Sensing Properties of g-C3N4/Au Nanocomposite for Organic Vapor Detection
Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
36979527
PubMed Central
PMC10046684
DOI
10.3390/bios13030315
PII: bios13030315
Knihovny.cz E-resources
- Keywords
- Au nanoparticles, g-C3N4, gas sensor, laser ablation, organic vapors,
- MeSH
- Metal Nanoparticles * chemistry MeSH
- Humans MeSH
- Methanol MeSH
- Nanocomposites * chemistry MeSH
- Gases MeSH
- Gold chemistry MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Methanol MeSH
- Gases MeSH
- Gold MeSH
Alleviating the increasingly critical environmental pollution problems entails the sensing of volatile organic compounds (VOCs) as a hazardous factor for human health wherein the development of gas sensor platforms offers an efficient strategy to detect such noxious gases. Nanomaterials, particularly carbon-based nanocomposites, are desired sensing compounds for gas detection owing to their unique properties, namely a facile and affordable synthesis process, high surface area, great selectivity, and possibility of working at room temperature. To achieve that objective, g-C3N4 (graphitic carbon nitride) was prepared from urea deploying simple heating. The ensuing porous nanosheets of g-C3N4 were utilized as a substrate for loading Au nanoparticles, which were synthesized by the laser ablation method. g-C3N4 presented a sensing sensitivity toward organic vapors, namely methanol, ethanol, and acetone vapor gases, which were significantly augmented in the presence of Au nanoparticles. Specifically, the as-prepared nanocomposite performed well with regard to the sensing of methanol vapor gas and offers a unique strategy and highly promising sensing compound for electronic and electrochemical applications.
See more in PubMed
Verma G., Gupta A. Recent development in carbon nanotubes based gas sensors. J. Mater. Nano Sci. 2022;9:3–12.
Galstyan V., Comini E., Kholmanov I., Faglia G., Sberveglieri G. Reduced graphene oxide/ZnO nanocomposite for application in chemical gas sensors. RSC Adv. 2016;6:34225–34232. doi: 10.1039/C6RA01913G. DOI
Varghese S.S., Lonkar S., Singh K., Swaminathan S., Abdala A. Recent advances in graphene based gas sensors. Sens. Actuators B Chem. 2015;218:160–183. doi: 10.1016/j.snb.2015.04.062. DOI
Tomić M., Šetka M., Chmela O., Gràcia I., Figueras E., Cané C., Vallejos S. Cerium oxide-tungsten oxide core-shell nanowire-based microsensors sensitive to acetone. Biosensors. 2018;8:116. doi: 10.3390/bios8040116. PubMed DOI PMC
Ibrahim A., Memon U., Duttagupta S., Mahesh I., Raman R.S., Sarkar A., Pendharkar G., Tatiparti S. Nano-structured palladium impregnate graphitic carbon nitride composite for efficient hydrogen gas sensing. Int. J. Hydrog. Energy. 2020;45:10623–10636. doi: 10.1016/j.ijhydene.2019.04.140. DOI
Ismael M. A review on graphitic carbon nitride (g-C3N4) based nanocomposites: Synthesis, categories, and their application in photocatalysis. J. Alloys Compd. 2020;846:156446. doi: 10.1016/j.jallcom.2020.156446. DOI
Shanbhag Y.M., Shanbhag M.M., Malode S.J., Dhanalakshmi S., Mondal K., Shetti N.P. Direct and sensitive electrochemical evaluation of pramipexole using graphitic carbon nitride (gCN) sensor. Biosensors. 2022;12:552. doi: 10.3390/bios12080552. PubMed DOI PMC
