Cerium Oxide-Tungsten Oxide Core-Shell Nanowire-Based Microsensors Sensitive to Acetone
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
17-16531S
Grantová Agentura České Republiky
TEC2015-74329-JIN-(AEI/FEDER,EU)
Ministerio de Ciencia y Tecnología
TEC2016-79898-C6-(AEI/FEDER,EU)
Ministerio de Ciencia y Tecnología
PubMed
30477177
PubMed Central
PMC6316039
DOI
10.3390/bios8040116
PII: bios8040116
Knihovny.cz E-zdroje
- Klíčová slova
- acetone, gas sensors, heterojunctions, metal oxides, volatile organic compounds (VOCs),
- MeSH
- aceton metabolismus MeSH
- cer chemie MeSH
- nanodráty chemie MeSH
- oxidy chemie MeSH
- těkavé organické sloučeniny metabolismus MeSH
- wolfram chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aceton MeSH
- cer MeSH
- ceric oxide MeSH Prohlížeč
- oxidy MeSH
- těkavé organické sloučeniny MeSH
- tungsten oxide MeSH Prohlížeč
- wolfram MeSH
Gas sensitive cerium oxide-tungsten oxide core-shell nanowires are synthesized and integrated directly into micromachined platforms via aerosol assisted chemical vapor deposition. Tests to various volatile organic compounds (acetone, ethanol, and toluene) involved in early disease diagnosis demonstrate enhanced sensitivity to acetone for the core-shell structures in contrast to the non-modified materials (i.e., only tungsten oxide or cerium oxide). This is attributed to the high density of oxygen vacancy defects at the shell, as well as the formation of heterojunctions at the core-shell interface, which provide the modified nanowires with 'extra' chemical and electronic sensitization as compared to the non-modified materials.
Zobrazit více v PubMed
Brattoli M., de Gennaro G., de Pinto V., Loiotile A.D., Lovascio S., Penza M. Odour detection methods: Olfactometry and chemical sensors. Sensors. 2011;11:5290–5322. doi: 10.3390/s110505290. PubMed DOI PMC
Di Natale C., Paolesse R., Martinelli E., Capuano R. Solid-state gas sensors for breath analysis: A review. Anal. Chim. Acta. 2014;824:1–17. doi: 10.1016/j.aca.2014.03.014. PubMed DOI
Phillips M., Herrera J., Krishnan S., Zain M., Greenberg J., Cataneo R.N. Variation in volatile organic compounds in the breath of normal humans. J. Chromatogr. B Biomed. Sci. Appl. 1999;729:75–88. doi: 10.1016/S0378-4347(99)00127-9. PubMed DOI
Das S., Pal S., Mitra M. Significance of Exhaled Breath Test in Clinical Diagnosis: A Special Focus on the Detection of Diabetes Mellitus. J. Med. Biol. Eng. 2016;36:605–624. doi: 10.1007/s40846-016-0164-6. PubMed DOI PMC
Dent A.G., Sutedja T.G., Zimmerman P.V. Exhaled breath analysis for lung cancer. J. Thorac. Dis. 2013;5:S540–S550. doi: 10.3978/j.issn.2072-1439.2013.08.44. PubMed DOI PMC
Li J., Peng Y., Liu Y., Li W., Jin Y., Tang Z., Duan Y. Investigation of potential breath biomarkers for the early diagnosis of breast cancer using gas chromatography–mass spectrometry. Clin. Chim. Acta. 2014;436:59–67. doi: 10.1016/j.cca.2014.04.030. PubMed DOI
Van de Kant K.D., van der Sande L.J., Jöbsis Q., van Schayck O.C., Dompeling E. Clinical use of exhaled volatile organic compounds in pulmonary diseases: A systematic review. Respir. Res. 2012;13 doi: 10.1186/1465-9921-13-117. PubMed DOI PMC
