Parenteral Nutrition-Associated Liver Disease: The Role of the Gut Microbiota
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
28880224
PubMed Central
PMC5622747
DOI
10.3390/nu9090987
PII: nu9090987
Knihovny.cz E-zdroje
- Klíčová slova
- FXR signalling, PNALD, Parenteral nutrition, bile acids, gut-associated immune system, intestinal permeability, microbiota, pre/probiotics,
- MeSH
- lékové postižení jater mikrobiologie MeSH
- lidé MeSH
- parenterální výživa škodlivé účinky MeSH
- střeva cytologie MeSH
- střevní mikroflóra * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Parenteral nutrition (PN) provides life-saving nutritional support in situations where caloric supply via the enteral route cannot cover the necessary needs of the organism. However, it does have serious adverse effects, including parenteral nutrition-associated liver disease (PNALD). The development of liver injury associated with PN is multifactorial, including non-specific intestine inflammation, compromised intestinal permeability, and barrier function associated with increased bacterial translocation, primary and secondary cholangitis, cholelithiasis, short bowel syndrome, disturbance of hepatobiliary circulation, lack of enteral nutrition, shortage of some nutrients (proteins, essential fatty acids, choline, glycine, taurine, carnitine, etc.), and toxicity of components within the nutrition mixture itself (glucose, phytosterols, manganese, aluminium, etc.). Recently, an increasing number of studies have provided evidence that some of these factors are directly or indirectly associated with microbial dysbiosis in the intestine. In this review, we focus on PN-induced changes in the taxonomic and functional composition of the microbiome. We also discuss immune cell and microbial crosstalk during parenteral nutrition, and the implications for the onset and progression of PNALD. Finally, we provide an overview of recent advances in the therapeutic utilisation of pro- and prebiotics for the mitigation of PN-associated liver complications.
Zobrazit více v PubMed
Mizock B.A. Immunonutrition and critical illness: An update. Nutrition. 2010;26:701–707. doi: 10.1016/j.nut.2009.11.010. PubMed DOI
Beath S.V., Kelly D.A. Total Parenteral Nutrition-Induced Cholestasis: Prevention and Management. Clin. Liver Dis. 2016;20:159–176. doi: 10.1016/j.cld.2015.08.009. PubMed DOI
Drongowski R.A., Coran A.G. An analysis of factors contributing to the development of total parenteral nutrition-induced cholestasis. J. Parenter. Enter. Nutr. 1989;13:586–589. doi: 10.1177/0148607189013006586. PubMed DOI
Luman W., Shaffer J.L. Prevalence, outcome and associated factors of deranged liver function tests in patients on home parenteral nutrition. Clin. Nutr. 2002;21:337–343. doi: 10.1054/clnu.2002.0554. PubMed DOI
Bharadwaj S., Gohel T., Deen O.J., DeChicco R., Shatnawei A. Fish oil-based lipid emulsion: Current updates on a promising novel therapy for the management of parenteral nutrition-associated liver disease. Gastroenterol. Rep. 2015;3:110–114. doi: 10.1093/gastro/gov011. PubMed DOI PMC
Orso G., Mandato C., Veropalumbo C., Cecchi N., Garzi A., Vajro P. Pediatric parenteral nutrition-associated liver disease and cholestasis: Novel advances in pathomechanisms-based prevention and treatment. Dig. Liver Dis. 2016;48:215–222. doi: 10.1016/j.dld.2015.11.003. PubMed DOI
Mateu de Antonio J., Florit-Sureda M. Effects unrelated to anti-inflammation of lipid emulsions containing fish oil in parenteral nutrition for adult patients. Nutr. Hosp. 2017;34:193–203. doi: 10.20960/nh.882. PubMed DOI
Burcelin R., Serino M., Chabo C., Garidou L., Pomie C., Courtney M., Amar J., Bouloumié A. Metagenome and metabolism: The tissue microbiota hypothesis. Diabetes Obes. Metab. 2013;15:61–70. doi: 10.1111/dom.12157. PubMed DOI
Kverka M., Tlaskalova-Hogenova H. Intestinal Microbiota: Facts and Fiction. Dig. Dis. 2017;35:139–147. doi: 10.1159/000449095. PubMed DOI
