Lentzea sokolovensis sp. nov., Lentzea kristufekii sp. nov. and Lentzea miocenica sp. nov., rare actinobacteria from Miocene lacustrine sediment of the Sokolov Coal Basin, Czech Republic

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38630118

The taxonomic position of three actinobacterial strains, BCCO 10_0061T, BCCO 10_0798T, and BCCO 10_0856T, recovered from bare soil in the Sokolov Coal Basin, Czech Republic, was established using a polyphasic approach. The multilocus sequence analysis based on 100 single-copy genes positioned BCCO 10_0061T in the same cluster as Lentzea waywayandensis, strain BCCO 10_0798T in the same cluster as Lentzea flaviverrucosa, Lentzea californiensis, Lentzea violacea, and Lentzea albidocapillata, and strain BCCO 10_0856T clustered together with Lentzea kentuckyensis and Lentzea alba. Morphological and chemotaxonomic characteristics of these strains support their assignment to the genus Lentzea. In all three strains, MK-9(H4) accounted for more than 80 % of the isoprenoid quinone. The diagnostic diamino acid in the cell-wall peptidoglycan was meso-diaminopimelic acid. The whole-cell sugars were rhamnose, ribose, mannose, glucose, and galactose. The major fatty acids (>10 %) were iso-C15 : 0, anteiso-C15 : 0, iso-C16 : 0, and C16 : 0. The polar lipids were diphosphatidylglycerol, methyl-phosphatidylethanolamine, phosphatidylethanolamine, hydroxy-phosphatidylethanolamine, phosphatidylglycerol, and phosphatidylinositol. The genomic DNA G+C content of strains (mol%) was 68.8 for BCCO 10_0061T, 69.2 for BCCO 10_0798T, and 68.5 for BCCO 10_0856T. The combination of digital DNA-DNA hybridization results, average nucleotide identity values and phenotypic characteristics of BCCO 10_0061T, BCCO 10_0798T, and BCCO 10_0856T distinguishes them from their closely related strains. Bioinformatic analysis of the genome sequences of the strains revealed several biosynthetic gene clusters (BGCs) with identities >50 % to already known clusters, including BGCs for geosmin, coelichelin, ε-poly-l-lysine, and erythromycin-like BGCs. Most of the identified BGCs showed low similarity to known BGCs (<50 %) suggesting their genetic potential for the biosynthesis of novel secondary metabolites. Based on the above results, each strain represents a novel species of the genus Lentzea, for which we propose the name Lentzea sokolovensis sp. nov. for BCCO 10_0061T (=DSM 116175T), Lentzea kristufekii sp. nov. for BCCO 10_0798T (=DSM 116176T), and Lentzea miocenica sp. nov. for BCCO 10_0856T (=DSM 116177T).

Zobrazit více v PubMed

Yassin AF, Rainey FA, Brzezinka H, Jahnke KD, Weissbrodt H, et al. Lentzea gen. nov., a new genus of the order Actinomycetales. Int J Syst Bacteriol. 1995;45:357–363. doi: 10.1099/00207713-45-2-357. PubMed DOI

Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol. 2020;70:5607–5612. doi: 10.1099/ijsem.0.004332. PubMed DOI PMC

Goodfellow M, Nouioui I, Sanderson R, Xie F, Bull AT. Rare taxa and dark microbial matter: novel bioactive actinobacteria abound in Atacama Desert soils. Antonie Van Leeuwenhoek. 2018;111:1315–1332. doi: 10.1007/s10482-018-1088-7. PubMed DOI

González-Salazar LA, Quezada M, Rodríguez-Orduña L, Ramos-Aboites H, Capon RJ, et al. Biosynthetic novelty index reveals the metabolic potential of rare actinobacteria isolated from highly oligotrophic sediments. Microb Genom. 2023;9:mgen000921. doi: 10.1099/mgen.0.000921. PubMed DOI PMC

Maiti PK, Mandal S. Comprehensive genome analysis of Lentzea reveals repertoire of polymer-degrading enzymes and bioactive compounds with clinical relevance. Sci Rep. 2022;12:8409. doi: 10.1038/s41598-022-12427-7. PubMed DOI PMC

Wichner D, Idris H, Houssen WE, McEwan AR, Bull AT, et al. Isolation and anti-HIV-1 integrase activity of lentzeosides A–F from extremotolerant lentzea sp. H45, a strain isolated from a high-altitude Atacama Desert soil. J Antibiot. 2017;70:448–453. doi: 10.1038/ja.2016.78. PubMed DOI

