Antibody-pHPMA functionalised fluorescent silica nanoparticles for colorectal carcinoma targeting

. 2018 Jun 13 ; 8 (39) : 21679-21689. [epub] 20180613

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35541757

The systemic application of highly potent drugs such as cytostatics poses the risks of side effects, which could be reduced by using a carrier system able to specifically deliver the encapsulated drug to the target tissue. Essential components of a nanoparticle-based drug delivery system include the drug carrier itself, a targeting moiety, and a surface coating that minimizes recognition by the immune system. The present work reports on the preparation, in vitro characterization and in vivo testing of a new delivery system consisting of fluorescent silica nanoparticles functionalised with a non-immunogenic stealth polymer poly(N-(2-hydroxypropyl)methacrylamide) (pHPMA) and a monoclonal antibody IgG M75 that specifically binds to Carbonic Anhydrase IX (CA IX). CA IX is a promising therapeutic target, as it is a hallmark of several hypoxic tumours including colorectal carcinoma. Uniquely in this work, the monoclonal antibody was covalently coupled to the surface of fluorescently labelled silica nanoparticles via a multivalent amino-reactive co-polymer rather than a traditional bivalent linker. The pHPMA-M75 functionalised SiO2 nanoparticles exhibited excellent colloidal stability in physiological media. Their in vitro characterisation by flow cytometry proved a highly specific interaction with colorectal carcinoma cells HT-29. In vivo study on athymic NU/NU nude mice revealed that the SiO2-pHPMA-M75 nanoparticles are capable of circulating in the blood after intravenous administration and accumulate in the tumour at tenfold higher concentration than nanoparticles without specific targeting, with a considerably longer retention time. Additionally, it was found that by reducing the dose administered in vivo, the selectivity of the nanoparticle biodistribution could be further enhanced in favour of the tumour.

Zobrazit více v PubMed

Owens III D. E. Peppas N. A. Int. J. Pharm. 2006;307:93–102. doi: 10.1016/j.ijpharm.2005.10.010. PubMed DOI

Moghimi S. M. Szebeni J. Prog. Lipid Res. 2003;42:463–478. doi: 10.1016/S0163-7827(03)00033-X. PubMed DOI

Illum L. Davis S. Müller R. Mak E. West P. Life Sci. 1987;40:367–374. doi: 10.1016/0024-3205(87)90138-X. PubMed DOI

Dobrovolskaia M. A. Aggarwal P. Hall J. B. McNeil S. E. Mol. Pharm. 2008;5:487–495. doi: 10.1021/mp800032f. PubMed DOI PMC

Parveen S. Sahoo S. K. Eur. J. Pharmacol. 2011;670:372–383. doi: 10.1016/j.ejphar.2011.09.023. PubMed DOI

Aggarwal P. Hall J. B. McLeland C. B. Dobrovolskaia M. A. McNeil S. E. Adv. Drug Delivery Rev. 2009;61:428–437. doi: 10.1016/j.addr.2009.03.009. PubMed DOI PMC

Walkey C. D. Olsen J. B. Guo H. Emili A. Chan W. C. J. Am. Chem. Soc. 2012;134:2139–2147. doi: 10.1021/ja2084338. PubMed DOI

Decuzzi P. Godin B. Tanaka T. Lee S.-Y. Chiappini C. Liu X. Ferrari M. J. Controlled Release. 2010;141:320–327. doi: 10.1016/j.jconrel.2009.10.014. PubMed DOI

Moghimi S. M. Hunter A. C. Murray J. C. Pharmacogn. Rev. 2001;53:283–318. PubMed

Cheng J. Teply B. A. Sherifi I. Sung J. Luther G. Gu F. X. Levy-Nissenbaum E. Radovic-Moreno A. F. Langer R. Farokhzad O. C. Biomaterials. 2007;28:869–876. doi: 10.1016/j.biomaterials.2006.09.047. PubMed DOI PMC