Hodin C.M., Visschers R.G., Rensen S.S., Boonen B., Olde Damink S.W., Lenaerts K., Buurman W.A. Total parenteral nutrition induces a shift in the Firmicutes to Bacteroidetes ratio in association with Paneth cell activation in rats. J. Nutr. 2012;142:2141–2147. doi: 10.3945/jn.112.162388. PubMed DOI
Miyasaka E.A., Feng Y., Poroyko V., Falkowski N.R., Erb-Downward J., Gillilland M.G., Mason K.L., Huffnagle G.B., Teitelbaum D.H. Total parenteral nutrition-associated lamina propria inflammation in mice is mediated by a MyD88-dependent mechanism. J. Immunol. 2013;190:6607–6615. doi: 10.4049/jimmunol.1201746. PubMed DOI PMC
Heneghan A.F., Pierre J.F., Tandee K., Shanmuganayagam D., Wang X., Reed J.D., Steele J.L., Kudsk K.A. Parenteral nutrition decreases paneth cell function and intestinal bactericidal activity while increasing susceptibility to bacterial enteroinvasion. J. Parenter. Enter. Nutr. 2014;38:817–824. doi: 10.1177/0148607113497514. PubMed DOI PMC
Lapthorne S., Pereira-Fantini P.M., Fouhy F., Wilson G., Thomas S.L., Dellios N.L., Scurr M., O’Sullivan O., Ross R.P., Stanton C., et al. Gut microbial diversity is reduced and is associated with colonic inflammation in a piglet model of short bowel syndrome. Gut Microbes. 2013;4:212–221. doi: 10.4161/gmic.24372. PubMed DOI PMC
Harvey R.B., Andrews K., Droleskey R.E., Kansagra K.V., Stoll B., Burrin D.G., Sheffield C.L., Anderson R.C., Nisbet D.J. Qualitative and quantitative comparison of gut bacterial colonization in enterally and parenterally fed neonatal pigs. Curr. Issues Intest. Microbiol. 2006;7:61–64. PubMed
Deplancke B., Vidal O., Ganessunker D., Donovan S.M., Mackie R.I., Gaskins H.R. Selective growth of mucolytic bacteria including Clostridium perfringens in a neonatal piglet model of total parenteral nutrition. Am. J. Clin. Nutr. 2002;76:1117–1125. PubMed
Lavallee C.M., MacPherson J.A., Zhou M., Gao Y., Wizzard P.R., Wales P.W., Turner J.M., Willing B.P. Lipid Emulsion Formulation of Parenteral Nutrition Affects Intestinal Microbiota and Host Responses in Neonatal Piglets. J. Parent. Enteral. Nutr. 2016 doi: 10.1177/0148607116662972. PubMed DOI
Parm U., Metsvaht T., Ilmoja M.L., Lutsar I. Gut colonization by aerobic microorganisms is associated with route and type of nutrition in premature neonates. Nutr. Res. 2015;35:496–503. doi: 10.1016/j.nutres.2015.04.006. PubMed DOI
Ralls M.W., Miyasaka E., Teitelbaum D.H. Intestinal microbial diversity and perioperative complications. J. Parenter. Enter. Nutr. 2014;38:392–399. doi: 10.1177/0148607113486482. PubMed DOI PMC
Joly F., Mayeur C., Bruneau A., Noordine M.L., Meylheuc T., Langella P., Messing B., Duée P.H., Cherbuy C., Thomas M. Drastic changes in fecal and mucosa-associated microbiota in adult patients with short bowel syndrome. Biochimie. 2010;92:753–761. doi: 10.1016/j.biochi.2010.02.015. PubMed DOI
Dibaise J.K., Young R.J., Vanderhoof J.A. Enteric microbial flora, bacterial overgrowth, and short-bowel syndrome. Clin. Gastroenterol. Hepatol. 2006;4:11–20. doi: 10.1016/j.cgh.2005.10.020. PubMed DOI
Huang Y., Guo F., Li Y., Wang J., Li J. Fecal microbiota signatures of adult patients with different types of short bowel syndrome. J. Gastroenterol. Hepatol. 2017 doi: 10.1111/jgh.13806. PubMed DOI
Siggers R.H., Siggers J., Thymann T., Boye M., Sangild P.T. Nutritional modulation of the gut microbiota and immune system in preterm neonates susceptible to necrotizing enterocolitis. J. Nutr. Biochem. 2011;22:511–521. doi: 10.1016/j.jnutbio.2010.08.002. PubMed DOI
Wang S., Ng L.H., Chow W.L., Lee Y.K. Infant intestinal Enterococcus faecalis down-regulates inflammatory responses in human intestinal cell lines. World J. Gastroenterol. 2008;14:1067–1076. doi: 10.3748/wjg.14.1067. PubMed DOI PMC
Messing B., Lémann M., Landais P., Gouttebel M.C., Gérard-Boncompain M., Saudin F., Vangossum A., Beau P., Guédon C., Barnoud D., et al. Prognosis of patients with nonmalignant chronic intestinal failure receiving long-term home parenteral nutrition. Gastroenterology. 1995;108:1005–1010. doi: 10.1016/0016-5085(95)90196-5. PubMed DOI
