Multi-Hollow Surface Dielectric Barrier Discharge for Bacterial Biofilm Decontamination

. 2021 Feb 09 ; 26 (4) : . [epub] 20210209

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33572192

Grantová podpora
TJ04000329 and TG02010067 Technology Agency of the Czech Republic
LM2018097 Ministerstvo Školství, Mládeže a Tělovýchovy

The plasma-activated gas is capable of decontaminating surfaces of different materials in remote distances. The effect of plasma-activated water vapor on Staphylococcus epidermidis, methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli biofilm contamination was investigated on the polypropylene nonwoven textile surface. The robust and technically simple multi-hollow surface dielectric barrier discharge was used as a low-temperature atmospheric plasma source to activate the water-based medium. The germicidal efficiency of short and long-time exposure to plasma-activated water vapor was evaluated by standard microbiological cultivation and fluorescence analysis using a fluorescence multiwell plate reader. The test was repeated in different distances of the contaminated polypropylene nonwoven sample from the surface of the plasma source. The detection of reactive species in plasma-activated gas flow and condensed activated vapor, and thermal and electrical properties of the used plasma source, were measured. The bacterial biofilm decontamination efficiency increased with the exposure time and the plasma source power input. The log reduction of viable biofilm units decreased with the increasing distance from the dielectric surface.

Zobrazit více v PubMed

Locke B.R., Shih K.-Y. Review of the methods to form hydrogen peroxide in electrical discharge plasma with liquid water. Plasma Sour. Sci. Technol. 2011;20:034006. doi: 10.1088/0963-0252/20/3/034006. DOI

Tachibana K., Nakamura T. Characterization of dielectric barrier discharges with water in correlation to productions of OH and H2O2 in gas and liquid phases. Jpn. J. Appl. Phys. 2019;58:046001. doi: 10.7567/1347-4065/aafe73. DOI

Erben D., Hola V., Jaros J., Rahel J. Bacterial growth on chitosan-coated polypropylene textile. ISRN Microbiol. 2012;2012:749694. doi: 10.5402/2012/749694. PubMed DOI PMC

Rahel J., Jonasova E., Nesvorna M., Klubal R., Erban T., Hubert J. The toxic effect of chitosan/metal-impregnated textile to synanthropic mites. Pest. Manag. Sci. 2013;69:722–726. doi: 10.1002/ps.3428. PubMed DOI

Ivanova T.V., Krumpolec R., Homola T., Musin E., Baier G., Landfester K., Cameron D.C., Černák M. Ambient air plasma pre-treatment of non-woven fabrics for deposition of antibacterial poly (l-lactide) nanoparticles. Plasma Process. Polym. 2017;14:1–9. doi: 10.1002/ppap.201600231. DOI

Kováčová M., Bodík M., Mičušík M., Humpolíček P., Šiffalovič P., Špitálsky Z. Increasing the effectivity of the antimicrobial surface of carbon quantum dots-based nanocomposite by atmospheric pressure plasma. Clin. Plasma Med. 2020;19–20:100111. doi: 10.1016/j.cpme.2020.100111. DOI

Kováčová M., Kleinová A., Vajďák J., Humpolíček P., Kubát P., Bodík M., Marković Z., Špitálský Z. Photodynamic-active smart biocompatible material for an antibacterial surface coating. J. Photochem. Photobiol. B Biol. 2020;211:112012. doi: 10.1016/j.jphotobiol.2020.112012. PubMed DOI

Tudu B.K., Sinhamahapatra A., Kumar A. Surface Modification of Cotton Fabric Using TiO2 Nanoparticles for Self-Cleaning, Oil-Water Separation, Antistain, Anti-Water Absorption, and Antibacterial Properties. ACS Omega. 2020;5:7850–7860. doi: 10.1021/acsomega.9b04067. PubMed DOI PMC

Attia N.F., Elashery S.E.A., Oh H. Nanosensors and Nanodevices for Smart Multifunctional Textiles. Elsevier; Amsterdam, The Netherlands: 2021. Nanomaterials-based antibacterial textiles; pp. 135–147.

