Environmental and health impacts assessment of long-term naturally-weathered municipal solid waste incineration ashes deposited in soil-old burden in Bratislava city, Slovakia
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36873465
PubMed Central
PMC9976324
DOI
10.1016/j.heliyon.2023.e13605
PII: S2405-8440(23)00812-5
Knihovny.cz E-zdroje
- Klíčová slova
- Incineration, Leaching, Low-molecular-weight organic acids, MSWI residues, Urban soil, metal(loid)s,
- Publikační typ
- časopisecké články MeSH
Municipal solid waste incineration (MSWI) is an effective method for reducing the volume/mass of waste. However, MSWI ashes contain high concentrations of many substances, including trace metal (loid)s, that could be released into the environment and contaminate soils and groundwater. In this study, attention was focused on the site near the municipal solid waste incinerator where MSWI ashes are deposited on the surface without any control. Here, combined results (chemical and mineralogical analyses, leaching tests, speciation modelling, groundwater chemistry and human health risk assessment) are presented to assess the impact of MSWI ash on the surrounding environment. The mineralogy of ∼forty years old MSWI ash was diverse, and quartz, calcite, mullite, apatite, hematite, goethite, amorphous glasses and several Cu-bearing minerals (e.g. malachite, brochantite) were commonly detected. In general, the total concentrations of metal (loid)s in MSWI ashes were high, following the order: Zn (6731 mg/kg) > Ba (1969 mg/kg) ≈ Mn (1824 mg/kg) > Cu (1697 mg/kg) > Pb (1453 mg/kg) > Cr (247 mg/kg) > Ni (132 mg/kg) > Sb (59.4 mg/kg) > As (22.9 mg/kg) ≈ Cd (20.6 mg/kg). Cadmium, Cr, Cu, Pb, Sb and Zn exceeded the indication or even intervention criteria for industrial soils defined by the Slovak legislation. Batch leaching experiments with diluted citric and oxalic acids that simulate the leaching of chemical elements under rhizosphere conditions documented low dissolved fractions of metals (0.00-2.48%) in MSWI ash samples, showing their high geochemical stability. Non-carcinogenic and carcinogenic risks were below the threshold values of 1.0 and 1 × 10-6, respectively, with soil ingestion being the most important exposure route for workers. The groundwater chemistry was unaffected by deposited MSWI ashes. This study may be useful in determining the environmental risks of trace metal (loid)s in weathered MSWI ashes that are loosely deposited on the soil surface.
SNM Natural History Museum Vajanského Nábrežie 2 810 06 Bratislava Slovak Republic
The Center of Environmental Services Ltd Kutlíkova 17 852 50 Bratislava Slovak Republic
Zobrazit více v PubMed
OECD . 2021. Municipal Waste (Indicator) accessed. DOI
Jebaranjitham J.N., Christyraj J.D.S., Prasannan A., Rajagopalan K., Chelladurai K.S., Gnanaraja J.K.J.S. Current scenario of solid waste management techniques and challenges in Covid-19 – a review. Heliyon. 2022;8 doi: 10.1016/j.heliyon.2022.e09855. PubMed DOI PMC
Quina M.J., Bontempi E., Bogush A., Schlumberger S., Weibel G., Braga R., Funari V., Hyks J., Rasmussen E., Lederer J. Technologies for the management of MSW incineration ashes from gas cleaning: new perspectives on recovery of secondary raw materials and circular economy. Sci. Total Environ. 2018;635:526–542. doi: 10.1016/j.scitotenv.2018.04.150. PubMed DOI
Seniunaite J., Vasarevicius S. Leaching of copper, lead and zinc from municipal solid waste incineration bottom ash. Energy Proc. 2017;113:442–449. doi: 10.1016/j.egypro.2017.04.036. DOI
