Multi-Hollow Surface Dielectric Barrier Discharge for Bacterial Biofilm Decontamination
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
TJ04000329 and TG02010067
Technology Agency of the Czech Republic
LM2018097
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
33572192
PubMed Central
PMC7916003
DOI
10.3390/molecules26040910
PII: molecules26040910
Knihovny.cz E-zdroje
- Klíčová slova
- atmospheric pressure plasma, bacterial biofilm, decontamination, low-temperature plasma, plasma-activated media,
- MeSH
- biofilmy účinky léků MeSH
- dekontaminace metody MeSH
- elektřina * MeSH
- Escherichia coli účinky léků MeSH
- methicilin rezistentní Staphylococcus aureus účinky léků MeSH
- mikrobiální viabilita MeSH
- plazmové plyny farmakologie MeSH
- Pseudomonas aeruginosa účinky léků MeSH
- Staphylococcus epidermidis účinky léků MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- plazmové plyny MeSH
The plasma-activated gas is capable of decontaminating surfaces of different materials in remote distances. The effect of plasma-activated water vapor on Staphylococcus epidermidis, methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli biofilm contamination was investigated on the polypropylene nonwoven textile surface. The robust and technically simple multi-hollow surface dielectric barrier discharge was used as a low-temperature atmospheric plasma source to activate the water-based medium. The germicidal efficiency of short and long-time exposure to plasma-activated water vapor was evaluated by standard microbiological cultivation and fluorescence analysis using a fluorescence multiwell plate reader. The test was repeated in different distances of the contaminated polypropylene nonwoven sample from the surface of the plasma source. The detection of reactive species in plasma-activated gas flow and condensed activated vapor, and thermal and electrical properties of the used plasma source, were measured. The bacterial biofilm decontamination efficiency increased with the exposure time and the plasma source power input. The log reduction of viable biofilm units decreased with the increasing distance from the dielectric surface.
Zobrazit více v PubMed
Locke B.R., Shih K.-Y. Review of the methods to form hydrogen peroxide in electrical discharge plasma with liquid water. Plasma Sour. Sci. Technol. 2011;20:034006. doi: 10.1088/0963-0252/20/3/034006. DOI
Tachibana K., Nakamura T. Characterization of dielectric barrier discharges with water in correlation to productions of OH and H2O2 in gas and liquid phases. Jpn. J. Appl. Phys. 2019;58:046001. doi: 10.7567/1347-4065/aafe73. DOI
Erben D., Hola V., Jaros J., Rahel J. Bacterial growth on chitosan-coated polypropylene textile. ISRN Microbiol. 2012;2012:749694. doi: 10.5402/2012/749694. PubMed DOI PMC
Rahel J., Jonasova E., Nesvorna M., Klubal R., Erban T., Hubert J. The toxic effect of chitosan/metal-impregnated textile to synanthropic mites. Pest. Manag. Sci. 2013;69:722–726. doi: 10.1002/ps.3428. PubMed DOI
Ivanova T.V., Krumpolec R., Homola T., Musin E., Baier G., Landfester K., Cameron D.C., Černák M. Ambient air plasma pre-treatment of non-woven fabrics for deposition of antibacterial poly (l-lactide) nanoparticles. Plasma Process. Polym. 2017;14:1–9. doi: 10.1002/ppap.201600231. DOI
Kováčová M., Bodík M., Mičušík M., Humpolíček P., Šiffalovič P., Špitálsky Z. Increasing the effectivity of the antimicrobial surface of carbon quantum dots-based nanocomposite by atmospheric pressure plasma. Clin. Plasma Med. 2020;19–20:100111. doi: 10.1016/j.cpme.2020.100111. DOI
Kováčová M., Kleinová A., Vajďák J., Humpolíček P., Kubát P., Bodík M., Marković Z., Špitálský Z. Photodynamic-active smart biocompatible material for an antibacterial surface coating. J. Photochem. Photobiol. B Biol. 2020;211:112012. doi: 10.1016/j.jphotobiol.2020.112012. PubMed DOI
Tudu B.K., Sinhamahapatra A., Kumar A. Surface Modification of Cotton Fabric Using TiO2 Nanoparticles for Self-Cleaning, Oil-Water Separation, Antistain, Anti-Water Absorption, and Antibacterial Properties. ACS Omega. 2020;5:7850–7860. doi: 10.1021/acsomega.9b04067. PubMed DOI PMC
Attia N.F., Elashery S.E.A., Oh H. Nanosensors and Nanodevices for Smart Multifunctional Textiles. Elsevier; Amsterdam, The Netherlands: 2021. Nanomaterials-based antibacterial textiles; pp. 135–147.