Guo J., Huang K., Wang J. Bactericidal effect of various non-thermal plasma agents and the influence of experimental conditions in microbial inactivation: A review. Food Control. 2015;50:482–490. doi: 10.1016/j.foodcont.2014.09.037. DOI

Xu H., Zhu Y., Cui D., Du M., Wang J., Ma R., Jiao Z. Evaluating the roles of OH radicals, H2O2, ORP and pH in the inactivation of yeast cells on a tissue model by surface micro-discharge plasma. J. Phys. D Appl. Phys. 2019;52:395201. doi: 10.1088/1361-6463/ab273d. DOI

Bourke P., Ziuzina D., Han L., Cullen P.J., Gilmore B.F. Microbiological interactions with cold plasma. J. Appl. Microbiol. 2017;123:308–324. doi: 10.1111/jam.13429. PubMed DOI

Hayashi N., Tsutsui S., Tomari T., Guan W. Sterilization of medical equipment using oxygen radicals produced by water vapor RF plasma. IEEE Trans. Plasma Sci. 2008;36:1302–1303. doi: 10.1109/TPS.2008.924453. DOI

Fumagalli F., Kylián O., Amato L., Hanuš J., Rossi F. Low-pressure water vapour plasma treatment of surfaces for biomolecules decontamination. J. Phys. D Appl. Phys. 2012;45:135203. doi: 10.1088/0022-3727/45/13/135203. DOI

Wang L., Deng L.H., Li B., Fang B., Zhao W.X., Xu H.L. Low-pressure OH radicals reactor generated by dielectric barrier discharge from water vapor. Phys. Plasmas. 2020;27 doi: 10.1063/5.0006191. DOI

Tučeková Z., Koval’ová Z., Zahoranová A., Machala Z., Černák M. Inactivation of Escherichia coli on PTFE surfaces by diffuse coplanar surface barrier discharge. Eur. Phys. J. Appl. Phys. 2016;75:24711–24716. doi: 10.1051/epjap/2016150590. DOI

Procházka V., Tučeková Z., Dvorák P., Kováčik D., Slavíček P., Zahoranová A., Voráč J. Coplanar surface barrier discharge ignited in water vapor—A selective source of OH radicals proved by (TA)LIF measurement. Plasma Sour. Sci. Technol. 2018;27:015001. doi: 10.1088/1361-6595/aa9ad4. DOI

Moldgy A., Nayak G., Aboubakr H.A., Goyal S.M., Bruggeman P.J. Inactivation of virus and bacteria using cold atmospheric pressure air plasmas and the role of reactive nitrogen species. J. Phys. D Appl. Phys. 2020;53 doi: 10.1088/1361-6463/aba066. DOI

Sarani A., Nikiforov A.Y., Leys C. Atmospheric pressure plasma jet in Ar and Ar/ H2 O mixtures: Optical emission spectroscopy and temperature measurements. Phys. Plasmas. 2010;17:063504. doi: 10.1063/1.3439685. DOI

Brandenburg R. Dielectric barrier discharges: Progress on plasma sources and on the understanding of regimes and single filaments. Plasma Sour. Sci. Technol. 2017;26:53001. doi: 10.1088/1361-6595/aa6426. DOI

Falkenstein Z., Coogan J.J. Microdischarge behaviour in the silent discharge of nitrogen—Oxygen and water—Air mixtures. J. Phys. D Appl. Phys. 1997;30:817–825. doi: 10.1088/0022-3727/30/5/015. DOI

Akitsu T., Ohkawa H., Tsuji M., Kimura H., Kogoma M. Plasma sterilization using glow discharge at atmospheric pressure. Surf. Coat. Technol. 2005;193:29–34. doi: 10.1016/j.surfcoat.2004.07.042. DOI