Hans M. Lowman A. Curr. Opin. Solid State Mater. Sci. 2002;6:319–327. doi: 10.1016/S1359-0286(02)00117-1. PubMed DOI

Knop K. Hoogenboom R. Fischer D. Schubert U. S. Angew. Chem., Int. Ed. 2010;49:6288–6308. doi: 10.1002/anie.200902672. PubMed DOI

Calvo D. Jesús M. Lee D.-H. Rev. Esp. Cardiol. 2006;59:399–400. doi: 10.1157/13087068. PubMed DOI

Szebeni J. Toxicology. 2005;216:106–121. doi: 10.1016/j.tox.2005.07.023. PubMed DOI

Chanan-Khan A. Szebeni J. Savay S. Liebes L. Rafique N. Alving C. Muggia F. Ann. Oncol. 2003;14:1430–1437. doi: 10.1093/annonc/mdg374. PubMed DOI

Szebeni J. Baranyi L. Savay S. Milosevits J. Bunger R. Laverman P. Metselaar J. Storm G. Chanan-Khan A. Liebes L. J. Liposome Res. 2002;12:165–172. doi: 10.1081/LPR-120004790. PubMed DOI

Duncan R. Nat. Rev. Cancer. 2006;6:688. doi: 10.1038/nrc1958. PubMed DOI

Lammers T. Kühnlein R. Kissel M. Subr V. Etrych T. Pola R. Pechar M. Ulbrich K. Storm G. Huber P. J. Controlled Release. 2005;110:103–118. doi: 10.1016/j.jconrel.2005.09.010. PubMed DOI

Kunjachan S. Gremse F. Theek B. Koczera P. Pola R. Pechar M. Etrych T. Ulbrich K. Storm G. Kiessling F. ACS Nano. 2012;7:252–262. doi: 10.1021/nn303955n. PubMed DOI PMC

Pechar M. Pola R. Laga R. Ulbrich K. Bednárová L. Maloň P. Sieglová I. Král V. Fábry M. Vaněk O. Biomacromolecules. 2011;12:3645–3655. doi: 10.1021/bm200897b. PubMed DOI

Šubr V. Koňák Č. Laga R. Ulbrich K. Biomacromolecules. 2006;7:122–130. doi: 10.1021/bm050524x. PubMed DOI

Koňák Č. Šubr V. Kostka L. Štěpánek P. Ulbrich K. Schlaad H. Langmuir. 2008;24:7092–7098. doi: 10.1021/la800119w. PubMed DOI

Klepac D. Kostkova H. Petrova S. Chytil P. Etrych T. Kereïche S. Raska I. Weitz D. A. Filippov S. K. Nanoscale. 2018;10:6194–6204. doi: 10.1039/C7NR09355A. PubMed DOI

Green N. Herbert C. W. Hale S. Hale A. Mautner V. Harkins R. Hermiston T. Ulbrich K. Fisher K. Seymour L. Gene Ther. 2004;11:1256. doi: 10.1038/sj.gt.3302295. PubMed DOI

Král V. Mader P. Collard R. Fábry M. Hořejší M. Řezáčová P. Kožíšek M. Závada J. Sedláček J. Rulíšek L. Proteins: Struct., Funct., Bioinf. 2008;71:1275–1287. doi: 10.1002/prot.21821. PubMed DOI

Pastorekova S. Parkkila S. Parkkila A. K. Opavsky R. Zelnik V. Saarnio J. Pastorek J. Gastroenterology. 1997;112:398–408. doi: 10.1053/gast.1997.v112.pm9024293. PubMed DOI

McDonald P. C. Winum J.-Y. Supuran C. T. Dedhar S. Oncotarget. 2012;3:84. doi: 10.18632/oncotarget.422. PubMed DOI PMC

Zavada J. Zavadova Z. Pastorek J. Biesova Z. Jezek J. Velek J. Br. J. Cancer. 2000;82:1808. doi: 10.1054/bjoc.2000.1111. PubMed DOI PMC