Guo J., Huang K., Wang J. Bactericidal effect of various non-thermal plasma agents and the influence of experimental conditions in microbial inactivation: A review. Food Control. 2015;50:482–490. doi: 10.1016/j.foodcont.2014.09.037. DOI
Xu H., Zhu Y., Cui D., Du M., Wang J., Ma R., Jiao Z. Evaluating the roles of OH radicals, H2O2, ORP and pH in the inactivation of yeast cells on a tissue model by surface micro-discharge plasma. J. Phys. D Appl. Phys. 2019;52:395201. doi: 10.1088/1361-6463/ab273d. DOI
Bourke P., Ziuzina D., Han L., Cullen P.J., Gilmore B.F. Microbiological interactions with cold plasma. J. Appl. Microbiol. 2017;123:308–324. doi: 10.1111/jam.13429. PubMed DOI
Hayashi N., Tsutsui S., Tomari T., Guan W. Sterilization of medical equipment using oxygen radicals produced by water vapor RF plasma. IEEE Trans. Plasma Sci. 2008;36:1302–1303. doi: 10.1109/TPS.2008.924453. DOI
Fumagalli F., Kylián O., Amato L., Hanuš J., Rossi F. Low-pressure water vapour plasma treatment of surfaces for biomolecules decontamination. J. Phys. D Appl. Phys. 2012;45:135203. doi: 10.1088/0022-3727/45/13/135203. DOI
Wang L., Deng L.H., Li B., Fang B., Zhao W.X., Xu H.L. Low-pressure OH radicals reactor generated by dielectric barrier discharge from water vapor. Phys. Plasmas. 2020;27 doi: 10.1063/5.0006191. DOI
Tučeková Z., Koval’ová Z., Zahoranová A., Machala Z., Černák M. Inactivation of Escherichia coli on PTFE surfaces by diffuse coplanar surface barrier discharge. Eur. Phys. J. Appl. Phys. 2016;75:24711–24716. doi: 10.1051/epjap/2016150590. DOI
Procházka V., Tučeková Z., Dvorák P., Kováčik D., Slavíček P., Zahoranová A., Voráč J. Coplanar surface barrier discharge ignited in water vapor—A selective source of OH radicals proved by (TA)LIF measurement. Plasma Sour. Sci. Technol. 2018;27:015001. doi: 10.1088/1361-6595/aa9ad4. DOI
Moldgy A., Nayak G., Aboubakr H.A., Goyal S.M., Bruggeman P.J. Inactivation of virus and bacteria using cold atmospheric pressure air plasmas and the role of reactive nitrogen species. J. Phys. D Appl. Phys. 2020;53 doi: 10.1088/1361-6463/aba066. DOI
Sarani A., Nikiforov A.Y., Leys C. Atmospheric pressure plasma jet in Ar and Ar/ H2 O mixtures: Optical emission spectroscopy and temperature measurements. Phys. Plasmas. 2010;17:063504. doi: 10.1063/1.3439685. DOI
Brandenburg R. Dielectric barrier discharges: Progress on plasma sources and on the understanding of regimes and single filaments. Plasma Sour. Sci. Technol. 2017;26:53001. doi: 10.1088/1361-6595/aa6426. DOI
Falkenstein Z., Coogan J.J. Microdischarge behaviour in the silent discharge of nitrogen—Oxygen and water—Air mixtures. J. Phys. D Appl. Phys. 1997;30:817–825. doi: 10.1088/0022-3727/30/5/015. DOI
Akitsu T., Ohkawa H., Tsuji M., Kimura H., Kogoma M. Plasma sterilization using glow discharge at atmospheric pressure. Surf. Coat. Technol. 2005;193:29–34. doi: 10.1016/j.surfcoat.2004.07.042. DOI
