Feasibility and constraints of particle targeting using the antigen-antibody interaction
Language English Country Great Britain, England Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
24170264
PubMed Central
PMC4047836
DOI
10.1039/c3nr04340a
Knihovny.cz E-resources
- MeSH
- Antigens, Neoplasm chemistry immunology metabolism MeSH
- Cell Adhesion MeSH
- NIH 3T3 Cells MeSH
- Antigen-Antibody Complex MeSH
- Carbonic Anhydrase IX MeSH
- Carbonic Anhydrases chemistry immunology metabolism MeSH
- Microscopy, Confocal MeSH
- Humans MeSH
- Microfluidic Analytical Techniques MeSH
- Antibodies, Monoclonal chemistry immunology MeSH
- Mice MeSH
- Cell Line, Tumor MeSH
- Nanoparticles chemistry MeSH
- Silicon Dioxide chemistry MeSH
- Surface Properties MeSH
- Protein Structure, Tertiary MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Antigens, Neoplasm MeSH
- CA9 protein, human MeSH Browser
- Antigen-Antibody Complex MeSH
- Carbonic Anhydrase IX MeSH
- Carbonic Anhydrases MeSH
- M75 monoclonal antibody MeSH Browser
- Antibodies, Monoclonal MeSH
- Silicon Dioxide MeSH
This work is concerned with the surface modification of fluorescent silica nanoparticles by a monoclonal antibody (M75) and the specific bioadhesion of such particles to surfaces containing the PG domain of carbonic anhydrase IX (CA IX), which is a trans-membrane protein specifically expressed on the surfaces of several tumor cell lines. The adhesion strength of antibody-bearing silica nanoparticles to antigen-bearing surfaces was investigated under laminar flow conditions in a microfluidic cell and compared to the adhesion of unmodified silica nanoparticles and nanoparticles coupled with an unspecific antibody. Adhesion to cancer cells using flow cytometry was also investigated and in all cases the adhesion strength of M75-modified nanoparticles was significantly stronger than for the unmodified or unspecific nanoparticles, up to several orders of magnitude in some cases. The specific modification of nano- and microparticles by an antibody-like protein therefore appears to be a feasible approach for the targeting of tumor cells.
See more in PubMed
Čejková J., Stěpánek F. Curr. Pharm. Des. 2013;19:6298–6314. PubMed
Zadrazil A., Tokarova V., Stepanek F. Soft Matter. 2012;8:1811–1816.
Tokarova V., Pittermannova A., Cech J., Ulbrich P., Stepanek F. Soft Matter. 2012;8:1087–1095.
Tokárová V., Kašpar O., Knejzlík Z., Ulbrich P., Štěpánek F. Powder Technol. 2013;235:797–805.
Haufova P., Dohnal J., Hanus J., Stepanek F. Colloids Surf., A. 2012;410:52–58.
Vasir J. K., Tambwekar K., Garg S. Int. J. Pharm. 2003;255:13–32. PubMed
Guillemot G., Lorthois S., Schmitz P., Mercier-Bonin M. Chem. Eng. Res. Des. 2007;85:800–807.
Prabhakarpandian B., Shen M. C., Pant K., Kiani M. F. Microvasc. Res. 2011;82:210–220. PubMed PMC
Doshi N., Prabhakarpandian B., Rea-Ramsey A., Pant K., Sundaram S., Mitragotri S. J. Controlled Release. 2010;146:196–200. PubMed PMC
Jain R. K., Stylianopoulos T. Nat. Rev. Clin. Oncol. 2010;7:653–664. PubMed PMC
Maeda H. Adv. Enzyme Regul. 2001;41:189–207. PubMed
Funakoshi N., Onizuka M., Yanagi K., Ohshima N., Tomoyasu M., Sato Y., Yamamoto T., Ishikawa S., Mitsui T. Microvasc. Res. 2000;59:361–367. PubMed
Hansen-Algenstaedt N., Joscheck C., Schaefer C., Lamszus K., Wolfram L., Biermann T., Algenstaedt P., Brockmann M. A., Heintz C., Fiedler W., Ruther W. Eur. J. Cancer. 2005;41:1073–1085. PubMed
Yuan F., Dellian M., Fukumura D., Leunig M., Berk D. A., Torchilin V. P., Jain R. K. Cancer Res. 1995;55:3752–3756. PubMed
Tanaka M., Komagata M., Tsukada M., Kamiya H. Powder Technol. 2008;183:273–281.
Ott M. L., Mizes H. A. Colloids Surf., A. 1994;87:245–256.
Zhang H. A., Ding W. Q., Law K. Y., Cetinkaya C. Powder Technol. 2011;208:582–589.
Blackwell J. E., Dagia N. M., Dickerson J. B., Berg E. L., Goetz D. J. Ann. Biomed. Eng. 2001;29:523–533. PubMed
Abbassi O., Kishimoto T. K., Mcintire L. V., Anderson D. C., Smith C. W. J. Clin. Invest. 1993;92:2719–2730. PubMed PMC
Kral V., Mader P., Collard R., Fabry M., Horejsi M., Rezacova P., Kozisek M., Zavada J., Sedlacek J., Rulisek L., Brynda J. Proteins. 2008;71:1275–1287. PubMed
Gieling R. G., Williams K. J. Bioorg. Med. Chem. 2013;21:1470–1476. PubMed
Kivela A. J., Knuuttila A., Rasanen J., Sihvo E., Salmenkivi K., Saarnio J., Pastorekova S., Pastorek J., Waheed A., Sly W. S., Salo J. A., Parkkila S. Bioorg. Med. Chem. 2013;21:1483–1488. PubMed
Zavada J., Zavadova Z., Machon O., Kutinova L., Opavsky R., Pastorek J. Int. J. Oncol. 1997;10:857–863. PubMed
Zavada J., Zavadova Z., Pastorek J., Biesova Z., Jezek J., Velek J. Br. J. Cancer. 2000;82:1808–1813. PubMed PMC
Stöber W., Fink A., Bohn E. J. Colloid Interface Sci. 1968;26:62–69.
Cejkova J., Hanus J., Stepanek F. J. Colloid Interface Sci. 2010;346:352–360. PubMed
Karg M., Pastoriza-Santos I., Liz-Marzan L. M., Hellweg T. ChemPhysChem. 2006;7:2298–2301. PubMed
Vasir J. K., Labhasetwar V. Biomaterials. 2008;29:4244–4252. PubMed PMC
Pyo N., Tanaka S., McNamee C. E., Kanda Y., Fukumori Y., Ichikawa H., Higashitani K. Colloids Surf., B. 2006;53:278–287. PubMed
Shinto H., Aso Y., Fukasawa T., Higashitani K. Colloids Surf., B. 2012;91:114–121. PubMed
Jain R. K. Cancer Res. 1988;48:2641–2658. PubMed
Kang S. T., Subramani A., Hoek E. M. V., Deshusses M. A., Matsumoto M. R. J. Membr. Sci. 2004;244:151–165.
Kiani M. F., Yuan H., Chen X., Smith L., Gaber M. W., Goetz D. J. Pharm. Res. 2002;19:1317–1322. PubMed
Liang S., Slattery M. J., Dong C. Exp. Cell Res. 2005;310:282–292. PubMed PMC