Astrup T. Pretreatment and utilization of waste incineration bottom ashes: Danish experiences. Waste Manag. 2007;27:1452–1457. doi: 10.1016/j.wasman.2007.03.017. PubMed DOI
Zhu J., Wei Z., Luo Z., Yu L., Yin K. Phase changes during various treatment processes for incineration bottom ash from municipal solid wastes: a review in the application-environment nexus. Environ. Pollut. 2021;287 doi: 10.1016/j.envpol.2021.117618. PubMed DOI
Assi A., Bilo F., Zanoletti A., Ponti J., Valsesia A., La Spina R., Zacco A., Bontempi E. Zero-waste approach in municipal solid waste incineration: reuse of bottom ash to stabilize fly ash. J. Clean. Prod. 2020;245 doi: 10.1016/j.jclepro.2019.118779. DOI
Li X.G., Liu Z.L., Lv Y., Cai L.X., Jiang D.B., Jiang W.G., Jian S. Utilization of municipal solid waste incineration bottom ash in autoclaved aerated concrete. Construct. Build. Mater. 2018;178:175–182. doi: 10.1016/j.conbuildmat.2018.05.147. DOI
Luo H., Cheng Y., He D., Yang E.-H. Review of leaching behavior of municipal solid waste incineration (MSWI) ash. Sci. Total Environ. 2019;668:90–103. doi: 10.1016/j.scitotenv.2019.03.004. PubMed DOI
Sabbas T., Polettini A., Pomi R., Astrup T., Hjelmar O., Mostbauer P., Cappai G., Magel G., Salhofer S., Speiser C., Heuss-Assbichler S., Klein R., Lechner P., members of the pHOENIX working group on Management of MSWI Residues Management of municipal solid waste incineration residues. Waste Manag. 2003;23:61–88. doi: 10.1016/S0956-053X(02)00161-7. PubMed DOI
Zari M., Smith R., Wright C., Ferrari R. Health and environmental impact assessment of landfill mining activities: a case study in Norfolk, UK. Heliyon. 2022;8 doi: 10.1016/j.heliyon.2022.e11594. PubMed DOI PMC
Wei Y., Shimaoka T., Saffarzadeh A., Takahashi F. Mineralogical characterization of municipal solid waste incineration bottom ash with an emphasis on heavy metal-bearing phases. J. Hazard Mater. 2011;187:534–543. doi: 10.1016/j.jhazmat.2011.01.070. PubMed DOI
Youcai Z. Elsevier Inc; 2017. Pollution Control and Resource Recovery: Municipal Solid Waste Incineration: Bottom Ash and Fly Ash. DOI
Alam Q., Schollbach K., Van Hoek C., Van der Laan S., De Wolf T., Brouwers H.J.H. In-depth mineralogical quantification of MSWI bottom ash phases and their association with potentially toxic elements. Waste Manag. 2019;87:1–12. doi: 10.1016/j.wasman.2019.01.031. PubMed DOI
Loginova E., Volkov D.S., van de Wouw P.M.F., Florea M.V.A., Brouwers H.J.H. Detailed characterization of particle size fraction of municipal solid waste incineration bottom ash. J. Clean. Prod. 2019;207:866–874. doi: 10.1016/j.jclepro.2018.10.022. DOI
Chimenos J.M., Segarra M., Fernández M.A., Espiell F. Characterization of the bottom ash in municipal solid waste incinerator. J. Hazard Mater. 1999;64:211–222. doi: 10.1016/S0304-3894(98)00246-5. DOI
Chimenos J.M., Fernández A.I., Nadal R., Espiell F. Short-term natural weathering of MSWI bottom ash. J. Hazard Mater. 2000;79:287–299. doi: 10.1016/S0304-3894(00)00270-3. PubMed DOI
Meima J.A., Comans R.N.J. The leaching of trace elements from municipal solid waste incinerator bottom ash at different stages of weathering. Appl. Geochem. 1999;14:159–171. doi: 10.1016/S0883-2927(98)00047-X. DOI
Polettini A., Pomi R. The leaching behavior of incinerator bottom ash as affected by accelerated ageing. J. Hazard Mater. 2004;113:209–215. doi: 10.1016/j.jhazmat.2004.06.009. PubMed DOI
Saffarzadeh A., Shimaoka T., Wei Y., Gardner K.H., Musselman C.H. Impacts of natural weathering on the transformation/neoformation processes in landfilled MSWI bottom ash? A geoenvironmental perspective. Waste Manag. 2011;31:2440–2454. doi: 10.1016/j.wasman.2011.07.017. PubMed DOI