Malik M.A., Schoenbach K.H. New approach for sustaining energetic, efficient and scalable non-equilibrium plasma in water vapours at atmospheric pressure. J. Phys. D Appl. Phys. 2012;45:132001. doi: 10.1088/0022-3727/45/13/132001. DOI

Liu K., Hu H., Lei J., Hu Y., Zheng Z. Comparison of pulsating DC and DC power air-water plasma jet: A method to decrease plume temperature and increase ROS. Phys. Plasmas. 2016;23:123510. doi: 10.1063/1.4971450. DOI

Krumpolec R., Richter V., Zemánek M., Homola T. Multi-hollow surface dielectric barrier discharge for plasma treatment of patterned silicon surfaces. Surfaces Interfaces. 2019;16:181–187. doi: 10.1016/j.surfin.2019.01.014. DOI

Homola T., Krumpolec R., Zemánek M., Kelar J., Synek P., Hoder T., Černák M. An Array of Micro-hollow Surface Dielectric Barrier Discharges for Large-Area Atmospheric-Pressure Surface Treatments. Plasma Chem. Plasma Process. 2017;37:1149–1163. doi: 10.1007/s11090-017-9792-z. DOI

Gebremariam G., Admassu S., Berhanu T., Tučeková Z., Krumpolec R., Černák M. Optimization and influence of multi-hollow surface dielectric barrier discharge plasma operating conditions on the physical quality of peanut. Eur. Phys. J. D. 2019;73 doi: 10.1140/epjd/e2019-90616-0. DOI

Gebremical G.G., Emire S.A., Berhanu T. Effects of Multihollow Surface Dielectric Barrier Discharge Plasma on Chemical and Antioxidant Properties of Peanut. J. Food Qual. 2019;2019:1–10. doi: 10.1155/2019/3702649. DOI

Nayak G., Aboubakr H.A., Goyal S.M., Bruggeman P.J. Reactive species responsible for the inactivation of felinecalicivirus by a two-dimensional array of integrated coaxialmicrohollow dielectric barrier discharges in air. Plasma Process. Polym. 2018;15:1700119. doi: 10.1002/ppap.201700119. DOI

Černák M., Krumpolec R., Tučeková Z., Kelar J., Zemánek M., Kováčik D. A Method and Device for Generating Low-Temperature Electrical Water-Based Plasma at Near-Atmospheric Pressures and Its Use. EP3,585,136 A1. 2019 Dec 25;

Homola T., Prukner V., Hoffer P., Šimek M. Multi-hollow surface dielectric barrier discharge: An ozone generator with flexible performance and supreme efficiency. Plasma Sour. Sci. Technol. 2020;29 doi: 10.1088/1361-6595/aba987. DOI

Malik M.A., Schoenbach K.H., Abdel-Fattah T.M., Heller R., Jiang C. Low Cost Compact Nanosecond Pulsed Plasma System for Environmental and Biomedical Applications. Plasma Chem. Plasma Process. 2017;37:59–76. doi: 10.1007/s11090-016-9747-9. DOI

Wei L.S., Pongrac B., Zhang Y.F., Liang X., Prukner V., Simek M.S. Influence of Duty Cycle on Ozone Generation and Discharge Using Volume Dielectric Barrier Discharge. Plasma Chem. Plasma Process. 2018;38:355–364. doi: 10.1007/s11090-017-9866-y. DOI

Russell A.D. Lethal effects of heat on bacterial physiology and structure. Sci. Prog. 2003;86:115–137. doi: 10.3184/003685003783238699. PubMed DOI PMC

Stringer S.C., George S.M., Peck M.W. Thermal inactivation of Escherichia coli O157:H7. J. Appl. Microbiol. 2000;88:79S–89S. doi: 10.1111/j.1365-2672.2000.tb05335.x. PubMed DOI

O’Toole A., Ricker E.B., Nuxoll E. Thermal mitigation of Pseudomonas aeruginosa biofilms. Biofouling. 2015;31:665–675. doi: 10.1080/08927014.2015.1083985. PubMed DOI PMC

