Photodynamic-active smart biocompatible material for an antibacterial surface coating
Jazyk angličtina Země Švýcarsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
32919175
DOI
10.1016/j.jphotobiol.2020.112012
PII: S1011-1344(20)30462-0
Knihovny.cz E-zdroje
- Klíčová slova
- Antibacterial activity, Hydrophobic carbon quantum dots, Nanocomposite, Photodynamic therapy, Radicals,
- MeSH
- antibakteriální látky chemie MeSH
- biofilmy MeSH
- biokompatibilní potahované materiály chemie MeSH
- chytré materiály chemie MeSH
- fotosenzibilizující látky chemie MeSH
- hydrofobní a hydrofilní interakce MeSH
- kvantové tečky chemie MeSH
- myši MeSH
- povrchové vlastnosti MeSH
- reaktivní formy kyslíku metabolismus MeSH
- singletový kyslík chemie MeSH
- Staphylococcus aureus MeSH
- uhlík chemie MeSH
- viabilita buněk účinky léků MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- biokompatibilní potahované materiály MeSH
- chytré materiály MeSH
- fotosenzibilizující látky MeSH
- reaktivní formy kyslíku MeSH
- singletový kyslík MeSH
- uhlík MeSH
Here we present a new effective antibacterial material suitable for a coating, e.g., surface treatment of textiles, which is also time and financially undemanding. The most important role is played by hydrophobic carbon quantum dots, as a new type of photosensitizer, produced by carbonization of different carbon precursors, which are incorporated by swelling from solution into various polymer matrices in the form of thin films, in particular polyurethanes, which are currently commercially used for industrial surface treatment of textiles. The role of hydrophobic carbon quantum dots is to work as photosensitizers upon irradiation and produce reactive oxygen species, namely singlet oxygen, which is already known as the most effective radical for elimination different kinds of bacteria on the surface or in close proximity to such modified material. Therefore, we have mainly studied the effect of hydrophobic carbon quantum dots on Staphylococcus aureus and the cytotoxicity tests, which are essential for the safe handling of such material. Also, the production of singlet oxygen by several methods (electron paramagnetic spectroscopy, time-resolved near-infrared spectroscopy), surface structures (atomic force microscopy and contact angle measurement), and the effect of radiation on polymer matrices were studied. The prepared material is easily modulated by end-user requirements.
Centre of Polymer Systems Tomas Bata University in Zlín Třída Tomáše Bati 5678 Zlín Czech Republic
Institute of Physics Slovak Academy of Sciences Dúbravská cesta 9 845 11 Bratislava Slovakia
Polymer Institute Slovak Academy of Sciences Dúbravská cesta 9 845 41 Bratislava 45 Slovakia
Vinca Institute of Nuclear Sciences Mike Alasa 12 14 Vinca 11351 Belgrade Serbia
Citace poskytuje Crossref.org
Multi-Hollow Surface Dielectric Barrier Discharge for Bacterial Biofilm Decontamination