Dijkstra J.J., van der Sloot H.A., Comans R.N.J. The leaching of major and trace elements from MSWI bottom ash as a function of pH and time. Appl. Geochem. 2006;21:335. doi: 10.1016/j.apgeochem.2005.11.003. 331. DOI
Li H., Sun J., Gui H., Xia D., Wang Y. Physiochemical properties, heavy metal leaching characteristics and reutilization evaluations of solid ashes from municipal solid waste incinerator plants. Waste Manag. 2022;138:49–58. doi: 10.1016/j.wasman.2021.11.035. PubMed DOI
Xue Y., Liu X. Detoxification, solidification and recycling of municipal solid waste incineration fly ash: a review. Chem. Eng. J. 2021;420 doi: 10.1016/j.cej.2021.130349. Part 3. DOI
Su L., Guo G., Shi X., Zuo M., Niu D., Zhao A., Zhao Y. Copper leaching of MSWI bottom ash co-disposed with refuse: effect of short-term accelerated weathering. Waste Manag. 2013;33:1411–1417. doi: 10.1016/j.wasman.2013.02.011. PubMed DOI
Vasarevičius S., Seniūnaitė J., Vaišis V. Impact of natural weathering on stabilization of heavy metals (Cu, Zn, and Pb) in MSWI bottom ash. Appl. Sci. 2022;12:3419. doi: 10.3390/app12073419. DOI
Meima J.A., Comans R.N.J. Geochemical modeling of weathering reactions in municipal solid waste incinerator bottom ash. Environ. Sci. Technol. 1997;31:1269–1276. doi: 10.1021/es9603158. DOI
Alam Q., Schollbach K., Rijnders M., Van Hoek C., Van der Laan S., Brouwers H.J.H. The immobilization of potentially toxic elements due to incineration and weathering of bottom ash fines. J. Hazard Mater. 2019;379 doi: 10.1016/j.jhazmat.2019.120798. PubMed DOI
Strobel B.W. Influence of vegetation on low-molecular-weight carboxylic acids in soil solution – a review. Geoderma. 2001;99:169–198. doi: 10.1016/S0016-7061(00)00102-6. DOI
Achor S., Aravis C., Heaney N., Odion E., Lin C. Response of organic acid-mobilized heavy metals in soils to biochar application. Geoderma. 2020;378 doi: 10.1016/j.geoderma.2020.114628. DOI
Cheng S., Lin Q., Wang Y., Luo H., Huang Z., Fu H., Chen H., Xiao R. The removal of Cu, Ni, and Zn in industrial soil by washing with EDTA-organic acids. Arab. J. Chem. 2020;13:5160–5170. doi: 10.1016/j.arabjc.2020.02.015. DOI
Geng H., Wang F., Yan C., Tian Z., Chen H., Zhou B., Yuan R., Yao J. Leaching behavior of metals from iron tailings under varying pH and low-molecular-weight organic acids. J. Hazard Mater. 2020;383 doi: 10.1016/j.jhazmat.2019.121136. PubMed DOI
Adeleke R., Nwangburuka C., Oboirien B. Origins, roles and fate of organic acids in soils: a review. South Afr. J. Bot. 2017;108:393–406. doi: 10.1016/j.sajb.2016.09.002. DOI
Jones D.L., Brassington D.S. Sorption of organic acids in acid soils and its implications in the rhizosphere. Eur. J. Soil Sci. 1998;49:447–455. doi: 10.1046/j.1365-2389.1998.4930447.x. DOI
van Hees P.A.W., Lundström U.S., Giesler R. Low molecular weight organic acids and their Al-complexes in soil solution – composition, distribution and seasonal variation in three podzolized soils. Geoderma. 2000;94:173–200. doi: 10.1016/S0016-7061(98)00140-2. DOI
Urban O., Chovanec J., Polčan I., Scherer S., Jurkovič Ľ., Gregor T., Greš P., Tóth R., Benko J., Drábik A., Malý V., Kostolanský M., Macek J., Kravchenko D. Final Report of Geological Works. Bratislava, Ministry of Environment of the Slovak Republic (In Slovak) 2020. Geological survey of probable environmental burden B2(014)/Bratislava – ružinov – incinerator – slag dump in front of the building (SK/EZ/B2/130)
Slovnaft . 2021. Soil and Groundwater Protection.https://slovnaft.sk/en/about-us/sustainable-development-and-hse/environmental-protection/soil-and-groundwater-protection/ (in Slovak) accessed.