Mayeur C., Gillard L., Le Beyec J., Bado A., Joly F., Thomas M. Extensive Intestinal Resection Triggers Behavioral Adaptation, Intestinal Remodeling and Microbiota Transition in Short Bowel Syndrome. Microorganisms. 2016;4:1. doi: 10.3390/microorganisms4010016. PubMed DOI PMC
Duncan S.H., Louis P., Thomson J.M., Flint H.J. The role of pH in determining the species composition of the human colonic microbiota. Environ. Microbiol. 2009;11:2112–2122. doi: 10.1111/j.1462-2920.2009.01931.x. PubMed DOI
Mayeur C., Gratadoux J.J., Bridonneau C., Chegdani F., Larroque B., Kapel N., Corcos O., Thomas M., Joly F. Faecal d/l lactate ratio is a metabolic signature of microbiota imbalance in patients with short bowel syndrome. PLoS ONE. 2013;8:e54335. doi: 10.1371/journal.pone.0054335. PubMed DOI PMC
Lilja H.E., Wefer H., Nystrom N., Finkel Y., Engstrand L. Intestinal dysbiosis in children with short bowel syndrome is associated with impaired outcome. Microbiome. 2015;3:18. doi: 10.1186/s40168-015-0084-7. PubMed DOI PMC
Belenguer A., Holtrop G., Duncan S.H., Anderson S.E., Calder A.G., Flint H.J., Lobley G.E. Rates of production and utilization of lactate by microbial communities from the human colon. FEMS Microbiol. Ecol. 2011;77:107–119. doi: 10.1111/j.1574-6941.2011.01086.x. PubMed DOI
Bourriaud C., Robins R.J., Martin L., Kozlowski F., Tenailleau E., Cherbut C., Michel C. Lactate is mainly fermented to butyrate by human intestinal microfloras but inter-individual variation is evident. J. Appl. Microbiol. 2005;99:201–212. doi: 10.1111/j.1365-2672.2005.02605.x. PubMed DOI
Sekirov I., Russell S.L., Antunes L.C., Finlay B.B. Gut microbiota in health and disease. Physiol. Rev. 2010;90:859–904. doi: 10.1152/physrev.00045.2009. PubMed DOI
Abreu M.T. Toll-like receptor signalling in the intestinal epithelium: How bacterial recognition shapes intestinal function. Nat. Rev. Immunol. 2010;10:131–144. doi: 10.1038/nri2707. PubMed DOI
Mazmanian S.K., Liu C.H., Tzianabos A.O., Kasper D.L. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell. 2005;122:107–118. doi: 10.1016/j.cell.2005.05.007. PubMed DOI
Christensen H.R., Frokiaer H., Pestka J.J. Lactobacilli differentially modulate expression of cytokines and maturation surface markers in murine dendritic cells. J. Immunol. 2002;168:171–178. doi: 10.4049/jimmunol.168.1.171. PubMed DOI
Ivanov I.I., de Llanos Frutos R., Manel N., Yoshinaga K., Rifkin D.B., Sartor R.B., Finlay B.B., Littman D.R. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe. 2008;4:337–349. doi: 10.1016/j.chom.2008.09.009. PubMed DOI PMC
Beutler B., Rietschel E.T. Innate immune sensing and its roots: The story of endotoxin. Nat. Rev. Immunol. 2003;3:169. doi: 10.1038/nri1004. PubMed DOI
Kelsall B.L., Leon F. Involvement of intestinal dendritic cells in oral tolerance, immunity to pathogens, and inflammatory bowel disease. Immunol. Rev. 2005;206:132–148. doi: 10.1111/j.0105-2896.2005.00292.x. PubMed DOI
Kelly D., Campbell J.I., King T.P., Grant G., Jansson E.A., Coutts A.G., Pettersson S., Conway S. Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-gamma and RelA. Nat. Immunol. 2004;5:104. doi: 10.1038/ni1018. PubMed DOI
Lee J., Mo J.H., Katakura K., Alkalay I., Rucker A.N., Liu Y.T., Hyun-Ku L., Shen C., Cojocaru G., Shenouda S., et al. Maintenance of colonic homeostasis by distinctive apical TLR9 signalling in intestinal epithelial cells. Nat. Cell Biol. 2006;8:1327. doi: 10.1038/ncb1500. PubMed DOI
Iwasaki A., Kelsall B.L. Freshly isolated Peyer’s patch, but not spleen, dendritic cells produce interleukin 10 and induce the differentiation of T helper type 2 cells. J. Exp. Med. 1999;190:229–239. doi: 10.1084/jem.190.2.229. PubMed DOI PMC
Macpherson A.J., Uhr T. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science. 2004;303:1662–1665. doi: 10.1126/science.1091334. PubMed DOI
Peterson D.A., McNulty N.P., Guruge J.L., Gordon J.I. IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe. 2007;2:328–339. doi: 10.1016/j.chom.2007.09.013. PubMed DOI
Suzuki K., Meek B., Doi Y., Muramatsu M., Chiba T., Honjo T., Fagarasan S. Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut. Proc. Natl. Acad. Sci. USA. 2004;101:1981–1986. doi: 10.1073/pnas.0307317101. PubMed DOI PMC
