2001 Dec 25;40(51):15464-70 PubMed
J Antibiot (Tokyo). 1984 May;37(5):610-3 PubMed
J Antibiot (Tokyo). 1983 Dec;36(12):1783-6 PubMed
J Antibiot (Tokyo). 1984 Feb;37(2):110-7 PubMed
Arch Microbiol. 2005 May;183(4):277-85 PubMed
J Antibiot (Tokyo). 1985 Feb;38(2):161-8 PubMed
Nat Prod Rep. 1998 Jun;15(3):221-40 PubMed
Org Biomol Chem. 2011 Apr 7;9(7):2053-6 PubMed
GENBANK
HE648167