Malik M.A., Schoenbach K.H. New approach for sustaining energetic, efficient and scalable non-equilibrium plasma in water vapours at atmospheric pressure. J. Phys. D Appl. Phys. 2012;45:132001. doi: 10.1088/0022-3727/45/13/132001. DOI
Liu K., Hu H., Lei J., Hu Y., Zheng Z. Comparison of pulsating DC and DC power air-water plasma jet: A method to decrease plume temperature and increase ROS. Phys. Plasmas. 2016;23:123510. doi: 10.1063/1.4971450. DOI
Krumpolec R., Richter V., Zemánek M., Homola T. Multi-hollow surface dielectric barrier discharge for plasma treatment of patterned silicon surfaces. Surfaces Interfaces. 2019;16:181–187. doi: 10.1016/j.surfin.2019.01.014. DOI
Homola T., Krumpolec R., Zemánek M., Kelar J., Synek P., Hoder T., Černák M. An Array of Micro-hollow Surface Dielectric Barrier Discharges for Large-Area Atmospheric-Pressure Surface Treatments. Plasma Chem. Plasma Process. 2017;37:1149–1163. doi: 10.1007/s11090-017-9792-z. DOI
Gebremariam G., Admassu S., Berhanu T., Tučeková Z., Krumpolec R., Černák M. Optimization and influence of multi-hollow surface dielectric barrier discharge plasma operating conditions on the physical quality of peanut. Eur. Phys. J. D. 2019;73 doi: 10.1140/epjd/e2019-90616-0. DOI
Gebremical G.G., Emire S.A., Berhanu T. Effects of Multihollow Surface Dielectric Barrier Discharge Plasma on Chemical and Antioxidant Properties of Peanut. J. Food Qual. 2019;2019:1–10. doi: 10.1155/2019/3702649. DOI
Nayak G., Aboubakr H.A., Goyal S.M., Bruggeman P.J. Reactive species responsible for the inactivation of felinecalicivirus by a two-dimensional array of integrated coaxialmicrohollow dielectric barrier discharges in air. Plasma Process. Polym. 2018;15:1700119. doi: 10.1002/ppap.201700119. DOI
Černák M., Krumpolec R., Tučeková Z., Kelar J., Zemánek M., Kováčik D. A Method and Device for Generating Low-Temperature Electrical Water-Based Plasma at Near-Atmospheric Pressures and Its Use. EP3,585,136 A1. 2019 Dec 25;
Homola T., Prukner V., Hoffer P., Šimek M. Multi-hollow surface dielectric barrier discharge: An ozone generator with flexible performance and supreme efficiency. Plasma Sour. Sci. Technol. 2020;29 doi: 10.1088/1361-6595/aba987. DOI
Malik M.A., Schoenbach K.H., Abdel-Fattah T.M., Heller R., Jiang C. Low Cost Compact Nanosecond Pulsed Plasma System for Environmental and Biomedical Applications. Plasma Chem. Plasma Process. 2017;37:59–76. doi: 10.1007/s11090-016-9747-9. DOI
Wei L.S., Pongrac B., Zhang Y.F., Liang X., Prukner V., Simek M.S. Influence of Duty Cycle on Ozone Generation and Discharge Using Volume Dielectric Barrier Discharge. Plasma Chem. Plasma Process. 2018;38:355–364. doi: 10.1007/s11090-017-9866-y. DOI
Russell A.D. Lethal effects of heat on bacterial physiology and structure. Sci. Prog. 2003;86:115–137. doi: 10.3184/003685003783238699. PubMed DOI PMC
Stringer S.C., George S.M., Peck M.W. Thermal inactivation of Escherichia coli O157:H7. J. Appl. Microbiol. 2000;88:79S–89S. doi: 10.1111/j.1365-2672.2000.tb05335.x. PubMed DOI
O’Toole A., Ricker E.B., Nuxoll E. Thermal mitigation of Pseudomonas aeruginosa biofilms. Biofouling. 2015;31:665–675. doi: 10.1080/08927014.2015.1083985. PubMed DOI PMC