Yanagibashi T., Hosono A., Oyama A., Tsuda M., Hachimura S., Takahashi Y., Itoh K., Hirayama K., Takahashi K., Kaminogawa S. Bacteroides induce higher IgA production than Lactobacillus by increasing activation-induced cytidine deaminase expression in B cells in murine Peyer’s patches. Biosci. Biotechnol. Biochem. 2009;73:372–377. doi: 10.1271/bbb.80612. PubMed DOI
Zipperer A., Konnerth M.C., Laux C., Berscheid A., Janek D., Weidenmaier C., Burian M., Schilling N.A., Slavetinsky C., Marschal M., et al. Human commensals producing a novel antibiotic impair pathogen colonization. Nature. 2016;535:511–516. doi: 10.1038/nature18634. PubMed DOI
Pierre J.F. Gastrointestinal immune and microbiome changes during parenteral nutrition. Am. J. Physiol. Gastrointest. Liver Physiol. 2017;312:G246–G256. doi: 10.1152/ajpgi.00321.2016. PubMed DOI PMC
Coulombe G., Langlois A., De Palma G., Langlois M.J., McCarville J.L., Gagné-Sanfaçon J., Perreault N., Feng G.S., Bercik P., Boudreau F., et al. SHP-2 Phosphatase Prevents Colonic Inflammation by Controlling Secretory Cell Differentiation and Maintaining Host-Microbiota Homeostasis. J. Cell. Physiol. 2016;231:2529–2540. doi: 10.1002/jcp.25407. PubMed DOI PMC
Everard A., Geurts L., Caesar R., van Hul M., Matamoros S., Duparc T., Denis R.G., Cochez P., Pierard F., Castel J., et al. Intestinal epithelial MyD88 is a sensor switching host metabolism towards obesity according to nutritional status. Nat. Commun. 2014;5:5648. doi: 10.1038/ncomms6648. PubMed DOI PMC
Dheer R., Santaolalla R., Davies J.M., Lang J.K., Phillips M.C., Pastorini C., Vazquez-Pertejo M.T., Abreu M.T. Intestinal Epithelial Toll-Like Receptor 4 Signalling Affects Epithelial Function and Colonic Microbiota and Promotes a Risk for Transmissible Colitis. Infect. Immun. 2016;84:798–810. doi: 10.1128/IAI.01374-15. PubMed DOI PMC
Frantz A.L., Rogier E.W., Weber C.R., Shen L., Cohen D.A., Fenton L.A., Bruno M.E.C., Kaetzel C.S. Targeted deletion of MyD88 in intestinal epithelial cells results in compromised antibacterial immunity associated with downregulation of polymeric immunoglobulin receptor, mucin-2, and antibacterial peptides. Mucosal Immunol. 2012;5:501. doi: 10.1038/mi.2012.23. PubMed DOI PMC
Anitha M., Vijay-Kumar M., Sitaraman S.V., Gewirtz A.T., Srinivasan S. Gut microbial products regulate murine gastrointestinal motility via Toll-like receptor 4 signalling. Gastroenterology. 2012;143:1006–1016. doi: 10.1053/j.gastro.2012.06.034. PubMed DOI PMC
Cheesman S.E., Neal J.T., Mittge E., Seredick B.M., Guillemin K. Epithelial cell proliferation in the developing zebrafish intestine is regulated by the Wnt pathway and microbial signalling via Myd88. Proc. Natl. Acad. Sci. USA. 2011;108:4570–4577. doi: 10.1073/pnas.1000072107. PubMed DOI PMC
Cerovic V., Bain C.C., Mowat A.M., Milling S.W. Intestinal macrophages and dendritic cells: What’s the difference? Trends Immunol. 2014;35:270–277. doi: 10.1016/j.it.2014.04.003. PubMed DOI
Bain C.C., Bravo-Blas A., Scott C.L., Perdiguero E.G., Geissmann F., Henri S., Malissen B., Osborne L.C., Artis D., Mowat A.M. Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice. Nat. Immunol. 2014;15:929–937. doi: 10.1038/ni.2967. PubMed DOI PMC
Smith P.D., Smythies L.E., Shen R., Greenwell-Wild T., Gliozzi M., Wahl S.M. Intestinal macrophages and response to microbial encroachment. Mucosal Immunol. 2011;4:31–42. doi: 10.1038/mi.2010.66. PubMed DOI PMC
Denning T.L., Norris B.A., Medina-Contreras O., Manicassamy S., Geem D., Madan R., Karp C.L., Pulendran B. Functional specializations of intestinal dendritic cell and macrophage subsets that control Th17 and regulatory T cell responses are dependent on the T cell/APC ratio, source of mouse strain, and regional localization. J. Immunol. 2011;187:733–747. doi: 10.4049/jimmunol.1002701. PubMed DOI PMC
Rivollier A., He J., Kole A., Valatas V., Kelsall B.L. Inflammation switches the differentiation program of Ly6Chi monocytes from antiinflammatory macrophages to inflammatory dendritic cells in the colon. J. Exp. Med. 2012;209:139–155. doi: 10.1084/jem.20101387. PubMed DOI PMC