Julák J., Scholtz V., Vaňková E. Medically important biofilms and non-thermal plasma. World J. Microbiol. Biotechnol. 2018;34:1–15. doi: 10.1007/s11274-018-2560-2. PubMed DOI

Chen C., Liu D.X., Liu Z.C., Yang A.J., Chen H.L., Shama G., Kong M.G. A Model of Plasma-Biofilm and Plasma-Tissue Interactions at Ambient Pressure. Plasma Chem. Plasma Process. 2014;34:403–441. doi: 10.1007/s11090-014-9545-1. DOI

Lu X., Naidis G.V., Laroussi M., Reuter S., Graves D.B., Ostrikov K. Reactive species in non-equilibrium atmospheric-pressure plasmas: Generation, transport, and biological effects. Phys. Rep. 2016;630:1–84. doi: 10.1016/j.physrep.2016.03.003. DOI

Zahoranová A., Hoppanová L., Šimončicová J., Tučeková Z., Medvecká V., Hudecová D., Kaliňáková B., Kováčik D., Černák M. Effect of Cold Atmospheric Pressure Plasma on Maize Seeds: Enhancement of Seedlings Growth and Surface Microorganisms Inactivation. Plasma Chem. Plasma Process. 2018;38:969–988. doi: 10.1007/s11090-018-9913-3. DOI

Von Keudell A., Awakowicz P., Benedikt J., Raballand V., Yanguas-Gil A., Opretzka J., Fl??tgen C., Reuter R., Byelykh L., Halfmann H., et al. Inactivation of bacteria and biomolecules by low-pressure plasma discharges. Plasma Process. Polym. 2010;7:327–352. doi: 10.1002/ppap.200900121. DOI

Dobrynin D., Friedman G., Fridman A., Starikovskiy A. Inactivation of bacteria using dc corona discharge: Role of ions and humidity. New J. Phys. 2011;13:103033. doi: 10.1088/1367-2630/13/10/103033. PubMed DOI PMC

Klämpfl T.G., Isbary G., Shimizu T., Li Y.F., Zimmermann J.L., Stolz W., Schlegel J., Morfill G.E., Schmidt H.U. Cold atmospheric air plasma sterilization against spores and other microorganisms of clinical interest. Appl. Environ. Microbiol. 2012;78:5077–5082. doi: 10.1128/AEM.00583-12. PubMed DOI PMC

Moiseev T., Misra N.N., Patil S., Cullen P.J., Bourke P., Keener K.M., Mosnier J.P. Post-discharge gas composition of a large-gap DBD in humid air by UV–Vis absorption spectroscopy. Plasma Sour. Sci. Technol. 2014;23:065033. doi: 10.1088/0963-0252/23/6/065033. DOI

Khamsen N., Onwimol D., Teerakawanich N., Dechanupaprittha S., Kanokbannakorn W., Hongesombut K., Srisonphan S. Rice (Oryza sativa L.) Seed Sterilization and Germination Enhancement via Atmospheric Hybrid Nonthermal Discharge Plasma. ACS Appl. Mater. Interfaces. 2016;8:19268–19275. doi: 10.1021/acsami.6b04555. PubMed DOI

Stephan K.D., McLean R.J.C., Deleon G., Melnikov V. Effect of feed-gas humidity on nitrogen atmospheric-pressure plasma jet for biological applications. Technol. Health Care. 2016;24:943–948. doi: 10.3233/THC-161226. PubMed DOI

Yagyu Y., Hatayama Y., Hayashi N., Mishima T., Nishioka T., Sakudo A., Ihara T., Ohshima T., Kawasaki H., Suda Y. Direct Plasma Disinfection of Green Mold Spore on Citrus by Atmospheric Pressure Dielectric Barrier Discharge for Agricultural Applications. Trans. Mater. Res. Soc. Jpn. 2016;41:127–130. doi: 10.14723/tmrsj.41.127. DOI