Yamazoe N. New approaches for improving semiconductor gas sensors. Sens. Actuator B Chem. 1991;5:7–19. doi: 10.1016/0925-4005(91)80213-4. DOI
Miller D.R., Akbar S.A., Morris P.A. Nanoscale metal oxide-based heterojunctions for gas sensing: A review. Sens. Actuator B Chem. 2014;204:250–272. doi: 10.1016/j.snb.2014.07.074. DOI
Vallejos S., Khatko V., Calderer J., Gracia I., Canè C., Llobet E., Correig X. Micro-machined WO3-based sensors selective to oxidizing gases. Sens. Actuator B Chem. 2008;132:209–215. doi: 10.1016/j.snb.2008.01.044. DOI
Vallejos S., Umek P., Stoycheva T., Annanouch F., Llobet E., Correig X., De Marco P., Bittencourt C., Blackman C. Single-step deposition of Au- and Pt-nanoparticle-functionalized tungsten oxide nanoneedles synthesized via aerosol-assisted CVD, and used for fabrication of selective gas microsensor arrays. Adv. Funct. Mater. 2013;23:1313–1322. doi: 10.1002/adfm.201201871. DOI
Annanouch F.E., Haddi Z., Vallejos S., Umek P., Guttmann P., Bittencourt C., Llobet E. Aerosol-assisted CVD-grown WO3 nanoneedles decorated with copper oxide nanoparticles for the selective and humidity-resilient detection of H2S. ACS Appl. Mater. Interfaces. 2015;7:6842–6851. doi: 10.1021/acsami.5b00411. PubMed DOI
Vallejos S., Gràcia I., Figueras E., Cané C. Nanoscale heterostructures based on Fe2O3@WO3-x nanoneedles and their direct integration into flexible transducing platforms for toluene sensing. ACS Appl. Mater. Interfaces. 2015;7:18638–18649. doi: 10.1021/acsami.5b05081. PubMed DOI
Ma R., Jahurul Islam M., Amaranatha Reddy D., Kim T.K. Transformation of CeO2 into a mixed phase CeO2/Ce2O3 nanohybrid by liquid phase pulsed laser ablation for enhanced photocatalytic activity through Z-scheme pattern. Ceram. Int. 2016;42:18495–18502. doi: 10.1016/j.ceramint.2016.08.186. DOI
Montini T., Melchionna M., Monai M., Fornasiero P. Fundamentals and Catalytic Applications of CeO2-Based Materials. Chem. Rev. 2016;116:5987–6041. doi: 10.1021/acs.chemrev.5b00603. PubMed DOI
Magesh G., Viswanathan B., Viswanath R.P., Varadarajan T.K. Photocatalytic behavior of CeO2-TiO2 system for the degradation of methylene blue. Indian J. Chem. Sect. A. 2009;48A:480–488.
Evans M., Di Maggio F., Blackman C., Sankar G. AACVD synthesis of catalytic gold nanoparticle-modified cerium(IV) oxide thin films. Phys. Status Solidi C. 2015;12:996–1000. doi: 10.1002/pssc.201510055. DOI
Vallejos S., Grácia I., Chmela O., Figueras E., Hubálek J., Cané C. Chemoresistive micromachined gas sensors based on functionalized metal oxide nanowires: Performance and reliability. Sens. Actuator B Chem. 2016;235:525–534. doi: 10.1016/j.snb.2016.05.102. DOI
Vallejos S., Pizúrová N., Čechal J., Gràcia I., Cané C. Aerosol-assisted chemical vapor deposition of metal oxide structures: Zinc oxide rods. J. Vis. Exp. 2017;127:56127. doi: 10.3791/56127. PubMed DOI PMC
Annanouch F.E., Haddi Z., Ling M., Di Maggio F., Vallejos S., Vilic T., Zhu Y., Shujah T., Umek P., Bittencourt C., et al. Aerosol-Assisted CVD-Grown PdO Nanoparticle-Decorated Tungsten Oxide Nanoneedles Extremely Sensitive and Selective to Hydrogen. ACS Appl. Mater. Interfaces. 2016;8:10413–10421. doi: 10.1021/acsami.6b00773. PubMed DOI