Schulz C., Perdiguero E.G., Chorro L., Szabo-Rogers H., Cagnard N., Kierdorf K., Prinz M., Wu B., Jacobsen S.E.W., Pollard J.W., et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science. 2012;336:86–90. doi: 10.1126/science.1219179. PubMed DOI
Hashimoto D., Chow A., Noizat C., Teo P., Beasley M.B., Leboeuf M., Becker C.D., See P., Price J., Lucas D., et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity. 2013;38:792–804. doi: 10.1016/j.immuni.2013.04.004. PubMed DOI PMC
Ueda Y., Kayama H., Jeon S.G., Kusu T., Isaka Y., Rakugi H., Yamamoto M., Takeda K. Commensal microbiota induce LPS hyporesponsiveness in colonic macrophages via the production of IL-10. Int. Immunol. 2010;22:953–962. doi: 10.1093/intimm/dxq449. PubMed DOI
Hayashi A., Sato T., Kamada N., Mikami Y., Matsuoka K., Hisamatsu T., Hibi T., Roers A., Yagita H., Ohteki T., et al. A single strain of Clostridium butyricum induces intestinal IL-10-producing macrophages to suppress acute experimental colitis in mice. Cell Host Microbe. 2013;13:711–722. doi: 10.1016/j.chom.2013.05.013. PubMed DOI
Ochi T., Feng Y., Kitamoto S., Nagao-Kitamoto H., Kuffa P., Atarashi K., Honda K., Teitelbaum D.H., Kamada N. Diet-dependent, microbiota-independent regulation of IL-10-producing lamina propria macrophages in the small intestine. Sci. Rep. 2016;6:27634. doi: 10.1038/srep27634. PubMed DOI PMC
Bevins C.L. Paneth cell defensins: key effector molecules of innate immunity. Biochem. Soc. Trans. 2006;34:263–266. doi: 10.1042/BST0340263. PubMed DOI
Porter E.M., Bevins C.L., Ghosh D., Ganz T. The multifaceted Paneth cell. Cell Mol. Life Sci. 2002;59:156–170. doi: 10.1007/s00018-002-8412-z. PubMed DOI PMC
Ouellette A.J. Defensin-mediated innate immunity in the small intestine. Best Pract. Res. Clin. Gastroenterol. 2004;18:405–419. doi: 10.1016/j.bpg.2003.10.010. PubMed DOI
Vaishnava S., Behrendt C.L., Ismail A.S., Eckmann L., Hooper L.V. Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc. Natl. Acad. Sci. USA. 2008;105:20858–20863. doi: 10.1073/pnas.0808723105. PubMed DOI PMC
Omata J., Pierre J.F., Heneghan A.F., Tsao F.H., Sano Y., Jonker M.A., Kudsk K.A. Parenteral nutrition suppresses the bactericidal response of the small intestine. Surgery. 2013;153:17–24. doi: 10.1016/j.surg.2012.04.001. PubMed DOI PMC
Kirkland D., Benson A., Mirpuri J., Pifer R., Hou B., DeFranco A.L., Yarovinsky F. B cell-intrinsic MyD88 signalling prevents the lethal dissemination of commensal bacteria during colonic damage. Immunity. 2012;36:228–238. doi: 10.1016/j.immuni.2011.11.019. PubMed DOI PMC
Teng F., Klinger C.N., Felix K.M., Bradley C.P., Wu E., Tran N.L., Umesaki Y., Wu H.J.J. Gut Microbiota Drive Autoimmune Arthritis by Promoting Differentiation and Migration of Peyer’s Patch T Follicular Helper Cells. Immunity. 2016;44:875–888. doi: 10.1016/j.immuni.2016.03.013. PubMed DOI PMC
Kim M., Qie Y., Park J., Kim C.H. Gut Microbial Metabolites Fuel Host Antibody Responses. Cell Host Microbe. 2016;20:202–214. doi: 10.1016/j.chom.2016.07.001. PubMed DOI PMC
Kudoh K., Shimizu J., Wada M., Takita T., Kanke Y., Innami S. Effect of indigestible saccharides on B lymphocyte response of intestinal mucosa and cecal fermentation in rats. J. Nutr. Sci. Vitaminol. 1998;44:103–112. doi: 10.3177/jnsv.44.103. PubMed DOI
Bjorkhem I. Mechanism of degradation of the steroid side chain in the formation of bile acids. J. Lipid Res. 1992;33:455–471. PubMed
Zhang Y., Limaye P.B., Renaud H.J., Klaassen C.D. Effect of various antibiotics on modulation of intestinal microbiota and bile acid profile in mice. Toxicol. Appl. Pharmacol. 2014;277:138–145. doi: 10.1016/j.taap.2014.03.009. PubMed DOI PMC
Chiang J.Y. Bile acid regulation of gene expression: Roles of nuclear hormone receptors. Endocr. Rev. 2002;23:443–463. doi: 10.1210/er.2000-0035. PubMed DOI
Fan M., Wang X., Xu G., Yan Q., Huang W. Bile acid signalling and liver regeneration. Biochim. Biophys. Acta. 2015;1849:196–200. doi: 10.1016/j.bbagrm.2014.05.021. PubMed DOI PMC