Ettler V., Vrtišková R., Mihaljevič M., Šebek O., Grygar T., Drahota P. Cadmium, lead and zinc leaching from smelter fly ash in simple organic acids–Simulators of rhizospheric soil solutions. J. Hazard Mater. 2009;170:1264–1268. doi: 10.1016/j.jhazmat.2009.05.068. PubMed DOI
Sun Y., Luo T., Zhong S., Zhou F., Zhang Y., Ma Y., Fu Q. Long-term effects of low-molecular-weight organic acids on remobilization of Cd, Cr, Pb, and as in alkaline coastal wetland soil. Environ. Pollut. Bioavailab. 2021;33:266–277. doi: 10.1080/26395940.2021.1982406. DOI
Vítková M., Komárek M., Tejnecký V., Šillerová H. Interactions of nano-oxides with low-molecular-weight organic acids in a contaminated soil. J. Hazard Mater. 2015;293:7–14. doi: 10.1016/j.jhazmat.2015.03.033. PubMed DOI
Xu D.-M., Fu R.-B. The mechanistic insights into the leaching behaviors of potentially toxic elements from the indigenous zinc smelting slags under the slag dumping site scenario. J. Hazard Mater. 2022;437 doi: 10.1016/j.jhazmat.2022.129368. PubMed DOI
Zhang H., Zhang R., Lu T., Qi W., Zhu Y., Lu M., Qi Z., Chen W. Enhanced transport of heavy metal ions by low-molecular-weight organic acids in saturated porous media: link complex stability constants to heavy metal mobility. Chemosphere. 2022;290 doi: 10.1016/j.chemosphere.2021.133339. PubMed DOI
van Hees P.A.W., Vinogradoff S.I., Edwards A.C., Godbold D.L., Jones D.L. Low molecular weight organic acid adsorption in forest soils: effects on soil solution concentrations and biodegradation rates. Soil Biol. Biochem. 2003;35:1015–1026. doi: 10.1016/S0038-0717(03)00144-5. DOI
Vranova V., Rejsek K., Formanek P. Aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil: a review. Sci. World J. 2013;524239 doi: 10.1155/2013/524239. PubMed DOI PMC
Verma F., Singh S., Dhaliwal S.S., Kumar V., Kumar R., Singh J., Parkash C. Appraisal of pollution of potentially toxic elements in different soils collected around the industrial area. Heliyon. 2021;7 doi: 10.1016/j.heliyon.2021.e08122. PubMed DOI PMC
Gyimah E., Gyimah G.N.W., Stemn E., Ndur S., Amankwaa G., Fosu S. Ecological and human risk assessments of heavy metal contamination of surface soils of auto-mechanic shops at Bogoso Junction, Tarkwa, Ghana. Environ. Monit. Assess. 2022;194:830. doi: 10.1007/s10661-022-10429-6. PubMed DOI
Kowalska J.B., Mazurek R., Gasiorek M., Zaleski T. Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination–A review. Environ. Geochem. Health. 2018;40:2395–2420. doi: 10.1007/s10653-018-0106-z. PubMed DOI PMC
Huang J., Wu Y., Li Y., Sun J., Xie Y., Fan Z. Do trace metal(loid)s in road soils pose health risks to tourists? A case of a highly-visited national park in China. J. Environ. Sci. 2022;111:61–74. doi: 10.1016/j.jes.2021.02.032. PubMed DOI
Håkanson L. An ecological risk index for aquatic pollution control: a sedimentological approach. Water Res. 1980;14:975–1001. doi: 10.1016/0043-1354(80)90143-8. DOI
USEPA . 2022. ProUCL: Statistical Software for Environmental Applications for Data Sets with and without Nondetect Observations.https://www.epa.gov/land-research/proucl-software Version 5.2. accessed.
Gustafsson J.P. Royal Institute of Technology; Stockholm, Sweden: 2013. Visual MINTEQ, Version 3.1, Division of Land and Water Resources.https://vminteq.lwr.kth.se/download/ accessed.