Vallejos S., Gràcia I., Figueras E., Cané C. Catalyst-free vapor-phase method for direct integration of gas sensing nanostructures with polymeric transducing platforms. J. Nanomaterials. 2014;2014 doi: 10.1155/2014/932129. DOI
Watanabe H., Fujikata K., Oaki Y., Imai H. Band-gap expansion of tungsten oxide quantum dots synthesized in sub-nano porous silica. Chem. Comm. 2013;49:8477–8479. doi: 10.1039/c3cc44264k. PubMed DOI
Mysliveček J., Matolín V., Matolínová I. Heteroepitaxy of Cerium Oxide Thin Films on Cu(111) Materials. 2015;8:6346–6359. doi: 10.3390/ma8095307. PubMed DOI PMC
Naganuma T., Traversa E. Stability of the Ce3+ valence state in cerium oxide nanoparticle layers. Nanoscale. 2012;4:4950–4953. doi: 10.1039/c2nr30406f. PubMed DOI
Nicolas J., Romain A.-C. Establishing the limit of detection and the resolution limits of odorous sources in the environment for an array of metal oxide gas sensors. Sens. Actuator B Chem. 2004;99:384–392. doi: 10.1016/j.snb.2003.11.036. DOI
Prabhakar A., Iglesias R.A., Shan X., Xian X., Zhang L., Tsow F., Forzani E.S., Tao N. Online Sample Conditioning for Portable Breath Analyzers. Anal. Chem. 2012;84:7172–7178. doi: 10.1021/ac301542j. PubMed DOI PMC
Vallejos S., Gràcia I., Pizúrová N., Figueras E., Hubálek J., Cané C. Tuning of the Humidity-Interference in Gas Sensitive Columnar ZnO Structures. Proceedings. 2017;1 doi: 10.3390/proceedings1040417. DOI
Wang J., Yang P., Wei X. High-Performance, Room-Temperature, and No-Humidity-Impact Ammonia Sensor Based on Heterogeneous Nickel Oxide and Zinc Oxide Nanocrystals. ACS Appl. Mater. Interfaces. 2015;7:3816–3824. doi: 10.1021/am508807a. PubMed DOI
Niarchos G., Dubourg G., Afroudakis G., Georgopoulos M., Tsouti V., Makarona E., Crnojevic-Bengin V., Tsamis C. Humidity Sensing Properties of Paper Substrates and Their Passivation with ZnO Nanoparticles for Sensor Applications. Sensors. 2017;17 doi: 10.3390/s17030516. PubMed DOI PMC
Kim S., Park S., Park S., Lee C. Acetone sensing of Au and Pd-decorated WO3 nanorod sensors. Sens. Actuator B Chem. 2015;209:180–185. doi: 10.1016/j.snb.2014.11.106. DOI
Bertuna A., Comini E., Poli N., Zappa D., Sberveglieri G. Acetone Detection by Chemical Sensors Based on Tungsten and Titanium Oxide Nanowires. Proceedings. 2017;1 doi: 10.3390/proceedings1040434. DOI
Righettoni M., Tricoli A., Pratsinis S.E. Si:WO3 Sensors for Highly Selective Detection of Acetone for Easy Diagnosis of Diabetes by Breath Analysis. Anal. Chem. 2010;82:3581–3587. doi: 10.1021/ac902695n. PubMed DOI
Pandeeswari R., Jeyaprakash B.G. CeO2 thin film as a low-temperature formaldehyde sensor in mixed vapour environment. Bull. Mater. Sci. 2014;37:1293–1299. doi: 10.1007/s12034-014-0074-6. DOI
Nagaraju P., Vijayakumar Y., Choudhary R.J., Ramana Reddy M.V. Preparation and characterization of nanostructured Gd doped cerium oxide thin films by pulsed laser deposition for acetone sensor application. Mater. Sci. Eng., B. 2017;226:99–106. doi: 10.1016/j.mseb.2017.09.002. DOI
Sensing Properties of g-C3N4/Au Nanocomposite for Organic Vapor Detection
Influence of Mg Doping Levels on the Sensing Properties of SnO2 Films