Duboc H., Tache Y., Hofmann A.F. The bile acid TGR5 membrane receptor: From basic research to clinical application. Dig. Liver Dis. 2014;46:302–312. doi: 10.1016/j.dld.2013.10.021. PubMed DOI PMC
Li T., Chiang J.Y. Bile acids as metabolic regulators. Curr. Opin. Gastroenterol. 2015;31:159–165. doi: 10.1097/MOG.0000000000000156. PubMed DOI PMC
Jones M.L., Martoni C.J., Ganopolsky J.G., Labbe A., Prakash S. The human microbiome and bile acid metabolism: Dysbiosis, dysmetabolism, disease and intervention. Expert Opin. Biol. Ther. 2014;14:467–482. doi: 10.1517/14712598.2014.880420. PubMed DOI
Ridlon J.M., Kang D.J., Hylemon P.B. Bile salt biotransformations by human intestinal bacteria. J. Lipid Res. 2006;47:241–259. doi: 10.1194/jlr.R500013-JLR200. PubMed DOI
Goodwin B., Jones S.A., Price R.R., Watson M.A., McKee D.D., Moore L.B., Galardi C., Wilson J.G., Lewis M.C., Roth M.E., et al. A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol. Cell. 2000;6:517–526. doi: 10.1016/S1097-2765(00)00051-4. PubMed DOI
Holt M.P., Cheng L., Ju C. Identification and characterization of infiltrating macrophages in acetaminophen-induced liver injury. J. Leukoc. Biol. 2008;84:1410–1421. doi: 10.1189/jlb.0308173. PubMed DOI PMC
Miyata M., Takamatsu Y., Kuribayashi H., Yamazoe Y. Administration of ampicillin elevates hepatic primary bile acid synthesis through suppression of ileal fibroblast growth factor 15 expression. J. Pharmacol. Exp. Ther. 2009;331:1079–1085. doi: 10.1124/jpet.109.160093. PubMed DOI
Pereira-Fantini P.M., Lapthorne S., Joyce S.A., Dellios N.L., Wilson G., Fouhy F., Thomas S.L., Scurr M., Hill C., Gahan C.G., et al. Altered FXR signalling is associated with bile acid dysmetabolism in short bowel syndrome-associated liver disease. J. Hepatol. 2014;61:1115–1125. doi: 10.1016/j.jhep.2014.06.025. PubMed DOI
Nie Y.F., Hu J., Yan X.H. Cross-talk between bile acids and intestinal microbiota in host metabolism and health. J. Zhejiang Univ. Sci. B. 2015;16:436–446. doi: 10.1631/jzus.B1400327. (In Chinese) PubMed DOI PMC
Islam K.S., Fukiya S., Hagio M., Fujii N., Ishizuka S., Ooka T., Ogura Y., Hayashi T., Yokota A. Bile acid is a host factor that regulates the composition of the cecal microbiota in rats. Gastroenterology. 2011;141:1773–1781. doi: 10.1053/j.gastro.2011.07.046. PubMed DOI
Cremers C.M., Knoefler D., Vitvitsky V., Banerjee R., Jakob U. Bile salts act as effective protein-unfolding agents and instigators of disulfide stress in vivo. Proc. Natl. Acad. Sci. USA. 2014;111:E1610–E1619. doi: 10.1073/pnas.1401941111. PubMed DOI PMC
Begley M., Gahan C.G., Hill C. The interaction between bacteria and bile. FEMS Microbiol. Rev. 2005;29:625–651. doi: 10.1016/j.femsre.2004.09.003. PubMed DOI
Inagaki T., Moschetta A., Lee Y.K., Peng L., Zhao G., Downes M., Ruth T.Y., Shelton J.M., Richardson J.A., Repa J.J., et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc. Natl. Acad. Sci. USA. 2006;103:3920–3925. doi: 10.1073/pnas.0509592103. PubMed DOI PMC
D’Aldebert E., Mve M.J.B.B., Mergey M., Wendum D., Firrincieli D., Coilly A., Fouassier L., Corpechot C., Poupon R., Housset C., et al. Bile salts control the antimicrobial peptide cathelicidin through nuclear receptors in the human biliary epithelium. Gastroenterology. 2009;136:1435–1443. doi: 10.1053/j.gastro.2008.12.040. PubMed DOI
Ohkohchi N., Andoh T., Izumi U., Igarashi Y., Ohi R. Disorder of bile acid metabolism in children with short bowel syndrome. J. Gastroenterol. 1997;32:472–479. doi: 10.1007/BF02934085. PubMed DOI
Pereira-Fantini P.M., Bines J.E., Lapthorne S., Fouhy F., Scurr M., Cotter P.D., Gahan C.G., Joyce S.A. Short bowel syndrome (SBS)-associated alterations within the gut-liver axis evolve early and persist long-term in the piglet model of short bowel syndrome. J. Gastroenterol. Hepatol. 2016;31:1946–1955. doi: 10.1111/jgh.13383. PubMed DOI
Sun X., Yang H., Nose K., Nose S., Haxhija E.Q., Koga H., Feng Y., Teitelbaum D.H. Decline in intestinal mucosal IL-10 expression and decreased intestinal barrier function in a mouse model of total parenteral nutrition. Am. J. Physiol. Gastrointest. Liver Physiol. 2008;294:G139–G147. doi: 10.1152/ajpgi.00386.2007. PubMed DOI