Julák J., Scholtz V., Vaňková E. Medically important biofilms and non-thermal plasma. World J. Microbiol. Biotechnol. 2018;34:1–15. doi: 10.1007/s11274-018-2560-2. PubMed DOI
Chen C., Liu D.X., Liu Z.C., Yang A.J., Chen H.L., Shama G., Kong M.G. A Model of Plasma-Biofilm and Plasma-Tissue Interactions at Ambient Pressure. Plasma Chem. Plasma Process. 2014;34:403–441. doi: 10.1007/s11090-014-9545-1. DOI
Lu X., Naidis G.V., Laroussi M., Reuter S., Graves D.B., Ostrikov K. Reactive species in non-equilibrium atmospheric-pressure plasmas: Generation, transport, and biological effects. Phys. Rep. 2016;630:1–84. doi: 10.1016/j.physrep.2016.03.003. DOI
Zahoranová A., Hoppanová L., Šimončicová J., Tučeková Z., Medvecká V., Hudecová D., Kaliňáková B., Kováčik D., Černák M. Effect of Cold Atmospheric Pressure Plasma on Maize Seeds: Enhancement of Seedlings Growth and Surface Microorganisms Inactivation. Plasma Chem. Plasma Process. 2018;38:969–988. doi: 10.1007/s11090-018-9913-3. DOI
Von Keudell A., Awakowicz P., Benedikt J., Raballand V., Yanguas-Gil A., Opretzka J., Fl??tgen C., Reuter R., Byelykh L., Halfmann H., et al. Inactivation of bacteria and biomolecules by low-pressure plasma discharges. Plasma Process. Polym. 2010;7:327–352. doi: 10.1002/ppap.200900121. DOI
Dobrynin D., Friedman G., Fridman A., Starikovskiy A. Inactivation of bacteria using dc corona discharge: Role of ions and humidity. New J. Phys. 2011;13:103033. doi: 10.1088/1367-2630/13/10/103033. PubMed DOI PMC
Klämpfl T.G., Isbary G., Shimizu T., Li Y.F., Zimmermann J.L., Stolz W., Schlegel J., Morfill G.E., Schmidt H.U. Cold atmospheric air plasma sterilization against spores and other microorganisms of clinical interest. Appl. Environ. Microbiol. 2012;78:5077–5082. doi: 10.1128/AEM.00583-12. PubMed DOI PMC
Moiseev T., Misra N.N., Patil S., Cullen P.J., Bourke P., Keener K.M., Mosnier J.P. Post-discharge gas composition of a large-gap DBD in humid air by UV–Vis absorption spectroscopy. Plasma Sour. Sci. Technol. 2014;23:065033. doi: 10.1088/0963-0252/23/6/065033. DOI
Khamsen N., Onwimol D., Teerakawanich N., Dechanupaprittha S., Kanokbannakorn W., Hongesombut K., Srisonphan S. Rice (Oryza sativa L.) Seed Sterilization and Germination Enhancement via Atmospheric Hybrid Nonthermal Discharge Plasma. ACS Appl. Mater. Interfaces. 2016;8:19268–19275. doi: 10.1021/acsami.6b04555. PubMed DOI
Stephan K.D., McLean R.J.C., Deleon G., Melnikov V. Effect of feed-gas humidity on nitrogen atmospheric-pressure plasma jet for biological applications. Technol. Health Care. 2016;24:943–948. doi: 10.3233/THC-161226. PubMed DOI
Yagyu Y., Hatayama Y., Hayashi N., Mishima T., Nishioka T., Sakudo A., Ihara T., Ohshima T., Kawasaki H., Suda Y. Direct Plasma Disinfection of Green Mold Spore on Citrus by Atmospheric Pressure Dielectric Barrier Discharge for Agricultural Applications. Trans. Mater. Res. Soc. Jpn. 2016;41:127–130. doi: 10.14723/tmrsj.41.127. DOI