Bayuseno A.P., Schmahl W.W. Understanding the chemical and mineralogical properties of the inorganic portion of MSWI bottom ash. Waste Manag. 2010;30:1509–1520. doi: 10.1016/j.wasman.2010.03.010. PubMed DOI
Blanc D., Gonzalez L., Lupsea-Toader M., de Brauer C. Mineralogical evolution and leaching behaviour of a heap of bottom ash as a function of time: influence on its valorization. Waste Biomass Valoriz. 2018;9:2517–2527. doi: 10.1007/s12649-018-0444-1. DOI
Huber F., Blasenbauer D., Aschenbrenner P., Fellner J. Chemical composition and leachability of differently sized material fractions of municipal solid waste incineration bottom ash. Waste Manag. 2019;95:593–603. doi: 10.1016/j.wasman.2019.06.047. PubMed DOI
Gupta G., Datta M., Ramana G.V., Alappat B.J., Bishnoi S. Contaminants of concern (CoCs) pivotal in assessing the fate of MSW incineration bottom ash (MIBA): first results from India and analogy between several countries. Waste Manag. 2021;135:167–181. doi: 10.1016/j.wasman.2021.08.036. PubMed DOI
Nguyen T.H., Pham Q.V., Nguyen T.P.M., Vu V.T., Do T.H., Hoang M.T., Thi N.T.T., Minh T.B. Distribution characteristics and ecological risks of heavy metals in bottom ash, fly ash, and particulate matter released from municipal solid waste incinerators in northern Vietnam. Environ. Geochem. Health. 2022 doi: 10.1007/s10653-022-01335-4. PubMed DOI
Yao J., Li W.-B., Kong Q.-N., Wu Y.-Y., He R., Shen D.-S. Content, mobility and transfer behavior of heavy metals in MSWI bottom ash in Zhejiang province, China. Fuel. 2010;89:616–622. doi: 10.1016/j.fuel.2009.06.016. DOI
Dou X., Ren F., Nguyen M.Q., Ahamed A., Yin K., Chan W.P., Chang V.W.-C. Review of MSWI bottom ash utilization from perspectives of collective characterization, treatment and existing application. Renew. Sustain. Energy Rev. 2017;79:24–38. doi: 10.1016/j.rser.2017.05.044. DOI
Wei J., Li H., Liu J. Heavy metal pollution in the soil around municipal solid waste incinerators and its health risks in China. Environ. Res. 2022;203 doi: 10.1016/j.envres.2021.111871. PubMed DOI
Bretzel F.C., Calderisi M. Contribution of a municipal solid waste incinerator to the trace metals in the surrounding soil. Environ. Monit. Assess. 2011;182:523–533. doi: 10.1007/s10661-011-1894-0. PubMed DOI
Li Y., Zhang H., Shao L., Zhou X., He P. Impact of municipal solid waste incineration on heavy metals in the surrounding soils by multivariate analysis and lead isotope analysis. J. Environ. Sci. 2019;82:47–56. doi: 10.1016/j.jes.2019.02.020. PubMed DOI
Venturini E., Vassura I., Ferroni L., Raffo S., Passarini F., Beddows D.C.S., Harrison R.M. Bulk deposition close to a municipal solid waste incinerator: one source among many. Sci. Total Environ. 2013;456–457:392–403. doi: 10.1016/j.scitotenv.2013.03.097. PubMed DOI
Nikravan M., Ramezanianpour A.A., Maknoon R. Study on physiochemical properties and leaching behavior of residual ash fractions from a municipal solid waste incinerator (MSWI) plant. J. Environ. Manag. 2020;260 doi: 10.1016/j.jenvman.2019.110042. PubMed DOI
Piantone P., Bodénan F., Chatelet-Snidaro L. Mineralogical study of secondary mineral phases from weathered MSWI bottom ash: implications for the modelling and trapping of heavy metals. Appl. Geochem. 2004;19:1891–1904. doi: 10.1016/j.apgeochem.2004.05.006. DOI
Font O., Moreno N., Querol X., Izquierdo M., Alvarez E., Diez S., Elvira J., Antenucci D., Nugteren H., Plana F., López A., Coca P., Peña F.G. X-ray powder diffraction-based method for the determination of the glass content and mineralogy of coal (co)-combustion fly ashes. Fuel. 2010;89:2971–2976. doi: 10.1016/j.fuel.2009.11.024. DOI
Zevenbergen C., Van Reeuwijk L.P., Bradley J.P., Bloemen P., Comans R.N.J. Mechanism and conditions of clay formation during natural weathering of MSWI bottom ash. Clay Clay Miner. 1996;44:546–552. doi: 10.1346/CCMN.1996.0440414. DOI
Chen Y.T.H., Traina S.J. Inhibited Cr(VI) reduction by aqueous Fe(II) under hyperalkaline conditions. Environ. Sci. Technol. 2004;38:5535–5539. doi: 10.1021/es049809s. PubMed DOI
Li Z., Chanéac C., Berger G., Delaunay S., Graff A., Lefèvre G. Mechanism and kinetics of magnetite oxidation under hydrothermal conditions. RSC Adv. 2019;9:33633–33642. doi: 10.1039/C9RA03234G. PubMed DOI PMC