Li C, Hu Y, Wu X, Stumpf SD, Qi Y, et al. Discovery of unusual dimeric piperazyl cyclopeptides encoded by a Lentzea flaviverrucosa DSM 44664 biosynthetic supercluster. Proc Natl Acad Sci USA. 2022;119:e2117941119. doi: 10.1073/pnas.2117941119. PubMed DOI PMC

Ping M, Yun-Lin Z, Jun L, Jian G, Zheng-Gang X. Proposal of Lentzea deserti (Okoro et al. 2010) Nouioui et al. 2018 as a later heterotypic synonym of Lentzea atacamensis (Okoro et al. 2010) Nouioui et al. 2018 and an emended description of Lentzea atacamensis. PLoS One. 2010;16:e0246533. doi: 10.1371/journal.pone.0246533. PubMed DOI PMC

Kříbek B, Strnad M, Boháček Z, Sýkorová I, Čejka J, et al. Geochemistry of Miocene lacustrine sediments from the Sokolov Coal Basin (Czech Republic) Int J Coal Geol. 1998;37:207–233. doi: 10.1016/S0166-5162(98)00002-0. DOI

Petříčková K, Chroňáková A, Zelenka T, Chrudimský T, Pospíšil S, et al. Evolution of cyclizing 5-aminolevulinate synthases in the biosynthesis of actinomycete secondary metabolites: outcomes for genetic screening techniques. Front Microbiol. 2015;6:814. doi: 10.3389/fmicb.2015.00814. PubMed DOI PMC

Chronáková A, Kristůfek V, Tichý M, Elhottová D. Biodiversity of Streptomycetes isolated from a succession sequence at a post-mining site and their evidence in Miocene lacustrine sediment. Microbiol Res. 2010;165:594–608. doi: 10.1016/j.micres.2009.10.002. PubMed DOI

Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol. 1966;16:313–340. doi: 10.1099/00207713-16-3-313. DOI

Bertani G. Studies on lysogenesis I. J Bacteriol. 1951;62:293–300. doi: 10.1128/jb.62.3.293-300.1951. PubMed DOI PMC

Edwards U, Rogall T, Blöcker H, Emde M, Böttger EC. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucl Acids Res. 1989;17:7843–7853. doi: 10.1093/nar/17.19.7843. PubMed DOI PMC

Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y, et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol. 2017;67:1613–1617. doi: 10.1099/ijsem.0.001755. PubMed DOI PMC

Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–1797. doi: 10.1093/nar/gkh340. PubMed DOI PMC

Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics. 2019;35:4453–4455. doi: 10.1093/bioinformatics/btz305. PubMed DOI PMC

Miller MA, Pfeiffer W, Schwartz T. 2010 Gateway Computing Environments Workshop (GCE) 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees; pp. 1–8.

Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49:W293–W296. doi: 10.1093/nar/gkab301. PubMed DOI PMC

Labeda DP, Donahue JM, Sells SF, Kroppenstedt RM. Lentzea kentuckyensis sp. nov., of equine origin. Int J Syst Evol Microbiol. 2007;57:1780–1783. doi: 10.1099/ijs.0.64245-0. PubMed DOI

Li D, Zheng W, Zhao J, Han L, Zhao X, et al. Lentzea soli sp. nov., an actinomycete isolated from soil. Int J Syst Evol Microbiol. 2018;68:1496–1501. doi: 10.1099/ijsem.0.002698. PubMed DOI

Hassler HB, Probert B, Moore C, Lawson E, Jackson RW, et al. Phylogenies of the 16S rRNA gene and its hypervariable regions lack concordance with core genome phylogenies. Microbiome. 2022;10 doi: 10.1186/s40168-022-01295-y. PubMed DOI PMC

Nakano Y, Domon Y, Yamagishi K. Phylogenetic trees of closely related bacterial species and subspecies based on frequencies of short nucleotide sequences. PLoS One. 2023;18:e0268847. doi: 10.1371/journal.pone.0268847. PubMed DOI PMC

Andrews S, Krueger F, Segonds-Pichon A, Biggins L, Krueger C, et al. FastQC. Babraham, UK: Babraham Institute; 2012.