Deitch E.A. Gut-origin sepsis: Evolution of a concept. Surgeon. 2012;10:350–356. doi: 10.1016/j.surge.2012.03.003. PubMed DOI PMC
Alverdy J.C., Aoys E., Moss G.S. Total parenteral nutrition promotes bacterial translocation from the gut. Surgery. 1988;104:185–190. PubMed
Demehri F.R., Barrett M., Ralls M.W., Miyasaka E.A., Feng Y., Teitelbaum D.H. Intestinal epithelial cell apoptosis and loss of barrier function in the setting of altered microbiota with enteral nutrient deprivation. Front. Cell. Infect. Microbiol. 2013;3:105. doi: 10.3389/fcimb.2013.00105. PubMed DOI PMC
Feng Y., Sun X., Yang H., Teitelbaum D.H. Dissociation of E-cadherin and beta-catenin in a mouse model of total parenteral nutrition: A mechanism for the loss of epithelial cell proliferation and villus atrophy. J. Physiol. 2009;587:641–654. doi: 10.1113/jphysiol.2008.162719. PubMed DOI PMC
Wildhaber B.E., Yang H., Spencer A.U., Drongowski R.A., Teitelbaum D.H. Lack of enteral nutrition—Effects on the intestinal immune system. J. Surg. Res. 2005;123:8–16. doi: 10.1016/j.jss.2004.06.015. PubMed DOI
Demehri F.R., Barrett M., Teitelbaum D.H. Changes to the Intestinal Microbiome With Parenteral Nutrition: Review of a Murine Model and Potential Clinical Implications. Nutr. Clin. Pract. 2015;30:798–806. doi: 10.1177/0884533615609904. PubMed DOI
Feng Y., Teitelbaum D.H. Tumour necrosis factor—Induced loss of intestinal barrier function requires TNFR1 and TNFR2 signalling in a mouse model of total parenteral nutrition. J. Physiol. 2013;591:3709–3723. doi: 10.1113/jphysiol.2013.253518. PubMed DOI PMC
Yang H., Fan Y., Teitelbaum D.H. Intraepithelial lymphocyte-derived interferon-gamma evokes enterocyte apoptosis with parenteral nutrition in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 2003;284:G629–G637. doi: 10.1152/ajpgi.00290.2002. PubMed DOI
Clayburgh D.R., Shen L., Turner J.R. A porous defense: The leaky epithelial barrier in intestinal disease. Lab. Investig. 2004;84:282–291. doi: 10.1038/labinvest.3700050. PubMed DOI
Yang H., Kiristioglu I., Fan Y., Forbush B., Bishop D.K., Antony P.A., Zhou H., Teitelbaum D.H. Interferon-gamma expression by intraepithelial lymphocytes results in a loss of epithelial barrier function in a mouse model of total parenteral nutrition. Ann. Surg. 2002;236:226–234. doi: 10.1097/00000658-200208000-00011. PubMed DOI PMC
Mitic L.L., Anderson J.M. Molecular architecture of tight junctions. Annu. Rev. Physiol. 1998;60:121–142. doi: 10.1146/annurev.physiol.60.1.121. PubMed DOI
Prasad S., Mingrino R., Kaukinen K., Hayes K.L., Powell R.M., MacDonald T.T., Collins J.E. Inflammatory processes have differential effects on claudins 2, 3 and 4 in colonic epithelial cells. Lab. Investig. 2005;85:1139–1162. doi: 10.1038/labinvest.3700316. PubMed DOI
Fanning A.S., Jameson B.J., Jesaitis L.A., Anderson J.M. The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. J. Biol. Chem. 1998;273:29745–29753. doi: 10.1074/jbc.273.45.29745. PubMed DOI
Chen C., Wang P., Su Q., Wang S., Wang F. Myosin light chain kinase mediates intestinal barrier disruption following burn injury. PLoS ONE. 2012;7:e34946. doi: 10.1371/journal.pone.0034946. PubMed DOI PMC
Sinclair J.L., Alexander M. Role of resistance to starvation in bacterial survival in sewage and lake water. Appl. Environ. Microbiol. 1984;48:410–415. PubMed PMC
Costello E.K., Gordon J.I., Secor S.M., Knight R. Postprandial remodeling of the gut microbiota in Burmese pythons. ISME J. 2010;4:1375–1385. doi: 10.1038/ismej.2010.71. PubMed DOI PMC
Gionchetti P., Rizzello F., Helwig U., Venturi A., Lammers K.M., Brigidi P., Vitali B., Poggioli G., Miglioli M., Campieri M. Prophylaxis of pouchitis onset with probiotic therapy: A double-blind, placebo-controlled trial. Gastroenterology. 2003;124:1202–1209. doi: 10.1016/S0016-5085(03)00171-9. PubMed DOI