Chrastina A. Zavada J. Parkkila S. Kaluz Š. Kaluzová M. Rajčáni J. Pastorek J. Pastoreková S. Int. J. Cancer. 2003;105:873–881. doi: 10.1002/ijc.11142. PubMed DOI

Tokárová V. Pittermannová A. Král V. Řezáčová P. Štěpánek F. Nanoscale. 2013;5:11490–11498. doi: 10.1039/C3NR04340A. PubMed DOI PMC

Ullrich M. Haša J. Hanuš J. Šoóš M. Štěpánek F. Powder Technol. 2016;295:115–121. doi: 10.1016/j.powtec.2016.03.021. DOI

Watermann A. Brieger J. Nanomaterials. 2017;7:189. doi: 10.3390/nano7070189. PubMed DOI PMC

Zhang Y. Guo J. Zhang X.-L. Li D.-P. Zhang T.-T. Gao F.-F. Liu N.-F. Sheng X.-G. Int. J. Pharm. 2015;496:1026–1033. doi: 10.1016/j.ijpharm.2015.10.080. PubMed DOI

Bouchoucha M. Béliveau É. Kleitz F. Calon F. Fortin M.-A. J. Mater. Chem. B. 2017;5:7721–7735. doi: 10.1039/C7TB01385J. PubMed DOI

Mandal T. Beck M. Lindén M. Buske C. Blood. 2016;128:4713.

Chen F. Hong H. Zhang Y. Valdovinos H. F. Shi S. Kwon G. S. Theuer C. P. Barnhart T. E. Cai W. ACS Nano. 2013;7:9027–9039. doi: 10.1021/nn403617j. PubMed DOI PMC

Wang J.-K. Zhou Y.-Y. Guo S.-J. Wang Y.-Y. Nie C.-J. Wang H.-l. Wang J.-l. Zhao Y. Li X.-Y. Chen X.-J. Mater. Sci. Eng., C. 2017;76:944–950. doi: 10.1016/j.msec.2017.03.131. PubMed DOI

Clinical Trial ID no. NCT02106598, Targeted Silica Nanoparticles for Real-Time Image-Guided Intraoperative Mapping of Nodal Metastases

Owens III D. E. Peppas N. A. Int. J. Pharm. 2006;307:93–102. doi: 10.1016/j.ijpharm.2005.10.010. PubMed DOI

Cataldi M. Vigliotti C. Mosca T. Cammarota M. Capone D. Int. J. Mol. Sci. 2017;18:1249. doi: 10.3390/ijms18061249. PubMed DOI PMC

Blanco E. Shen H. Ferrari M. Nat. Biotechnol. 2015;33:941. doi: 10.1038/nbt.3330. PubMed DOI PMC

Etrych T. Mrkvan T. Chytil P. Koňák Č. Říhová B. Ulbrich K. J. Appl. Polym. Sci. 2008;109:3050–3061. doi: 10.1002/app.28466. DOI

Pastoreková S. Závadová Z. Košťál M. Babušíková O. Závada J. Virology. 1992;187:620–626. doi: 10.1016/0042-6822(92)90464-Z. PubMed DOI

Stöber W. Fink A. Bohn E. J. Colloid Interface Sci. 1968;26:62–69. doi: 10.1016/0021-9797(68)90272-5. DOI

Čejková J. Hanuš J. Štěpánek F. J. Colloid Interface Sci. 2010;346:352–360. doi: 10.1016/j.jcis.2010.02.060. PubMed DOI

Bangs Laboratories, Inc., TechNote 205: Covalent Coupling, 2013

Touisni N. Kanfar N. Ulrich S. Dumy P. Supuran C. T. Mehdi A. Winum J.-Y. Chem.–Eur. J. 2015;21:10306–10309. doi: 10.1002/chem.201501037. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...