Ryu J.-G., Kim Y. Mineral transformation and dissolution of jarosite coprecipitated with hazardous oxyanions and their mobility changes. J. Hazard Mater. 2022;427 doi: 10.1016/j.jhazmat.2022.128283. PubMed DOI
Kawano M., Tomita K. Geochemical modelling of bacterial induced mineralization of schwertmannite and jarosite in sulphuric acid spring water. Am. Mineral. 2001;86:1156–1165. doi: 10.2138/am-2001-1005. DOI
Inkaew K., Saffarzadeh A., Shimaoka T. Modeling the formation of the quench product in municipal solid waste incineration (MSWI) bottom ash. Waste Manag. 2016;52:159–168. doi: 10.1016/j.wasman.2016.03.019. PubMed DOI
Masalehdani M.N.-N., Mees F., Dubois M., Coquinot Y., Potdevin J.-L., Fialin M., Blanc-Valleron M.-M. Condensate minerals from a burning coal-waste heap in Avion, northern France. Can. Mineral. 2009;47:573–591. doi: 10.3749/canmin.47.3.573. DOI
Lytle D.A., Schock M.R., Leo J., Barnes B. A model for estimating the impact of orthophosphate on copper in water. J. AWWA (Am. Water Works Assoc.) 2018;110:E1. doi: 10.1002/awwa.1109. E15. PubMed DOI PMC
Jadhav U.U., Biswal B.K., Chen Z., Yang E.-H., Hocheng H. Leaching of metals from incineration bottom ash using organic acid. J. Sustain. Metall. 2018;4:115–125. doi: 10.1007/s40831-018-0161-9. DOI
EU Council Council decision of 19 December 2002 establishing criteria and procedures for the acceptance of waste at landflls pursuant to Article 16 of and Annex II to Directive 1999/31/EC. The Council of the European Union. Off. J. Eur. Commun. 2003;L11:27–49. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32003D0033&from=GA accessed.
Najafi S., Jalali M. Effects of organic acids on cadmium and copper sorption and desorption by two calcareous soils. Environ. Monit. Assess. 2015;187:585. doi: 10.1007/s10661-015-4804-z. PubMed DOI
Banerjee R., Mohanty A., Chakravarty S., Chakladar S., Biswas P. A single step process to leach out rare earth elements from coal ash using organic carboxylic acids. Hydrometallurgy. 2021;201 doi: 10.1016/j.hydromet.2021.105575. DOI
Onireti O.O., Lin C., Qin J. Combined effects of low-molecular-weight organic acids on mobilization of arsenic and lead from multi-contaminated soils. Chemosphere. 2017;70:161–168. doi: 10.1016/j.chemosphere.2016.12.024. PubMed DOI
Potysz A., Grybos M., Kierczak J., Guibaud G., Fondaneche P., Lens P.N.L., van Hullebusch E.D. Metal mobilization from metallurgical wastes by soil organic acids. Chemosphere. 2017;178:197–211. doi: 10.1016/j.chemosphere.2017.03.015. PubMed DOI
Cappuyns V. Barium (Ba) leaching from soils and certified reference materials. Appl. Geochem. 2018;88(Part A):68–84. doi: 10.1016/j.apgeochem.2017.05.002. DOI
Cappuyns V. Monitoring of total and extractable barium concentrations in floodplain soils. J. Soils Sediments. 2022;22:2948–2957. doi: 10.1007/s11368-022-03178-z. DOI
Wang Z., Chen J., Cai H., Yuan W., Yuan S. Coprecipitation of metal ions into calcite: an estimation of partition coefficients based on field investigation. Acta Geochim. 2021;40:67–77. doi: 10.1007/s11631-020-00443-1. DOI
Drahota P., Raus K., Rychlíková E., Rohovec J. Bioaccessibility of As, Cu, Pb, and Zn in mine waste, urban soil, and road dust in the historical mining village of Kaňk, Czech Republic. Environ. Geochem. Health. 2018;40:1495–1512. doi: 10.1007/s10653-017-9999-1. PubMed DOI
Cupara N., Nikolić I., Đurović D., Milašević I., Medin D., Krivokapić S. Heavy metal assessment in agricultural soils and vegetables in the vicinity of industrial pollutants in the Pljevlja municipality (Montenegro): ecological and health risk approach. Environ. Monit. Assess. 2022;194:819. doi: 10.1007/s10661-022-10445-6. PubMed DOI
Tashakor M., Modabberi S. Human health risks associated with potentially harmful elements from urban soils of Hamedan city, Iran. Pollut. 2021;7:709–722. doi: 10.22059/poll.2021.318496.1015. DOI
Tashakor M., Modabberi S., Argyraki A. Assessing the contamination level, sources and risk of potentially toxic elements in urban soil and dust of Iranian cities using secondary data of published literature. Environ. Geochem. Health. 2022;44:645–675. doi: 10.1007/s10653-021-00994-z. PubMed DOI