Zhou P., Yang Y., Lai A.C.K., Huang G. Inactivation of airborne bacteria by cold plasma in air duct flow. Build. Environ. 2016;106:120–130. doi: 10.1016/j.buildenv.2016.06.026. DOI

Liao X., Liu D., Xiang Q., Ahn J., Chen S., Ye X., Ding T. Inactivation mechanisms of non-thermal plasma on microbes: A review. Food Control. 2017;75:83–91. doi: 10.1016/j.foodcont.2016.12.021. DOI

Eto H., Ono Y., Ogino A., Nagatsu M. Low-temperature sterilization of wrapped materials using flexible sheet-type dielectric barrier discharge. Appl. Phys. Lett. 2008;93:221502. doi: 10.1063/1.3039808. DOI

Kang M.H., Pengkit A., Choi K., Jeon S.S., Choi H.W., Shin D.B., Choi E.H., Uhm H.S., Park G. Differential inactivation of fungal spores in water and on seeds by ozone and arc discharge plasma. PLoS ONE. 2015;10 doi: 10.1371/journal.pone.0139263. PubMed DOI PMC

Han L., Patil S., Boehm D., Milosavljević V., Cullen P.J., Bourke P. Mechanisms of inactivation by high-voltage atmospheric cold plasma differ for Escherichia coli and Staphylococcus aureus. Appl. Environ. Microbiol. 2016;82:450–458. doi: 10.1128/AEM.02660-15. PubMed DOI PMC

Sasaki S., Honda R., Hokari Y., Takashima K., Kanzaki M., Kaneko T. Characterization of plasma-induced cell membrane permeabilization: Focus on OH radical distribution. J. Phys. D Appl. Phys. 2016;49:334002. doi: 10.1088/0022-3727/49/33/334002. DOI

Julák J., Hujacová A., Scholtz V., Khun J., Holada K. Contribution to the Chemistry of Plasma-Activated Water. Plasma Phys. Rep. 2018;44:125–136. doi: 10.1134/S1063780X18010075. DOI

Mai-Prochnow A., Zhou R., Zhang T., Ostrikov K.K., Mugunthan S., Rice S.A., Cullen P.J. Interactions of plasma-activated water with biofilms: Inactivation, dispersal effects and mechanisms of action. npj Biofilms Microbiomes. 2021;7:11. doi: 10.1038/s41522-020-00180-6. PubMed DOI PMC

Gambino M., Cappitelli F. Mini-review: Biofilm responses to oxidative stress. Biofouling. 2016;32:167–178. doi: 10.1080/08927014.2015.1134515. PubMed DOI

Hozák P., Scholtz V., Khun J., Mertová D., Vaňková E., Julák J. Further Contribution to the Chemistry of Plasma-Activated Water: Influence on Bacteria in Planktonic and Biofilm Forms. Plasma Phys. Rep. 2018;44:799–804. doi: 10.1134/S1063780X18090040. DOI

Machala Z., Tarabová B., Sersenová D., Janda M., Hensel K. Chemical and antibacterial effects of plasma activated water: Correlation with gaseous and aqueous reactive oxygen and nitrogen species, plasma sources and air flow conditions. J. Phys. D Appl. Phys. 2019;52 doi: 10.1088/1361-6463/aae807. DOI

Bruggeman P.J., Kushner M.J., Locke B.R., Gardeniers J.G.E., Graham W.G., Graves D.B., Hofman-Caris R.C.H.M., Maric D., Reid J.P., Ceriani E., et al. Plasma-liquid interactions: A review and roadmap. Plasma Sour. Sci. Technol. 2016;25 doi: 10.1088/0963-0252/25/5/053002. DOI

Hazan R., Que Y.A., Maura D., Rahme L.G. A method for high throughput determination of viable bacteria cell counts in 96-well plates. BMC Microbiol. 2012;12:7. doi: 10.1186/1471-2180-12-259. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...