Zhou P., Yang Y., Lai A.C.K., Huang G. Inactivation of airborne bacteria by cold plasma in air duct flow. Build. Environ. 2016;106:120–130. doi: 10.1016/j.buildenv.2016.06.026. DOI
Liao X., Liu D., Xiang Q., Ahn J., Chen S., Ye X., Ding T. Inactivation mechanisms of non-thermal plasma on microbes: A review. Food Control. 2017;75:83–91. doi: 10.1016/j.foodcont.2016.12.021. DOI
Eto H., Ono Y., Ogino A., Nagatsu M. Low-temperature sterilization of wrapped materials using flexible sheet-type dielectric barrier discharge. Appl. Phys. Lett. 2008;93:221502. doi: 10.1063/1.3039808. DOI
Kang M.H., Pengkit A., Choi K., Jeon S.S., Choi H.W., Shin D.B., Choi E.H., Uhm H.S., Park G. Differential inactivation of fungal spores in water and on seeds by ozone and arc discharge plasma. PLoS ONE. 2015;10 doi: 10.1371/journal.pone.0139263. PubMed DOI PMC
Han L., Patil S., Boehm D., Milosavljević V., Cullen P.J., Bourke P. Mechanisms of inactivation by high-voltage atmospheric cold plasma differ for Escherichia coli and Staphylococcus aureus. Appl. Environ. Microbiol. 2016;82:450–458. doi: 10.1128/AEM.02660-15. PubMed DOI PMC
Sasaki S., Honda R., Hokari Y., Takashima K., Kanzaki M., Kaneko T. Characterization of plasma-induced cell membrane permeabilization: Focus on OH radical distribution. J. Phys. D Appl. Phys. 2016;49:334002. doi: 10.1088/0022-3727/49/33/334002. DOI
Julák J., Hujacová A., Scholtz V., Khun J., Holada K. Contribution to the Chemistry of Plasma-Activated Water. Plasma Phys. Rep. 2018;44:125–136. doi: 10.1134/S1063780X18010075. DOI
Mai-Prochnow A., Zhou R., Zhang T., Ostrikov K.K., Mugunthan S., Rice S.A., Cullen P.J. Interactions of plasma-activated water with biofilms: Inactivation, dispersal effects and mechanisms of action. npj Biofilms Microbiomes. 2021;7:11. doi: 10.1038/s41522-020-00180-6. PubMed DOI PMC
Gambino M., Cappitelli F. Mini-review: Biofilm responses to oxidative stress. Biofouling. 2016;32:167–178. doi: 10.1080/08927014.2015.1134515. PubMed DOI
Hozák P., Scholtz V., Khun J., Mertová D., Vaňková E., Julák J. Further Contribution to the Chemistry of Plasma-Activated Water: Influence on Bacteria in Planktonic and Biofilm Forms. Plasma Phys. Rep. 2018;44:799–804. doi: 10.1134/S1063780X18090040. DOI
Machala Z., Tarabová B., Sersenová D., Janda M., Hensel K. Chemical and antibacterial effects of plasma activated water: Correlation with gaseous and aqueous reactive oxygen and nitrogen species, plasma sources and air flow conditions. J. Phys. D Appl. Phys. 2019;52 doi: 10.1088/1361-6463/aae807. DOI
Bruggeman P.J., Kushner M.J., Locke B.R., Gardeniers J.G.E., Graham W.G., Graves D.B., Hofman-Caris R.C.H.M., Maric D., Reid J.P., Ceriani E., et al. Plasma-liquid interactions: A review and roadmap. Plasma Sour. Sci. Technol. 2016;25 doi: 10.1088/0963-0252/25/5/053002. DOI
Hazan R., Que Y.A., Maura D., Rahme L.G. A method for high throughput determination of viable bacteria cell counts in 96-well plates. BMC Microbiol. 2012;12:7. doi: 10.1186/1471-2180-12-259. PubMed DOI PMC