Mimura T., Rizzello F., Helwig U., Poggioli G., Schreiber S., Talbot I.C., Nicholls R.J., Gionchetti P., Campieri M., Kamm M.A. Once daily high dose probiotic therapy (VSL#3) for maintaining remission in recurrent or refractory pouchitis. Gut. 2004;53:108–114. PubMed PMC
Szajewska H., Ruszczynski M., Radzikowski A. Probiotics in the prevention of antibiotic-associated diarrhea in children: A meta-analysis of randomized controlled trials. J. Pediatr. 2006;149:367–372. doi: 10.1016/j.jpeds.2006.04.053. PubMed DOI
Barclay A.R., Stenson B., Simpson J.H., Weaver L.T., Wilson D.C. Probiotics for necrotizing enterocolitis: A systematic review. J. Pediatr. Gastroenterol. Nutr. 2007;45:569–576. doi: 10.1097/MPG.0b013e3181344694. PubMed DOI
Sentongo T.A., Cohran V., Korff S., Sullivan C., Iyer K., Zheng X. Intestinal permeability and effects of Lactobacillus rhamnosus therapy in children with short bowel syndrome. J. Pediatr. Gastroenterol. Nutr. 2008;46:41–47. doi: 10.1097/01.mpg.0000304452.92175.f5. PubMed DOI
Uchida K., Takahashi T., Inoue M., Morotomi M., Otake K., Nakazawa M., Tsukamoto Y., Miki C., Kusunoki M. Immunonutritional effects during synbiotics therapy in pediatric patients with short bowel syndrome. Pediatr. Surg. Int. 2007;23:243–248. doi: 10.1007/s00383-006-1866-6. PubMed DOI
Reddy V.S., Patole S.K., Rao S. Role of probiotics in short bowel syndrome in infants and children—A systematic review. Nutrients. 2013;5:679–699. doi: 10.3390/nu5030679. PubMed DOI PMC
Bartholome A.L., Albin D.M., Baker D.H., Holst J.J., Tappenden K.A. Supplementation of total parenteral nutrition with butyrate acutely increases structural aspects of intestinal adaptation after an 80% jejunoileal resection in neonatal piglets. J. Parenter. Enter. Nutr. 2004;28:210–222. doi: 10.1177/0148607104028004210. PubMed DOI
Murakoshi S., Fukatsu K., Omata J., Moriya T., Noguchi M., Saitoh D., Koyama I. Effects of adding butyric acid to PN on gut-associated lymphoid tissue and mucosal immunoglobulin A levels. J. Parenter. Enter. Nutr. 2011;35:465–472. doi: 10.1177/0148607110387610. PubMed DOI
Rolandelli R.H., Buckmire M.A., Bernstein K.A. Intravenous butyrate and healing of colonic anastomoses in the rat. Dis. Colon Rectum. 1997;40:67–70. doi: 10.1007/BF02055684. PubMed DOI
Stein T.P., Yoshida S., Schluter M.D., Drews D., Assimon S.A., Leskiw M.J. Comparison of intravenous nutrients on gut mucosal proteins synthesis. J. Parenter. Enter. Nutr. 1994;18:447–452. doi: 10.1177/0148607194018005447. PubMed DOI
Koruda M.J., Rolandelli R.H., Bliss D.Z., Hastings J., Rombeau J.L., Settle R.G. Parenteral nutrition supplemented with short-chain fatty acids: Effect on the small-bowel mucosa in normal rats. Am. J. Clin. Nutr. 1990;51:685–689. PubMed
Wang P., Wang Y., Lu L., Yan W., Tao Y., Zhou K., Jie J., Wei C. Alterations in intestinal microbiota relate to intestinal failure-associated liver disease and central line infections. J. Pediatr. Surg. 2017;52:1318–1326. doi: 10.1016/j.jpedsurg.2017.04.020. PubMed DOI
De Minicis S., Rychlicki C., Agostinelli L., Saccomanno S., Candelaresi C., Trozzi L., Mingarelli E., Facinelli B., Magi G., Palmieri C., et al. Dysbiosis contributes to fibrogenesis in the course of chronic liver injury in mice. Hepatology. 2014;59:1738–1749. doi: 10.1002/hep.26695. PubMed DOI
El Kasmi K.C., Anderson A.L., Devereaux M.W., Fillon S.A., Harris J.K., Lovell M.A., Finegold M.J., Sokol R.J. Toll-like receptor 4-dependent Kupffer cell activation and liver injury in a novel mouse model of parenteral nutrition and intestinal injury. Hepatology. 2012;55:1518–1528. doi: 10.1002/hep.25500. PubMed DOI PMC
Harris J.K., El Kasmi K.C., Anderson A.L., Devereaux M.W., Fillon S.A., Robertson C.E., Wagner B.D., Stevens M.J., Pace N.R., Sokol R.J. Specific microbiome changes in a mouse model of parenteral nutrition associated liver injury and intestinal inflammation. PLoS ONE. 2014;9:e110396. doi: 10.1371/journal.pone.0110396. PubMed DOI PMC
Lee W.S., Sokol R.J. Intestinal Microbiota, Lipids, and the Pathogenesis of Intestinal Failure-Associated Liver Disease. J. Pediatr. 2015;167:519–526. doi: 10.1016/j.jpeds.2015.05.048. PubMed DOI PMC