Feasibility and constraints of particle targeting using the antigen-antibody interaction
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24170264
PubMed Central
PMC4047836
DOI
10.1039/c3nr04340a
Knihovny.cz E-zdroje
- MeSH
- antigeny nádorové chemie imunologie metabolismus MeSH
- buněčná adheze MeSH
- buňky NIH 3T3 MeSH
- imunokomplex MeSH
- karboanhydrasa IX MeSH
- karboanhydrasy chemie imunologie metabolismus MeSH
- konfokální mikroskopie MeSH
- lidé MeSH
- mikrofluidní analytické techniky MeSH
- monoklonální protilátky chemie imunologie MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nanočástice chemie MeSH
- oxid křemičitý chemie MeSH
- povrchové vlastnosti MeSH
- terciární struktura proteinů MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antigeny nádorové MeSH
- CA9 protein, human MeSH Prohlížeč
- imunokomplex MeSH
- karboanhydrasa IX MeSH
- karboanhydrasy MeSH
- M75 monoclonal antibody MeSH Prohlížeč
- monoklonální protilátky MeSH
- oxid křemičitý MeSH
This work is concerned with the surface modification of fluorescent silica nanoparticles by a monoclonal antibody (M75) and the specific bioadhesion of such particles to surfaces containing the PG domain of carbonic anhydrase IX (CA IX), which is a trans-membrane protein specifically expressed on the surfaces of several tumor cell lines. The adhesion strength of antibody-bearing silica nanoparticles to antigen-bearing surfaces was investigated under laminar flow conditions in a microfluidic cell and compared to the adhesion of unmodified silica nanoparticles and nanoparticles coupled with an unspecific antibody. Adhesion to cancer cells using flow cytometry was also investigated and in all cases the adhesion strength of M75-modified nanoparticles was significantly stronger than for the unmodified or unspecific nanoparticles, up to several orders of magnitude in some cases. The specific modification of nano- and microparticles by an antibody-like protein therefore appears to be a feasible approach for the targeting of tumor cells.
Zobrazit více v PubMed
Čejková J., Stěpánek F. Curr. Pharm. Des. 2013;19:6298–6314. PubMed
Zadrazil A., Tokarova V., Stepanek F. Soft Matter. 2012;8:1811–1816.
Tokarova V., Pittermannova A., Cech J., Ulbrich P., Stepanek F. Soft Matter. 2012;8:1087–1095.
Tokárová V., Kašpar O., Knejzlík Z., Ulbrich P., Štěpánek F. Powder Technol. 2013;235:797–805.
Haufova P., Dohnal J., Hanus J., Stepanek F. Colloids Surf., A. 2012;410:52–58.
Vasir J. K., Tambwekar K., Garg S. Int. J. Pharm. 2003;255:13–32. PubMed
Guillemot G., Lorthois S., Schmitz P., Mercier-Bonin M. Chem. Eng. Res. Des. 2007;85:800–807.
Prabhakarpandian B., Shen M. C., Pant K., Kiani M. F. Microvasc. Res. 2011;82:210–220. PubMed PMC
Doshi N., Prabhakarpandian B., Rea-Ramsey A., Pant K., Sundaram S., Mitragotri S. J. Controlled Release. 2010;146:196–200. PubMed PMC
Jain R. K., Stylianopoulos T. Nat. Rev. Clin. Oncol. 2010;7:653–664. PubMed PMC
Maeda H. Adv. Enzyme Regul. 2001;41:189–207. PubMed
Funakoshi N., Onizuka M., Yanagi K., Ohshima N., Tomoyasu M., Sato Y., Yamamoto T., Ishikawa S., Mitsui T. Microvasc. Res. 2000;59:361–367. PubMed
Hansen-Algenstaedt N., Joscheck C., Schaefer C., Lamszus K., Wolfram L., Biermann T., Algenstaedt P., Brockmann M. A., Heintz C., Fiedler W., Ruther W. Eur. J. Cancer. 2005;41:1073–1085. PubMed
Yuan F., Dellian M., Fukumura D., Leunig M., Berk D. A., Torchilin V. P., Jain R. K. Cancer Res. 1995;55:3752–3756. PubMed
Tanaka M., Komagata M., Tsukada M., Kamiya H. Powder Technol. 2008;183:273–281.
Ott M. L., Mizes H. A. Colloids Surf., A. 1994;87:245–256.
Zhang H. A., Ding W. Q., Law K. Y., Cetinkaya C. Powder Technol. 2011;208:582–589.
Blackwell J. E., Dagia N. M., Dickerson J. B., Berg E. L., Goetz D. J. Ann. Biomed. Eng. 2001;29:523–533. PubMed
Abbassi O., Kishimoto T. K., Mcintire L. V., Anderson D. C., Smith C. W. J. Clin. Invest. 1993;92:2719–2730. PubMed PMC
Kral V., Mader P., Collard R., Fabry M., Horejsi M., Rezacova P., Kozisek M., Zavada J., Sedlacek J., Rulisek L., Brynda J. Proteins. 2008;71:1275–1287. PubMed
Gieling R. G., Williams K. J. Bioorg. Med. Chem. 2013;21:1470–1476. PubMed
Kivela A. J., Knuuttila A., Rasanen J., Sihvo E., Salmenkivi K., Saarnio J., Pastorekova S., Pastorek J., Waheed A., Sly W. S., Salo J. A., Parkkila S. Bioorg. Med. Chem. 2013;21:1483–1488. PubMed
Zavada J., Zavadova Z., Machon O., Kutinova L., Opavsky R., Pastorek J. Int. J. Oncol. 1997;10:857–863. PubMed
Zavada J., Zavadova Z., Pastorek J., Biesova Z., Jezek J., Velek J. Br. J. Cancer. 2000;82:1808–1813. PubMed PMC
Stöber W., Fink A., Bohn E. J. Colloid Interface Sci. 1968;26:62–69.
Cejkova J., Hanus J., Stepanek F. J. Colloid Interface Sci. 2010;346:352–360. PubMed
Karg M., Pastoriza-Santos I., Liz-Marzan L. M., Hellweg T. ChemPhysChem. 2006;7:2298–2301. PubMed
Vasir J. K., Labhasetwar V. Biomaterials. 2008;29:4244–4252. PubMed PMC
Pyo N., Tanaka S., McNamee C. E., Kanda Y., Fukumori Y., Ichikawa H., Higashitani K. Colloids Surf., B. 2006;53:278–287. PubMed
Shinto H., Aso Y., Fukasawa T., Higashitani K. Colloids Surf., B. 2012;91:114–121. PubMed
Jain R. K. Cancer Res. 1988;48:2641–2658. PubMed
Kang S. T., Subramani A., Hoek E. M. V., Deshusses M. A., Matsumoto M. R. J. Membr. Sci. 2004;244:151–165.
Kiani M. F., Yuan H., Chen X., Smith L., Gaber M. W., Goetz D. J. Pharm. Res. 2002;19:1317–1322. PubMed
Liang S., Slattery M. J., Dong C. Exp. Cell Res. 2005;310:282–292. PubMed PMC