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC

Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–477. doi: 10.1089/cmb.2012.0021. PubMed DOI PMC

Zerbino DR. Using the Velvet de novo assembler for short-read sequencing technologies. Curr Protoc Bioinformatics. 2010;Chapter 11:Unit. doi: 10.1002/0471250953.bi1105s31. PubMed DOI PMC

Arkin AP, Cottingham RW, Henry CS, Harris NL, Stevens RL, et al. KBase: the United States Department of Energy systems biology knowledgebase. Nat Biotechnol. 2018;36:566–569. doi: 10.1038/nbt.4163. PubMed DOI PMC

Sayers EW, Bolton EE, Brister JR, Canese K, Chan J, et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2022;50:D20–D26. doi: 10.1093/nar/gkab1112. PubMed DOI PMC

Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–1055. doi: 10.1101/gr.186072.114. PubMed DOI PMC

Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–2069. doi: 10.1093/bioinformatics/btu153. PubMed DOI

Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2023;51:D587–D592. doi: 10.1093/nar/gkac963. PubMed DOI PMC

Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics. 2008;9:75. doi: 10.1186/1471-2164-9-75. PubMed DOI PMC

Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol. 2016;66:1100–1103. doi: 10.1099/ijsem.0.000760. PubMed DOI

Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res. 2022;50:D801–D807. doi: 10.1093/nar/gkab902. PubMed DOI PMC

Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol. 1994;44:846–849. doi: 10.1099/00207713-44-4-846. DOI

Moore WEC, Stackebrandt E, Kandler O, Colwell RR, Krichevsky MI, et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol. 1987;37:463–464. doi: 10.1099/00207713-37-4-463. DOI

Jalil M, Quddos F, Anwer F, Nasir S, Rahman A, et al. Comparative pan-genomic analysis revealed an improved multi-locus sequence typing scheme for Staphylococcus aureus. Genes (Basel) 2022;13:2160. doi: 10.3390/genes13112160. PubMed DOI PMC

Ruppitsch W, Pietzka A, Prior K, Bletz S, Fernandez HL, et al. Defining and evaluating a core genome multilocus sequence typing scheme for whole-genome sequence-based typing of Listeria monocytogenes. J Clin Microbiol. 2015;53:2869–2876. doi: 10.1128/JCM.01193-15. PubMed DOI PMC

Kohl TA, Diel R, Harmsen D, Rothgänger J, Walter KM, et al. Whole-genome-based Mycobacterium tuberculosis surveillance: a standardized, portable, and expandable approach. J Clin Microbiol. 2014;52:2479–2486. doi: 10.1128/JCM.00567-14. PubMed DOI PMC

Higgins PG, Prior K, Harmsen D, Seifert H. Development and evaluation of a core genome multilocus typing scheme for whole-genome sequence-based typing of Acinetobacter baumannii. PLoS One. 2017;12:e0179228. doi: 10.1371/journal.pone.0179228. PubMed DOI PMC

Mellmann A, Harmsen D, Cummings CA, Zentz EB, Leopold SR, et al. Prospective genomic characterization of the German enterohemorrhagic Escherichia coli O104:H4 outbreak by rapid next generation sequencing technology. PLoS One. 2011;6:e22751. doi: 10.1371/journal.pone.0022751. PubMed DOI PMC

Gonzalez-Escalona N, Jolley KA, Reed E, Martinez-Urtaza J. Defining a core genome multilocus sequence typing scheme for the global epidemiology of Vibrio parahaemolyticus. J Clin Microbiol. 2017;55:1682–1697. doi: 10.1128/JCM.00227-17. PubMed DOI PMC

de Been M, Pinholt M, Top J, Bletz S, Mellmann A, et al. Core genome multilocus sequence typing scheme for high-resolution typing of Enterococcus faecium. J Clin Microbiol. 2015;53:3788–3797. doi: 10.1128/JCM.01946-15. PubMed DOI PMC

Kim J, Na S-I, Kim D, Chun J. UBCG2: up-to-date bacterial core genes and pipeline for phylogenomic analysis. J Microbiol. 2021;59:609–615. doi: 10.1007/s12275-021-1231-4. PubMed DOI

Paysan-Lafosse T, Blum M, Chuguransky S, Grego T, Pinto BL, et al. InterPro in 2022. Nucleic Acids Res. 2023;51:D418–D427. doi: 10.1093/nar/gkac993. PubMed DOI PMC

Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP, et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res. 2021;49:W29–W35. doi: 10.1093/nar/gkab335. PubMed DOI PMC

Garbeva P, Avalos M, Ulanova D, van Wezel GP, Dickschat JS. Volatile sensation: the chemical ecology of the earthy odorant geosmin. Environ Microbiol. 2023;25:1565–1574. doi: 10.1111/1462-2920.16381. PubMed DOI