Bradham K.D., Diamond G.L., Burgess M., Juhasz A., Klotzbach J.M., Maddaloni M., Nelson C., Scheckel K., Serda S.M., Stifelman M., Thomas D.J. In vivo and in vitro methods for evaluating soil arsenic bioavailability: relevant to human health risk assessment. J. Toxicol. Environ. Health, Part B. 2018;21:83–114. doi: 10.1080/10937404.2018.1440902. PubMed DOI PMC
Juhasz A.L., Herde P., Herde C., Boland J., Smith E. Validation of the predictive capabilities of the Sbrc-G in vitro assay for estimating arsenic relative bioavailability in contaminated soils. Environ. Sci. Technol. 2014;48:12962–12969. doi: 10.1021/es503695g. PubMed DOI
Liang J.H., Lin X.Y., Huang D.K., Xue R.Y., Fu X.Q., Ma L.Q., Li H.B. Nickel oral bioavailability in contaminated soils using a mouse urinary excretion bioassay: variation with bioaccessibility. Sci. Total Environ. 2022;839 doi: 10.1016/j.scitotenv.2022.156366. PubMed DOI
Ng J.C., Juhasz A., Smith E., Naidu R. Assessing the bioavailability and bioaccessibility of metals and metalloids. Environ. Sci. Pollut. Res. 2015;22:8802–8825. doi: 10.1007/s11356-013-1820-9. PubMed DOI
Dopico M., Gómez A. Review of the current state and main sources of dioxins around the world. J. Air Waste Manage. Assoc. 2015;65:1033–1049. doi: 10.1080/10962247.2015.1058869. PubMed DOI
CEWEP . Confederation of European Waste-To-Energy Plants. 2022. Dioxins and WtE plants: state of the art. European-wide overview of long-term analysis of dioxins in WtE plant surroundings.https://www.cewep.eu/wp-content/uploads/2022/03/CEWEP-Report-Dioxins-and-WtE-plants-State-of-the-Art.pdf accessed.
Pacyna J.M., Breivik K., Münch J., Fudala J. European atmospheric emissions of selected persistent organic pollutants, 1970–1995. Atmos. Environ. 2003;37:S119–S131. doi: 10.1016/S1352-2310(03)00240-1. DOI
Li J., Zhang Y., Sun T., Hao H., Wu H., Wang L., Chen Y., Xing L., Niu Z. The health risk levels of different age groups of residents living in the vicinity of municipal solid waste incinerator posed by PCDD/Fs in atmosphere and soil. Sci. Total Environ. 2018;631–632:81–91. doi: 10.1016/j.scitotenv.2018.03.009. PubMed DOI
Rovira J., Vilavert L., Nadal M., Schuhmacher M., Domingo J.L. Temporal trends in the levels of metals, PCDD/Fs and PCBs in the vicinity of a municipal solid waste incinerator. Preliminary assessment of human health risks. Waste Manage. (Tucson, Ariz.) 2015;43:168–175. doi: 10.1016/j.wasman.2015.05.039. PubMed DOI
Rovira J., Nadal M., Schuhmacher M., Domingo J.L. Concentrations of trace elements and PCDD/Fs around a municipal solid waste incinerator in Girona (Catalonia, Spain). Human health risks for the population living in the neighborhood. Sci. Total Environ. 2018;630:34–45. doi: 10.1016/j.scitotenv.2018.02.175. PubMed DOI
Schuhmacher M., Domingo J.L. Long-term study of environmental levels of dioxins and furans in the vicinity of a municipal solid waste incinerator. Environ. Int. 2006;32:397–404. doi: 10.1016/j.envint.2005.09.002. PubMed DOI
Domingo J.L., Marquès M., Mari M., Schuhmacher M. Adverse health effects for populations living near waste incinerators with special attention to hazardous waste incinerators. A review of the scientific literature. Environ. Res. 2020;187 doi: 10.1016/j.envres.2020.109631. PubMed DOI
Parkes B., Hansell A.L., Ghosh R.E., Douglas P., Fecht D., Wellesley D., Kurinczuk J.J., Rankin J., de Hoogh K., Fuller G.W., Elliott P., Toledano M.B. Risk of congenital anomalies near municipal waste incinerators in England and Scotland: retrospective population-based cohort study. Environ. Int. 2020;134 doi: 10.1016/j.envint.2019.05.039. PubMed DOI
Tait P.W., Brew J., Che A., Costanzo A., Danyluk A., Davis M., Khalaf A., McMahon K., Watson A., Rowcliff K., Bowles D. The health impacts of waste incineration: a systematic review. Aust. N. Z. J. Publ. Health. 2020;44:40–48. https//doi.org/10.1111/1753-6405.12939. PubMed
EU Council Council directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. The Council of the European Union. Off. J. Eur. Commun. 1998;L330:32–54. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31998L0083&from=EN accessed.