Gerber NN, Lechevalier HA. Geosmin, an earthly-smelling substance isolated from actinomycetes. Appl Microbiol. 1965;13:935–938. doi: 10.1128/am.13.6.935-938.1965. PubMed DOI PMC

Becher PG, Verschut V, Bibb MJ, Bush MJ, Molnár BP, et al. Developmentally regulated volatiles geosmin and 2-methylisoborneol attract a soil arthropod to Streptomyces bacteria promoting spore dispersal. Nat Microbiol. 2020;5:821–829. doi: 10.1038/s41564-020-0697-x. PubMed DOI

Traxler MF, Seyedsayamdost MR, Clardy J, Kolter R. Interspecies modulation of bacterial development through iron competition and siderophore piracy. Mol Microbiol. 2012;86:628–644. doi: 10.1111/mmi.12008. PubMed DOI PMC

Hyldgaard M, Mygind T, Vad BS, Stenvang M, Otzen DE, et al. The antimicrobial mechanism of action of epsilon-poly-l-lysine. Appl Environ Microbiol. 2014;80:7758–7770. doi: 10.1128/AEM.02204-14. PubMed DOI PMC

Chen Y, Guo M, Yang J, Chen J, Xie B, et al. Potential TSPO ligand and photooxidation quencher isorenieratene from Arctic Ocean Rhodococcus sp. B7740. Mar Drugs. 2019;17:316. doi: 10.3390/md17060316. PubMed DOI PMC

Woo EJ, Starks CM, Carney JR, Arslanian R, Cadapan L, et al. Migrastatin and a new compound, isomigrastatin, from Streptomyces platensis. J Antibiot. 2002;55:141–146. doi: 10.7164/antibiotics.55.141. PubMed DOI

Khosravi Babadi Z, Ebrahimipour G, Wink J, Narmani A, Risdian C. Isolation and identification of Streptomyces sp. Act4Zk, a good producer of staurosporine and some derivatives. Lett Appl Microbiol. 2021;72:206–218. doi: 10.1111/lam.13415. PubMed DOI

Labeda DP, Hatano K, Kroppenstedt RM, Tamura T. Revival of the genus Lentzea and proposal for Lechevalieria gen. nov. Int J Syst Evol Microbiol. 2001;51:1045–1050. doi: 10.1099/00207713-51-3-1045. PubMed DOI

Sun X, Zhao J, Luo X, Hou W, Xiang W, et al. Lentzea alba sp. nov., a novel actinobacterium isolated from soil. Int J Syst Evol Microbiol. 2021;71:004661. doi: 10.1099/ijsem.0.004661. PubMed DOI

Pridham TG, Hesseltine CW, Benedict RG. A guide for the classification of streptomycetes according to selected groups; placement of strains in morphological sections. Appl Microbiol. 1958;6:52–79. doi: 10.1128/am.6.1.52-79.1958. PubMed DOI PMC

Lechevalier MP, Lechevalier H. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol. 1970;20:435–443. doi: 10.1099/00207713-20-4-435. DOI

Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods. 1984;2:233–241. doi: 10.1016/0167-7012(84)90018-6. DOI

Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol. 1974;28:226–231. doi: 10.1128/am.28.2.226-231.1974. PubMed DOI PMC

Vieira S, Huber KJ, Neumann-Schaal M, Geppert A, Luckner M, et al. Usitatibacter rugosus gen. nov., sp. nov. and Usitatibacter palustris sp. nov., novel members of Usitatibacteraceae fam. nov. within the order Nitrosomonadales isolated from soil. Int J Syst Evol Microbiol. 2021;71:004631. doi: 10.1099/ijsem.0.004631. PubMed DOI

Schumann P, Kalensee F, Cao J, Criscuolo A, Clermont D. Reclassification of Haloactinobacterium glacieicola as Occultella glacieicola gen. nov., comb. nov., of Haloactinobacterium album as Ruania alba comb. nov, with an emended description of the genus Ruania, recognition that the genus names Haloactinobacterium and Ruania are heterotypic synonyms and description of Occultella aeris sp. nov., a halotolerant isolate from surface soil sampled at an ancient copper smelter. Int J Syst Evol Microbiol. 2021;71:004769. doi: 10.1099/ijsem.0.004769. PubMed DOI

Lechevalier MP, De Bievre C, Lechevalier H. Chemotaxonomy of aerobic Actinomycetes: phospholipid composition. Biochem Syst Ecol. 1977;5:249–260. doi: 10.1016/0305-1978(77)90021-7. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...