Anon . 2017. Decree No. 247/2017 Coll. Decree of the Ministry of Health of the Slovak Republic Establishing Details on Drinking Water Quality, Drinking Water Quality Control, Monitoring Program and Risk Management in Drinking Water Supply.https://www.epi.sk/zz/2017-247 (in Slovak) accessed.
SHMI . Slovak Hydrometeorological Institute; Bratislava: 2021. Groundwater Quality in Slovakia in 2020 (In Slovak)https://www.shmu.sk/File/Hydrologia/Publikacna_cinnost/Publikacie_kvality_PzV/KvPzV_2020_kvalita_rocenka_SR.pdf accessed.
Bo X., Guo J., Wan R., Jia Y., Yang Z., Lu Y., Wei M. Characteristics, correlations and health risks of PCDD/Fs and heavy metals in surface soil near municipal solid waste incineration plants in Southwest China. Environ. Pollut. 2022;298 doi: 10.1016/j.envpol.2022.118816. PubMed DOI
Rimmer D.L., Vizard C.G., Pless-Mulloli T., Singleton I., Air V.S., Keatinge Z.A.F. Metal contamination of urban soils in the vicinity of a municipal waste incinerator: one source among many. Sci. Total Environ. 2006;356:207–216. doi: 10.1016/j.scitotenv.2005.04.037. PubMed DOI
Richardson J.B. Urban forests near municipal solid waste incinerators do not show elevated trace metal or rare earth element concentrations across three cities in the northeast USA. Environ. Sci. Pollut. Res. 2020;27:21790–21803. doi: 10.1007/s11356-020-08439-3. PubMed DOI
Vilavert L., Nadal M., Schuhmacher M., Domingo J.L. Two decades of environmental surveillance in the vicinity of a waste incinerator: human health risks associated with metals and PCDD/Fs. Arch. Environ. Contam. Toxicol. 2015;69:241–253. doi: 10.1007/s00244-015-0168-1. PubMed DOI
Adama M., Esena R., Fosu-Mensah B., Yirenya-Tawiah D. Heavy metal contamination of soils around a hospital waste incinerator bottom ash dumps site. J. Environ. Public Health. 2016 doi: 10.1155/2016/8926453. PubMed DOI PMC
Gwenzi W., Gora D., Chaukura N., Tauro T. Potential for leaching of heavy metals in open-burning bottom ash and soil from a non-engineered solid waste landfill. Chemosphere. 2016;147:144–154. doi: 10.1016/j.chemosphere.2015.12.102. PubMed DOI
Jobin P., Mercier G., Blais J.F. Magnetic and density characteristics of a heavily polluted soil with municipal solid waste incinerator residues: significance for remediation strategies. Int. J. Miner. Process. 2016;149:119–126. doi: 10.1016/j.minpro.2016.02.010. DOI
Mouedhen I., Coudert L., Blais J.F., Mercier G. Prediction of physical separation of metals from soils contaminated with municipal solid waste ashes and metallurgical residues. Waste Manage. (Tucson, Ariz.) 2019;93:138–152. doi: 10.1016/j.wasman.2019.05.031. PubMed DOI
Rigo C., Zamengo L., Rampazzo G., Argese E. Characterization of a former dump site in the Lagoon of Venice contaminated by municipal solid waste incinerator bottom ash, and estimation of possible environmental risk. Chemosphere. 2009;77:510–517. doi: 10.1016/j.chemosphere.2009.07.046. PubMed DOI
Xiong Y., Takaoka M., Sano A., Kusakabe T., Yang J., Shiota K., Fujimori T., Oshita K. Distribution and characteristics of heavy metals in a first-generation monofill site for incinerator residue. J. Hazard Mater. 2019;373:763–772. doi: 10.1016/j.jhazmat.2019.04.019. PubMed DOI