Khushaim W., Mani V., Peramaiya K., Huang K.-W., Salama K.N. Ruthenium and Nickel Molybdate-Decorated 2D Porous Graphitic Carbon Nitrides for Highly Sensitive Cardiac Troponin Biosensor. Biosensors. 2022;12:783. doi: 10.3390/bios12100783. PubMed DOI PMC
Absalan S., Nasresfahani S., Sheikhi M. High-performance carbon monoxide gas sensor based on palladium/tin oxide/porous graphitic carbon nitride nanocomposite. J. Alloys Compd. 2019;795:79–90. doi: 10.1016/j.jallcom.2019.04.187. DOI
Tian H., Fan H., Ma J., Liu Z., Ma L., Lei S., Fang J., Long C. Pt-decorated zinc oxide nanorod arrays with graphitic carbon nitride nanosheets for highly efficient dual-functional gas sensing. J. Hazard. Mater. 2018;341:102–111. doi: 10.1016/j.jhazmat.2017.07.056. PubMed DOI
Ullah M., Bai X., Chen J., Lv H., Liu Z., Zhang Y., Wang J., Sun B., Li L., Shi K. Metal-organic framework material derived Co3O4 coupled with graphitic carbon nitride as highly sensitive NO2 gas sensor at room temperature. Colloids Surf. A Physicochem. Eng. Asp. 2021;612:125972. doi: 10.1016/j.colsurfa.2020.125972. DOI
Qin C., Wang Y., Gong Y., Zhang Z., Cao J. CuO-ZnO hetero-junctions decorated graphitic carbon nitride hybrid nanocomposite: Hydrothermal synthesis and ethanol gas sensing application. J. Alloys Compds. 2019;770:972–980. doi: 10.1016/j.jallcom.2018.08.205. DOI
Li X., Wang Y., Tian W., Cao J. Graphitic carbon nitride nanosheets decorated flower-like NiO composites for high-performance triethylamine detection. ACS Omega. 2019;4:9645–9653. doi: 10.1021/acsomega.9b00905. PubMed DOI PMC
Malik R., Tomer V.K., Dankwort T., Mishra Y.K., Kienle L. Cubic mesoporous Pd–WO 3 loaded graphitic carbon nitride (g-CN) nanohybrids: Highly sensitive and temperature dependent VOC sensors. J. Mater. Chem. A. 2018;6:10718–10730. doi: 10.1039/C8TA02702A. DOI
Meng F., Chang Y., Qin W., Yuan Z., Zhao J., Zhang J., Han E., Wang S., Yang M., Shen Y. ZnO-reduced graphene oxide composites sensitized with graphitic carbon nitride nanosheets for ethanol sensing. ACS Appl. Nano Mater. 2019;2:2734–2742. doi: 10.1021/acsanm.9b00257. DOI
Zhang L., Dong R., Zhu Z., Wang S. Au nanoparticles decorated ZnS hollow spheres for highly improved gas sensor performances. Sens. Actuators B Chem. 2017;245:112–121. doi: 10.1016/j.snb.2017.01.179. DOI
Dai E., Wu S., Ye Y., Cai Y., Liu J., Liang C. Highly dispersed Au nanoparticles decorated WO3 nanoplatelets: Laser-assisted synthesis and superior performance for detecting ethanol vapor. J. Colloid Interface Sci. 2018;514:165–171. doi: 10.1016/j.jcis.2017.11.081. PubMed DOI
Zhang J., Chaker M., Ma D. Pulsed laser ablation based synthesis of colloidal metal nanoparticles for catalytic applications. J. Colloid Interface Sci. 2017;489:138–149. doi: 10.1016/j.jcis.2016.07.050. PubMed DOI
Pantidos N., Horsfall L.E. Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. J. Nanomed. Nanotechnol. 2014;5:1. doi: 10.4172/2157-7439.1000233. DOI
Nasri A., Jaleh B., Khazalpour S., Nasrollahzadeh M., Shokouhimehr M. Facile synthesis of graphitic carbon nitride/chitosan/Au nanocomposite: A catalyst for electrochemical hydrogen evolution. Int. J. Biol. Macromol. 2020;164:3012–3024. doi: 10.1016/j.ijbiomac.2020.08.143. PubMed DOI
Arnawtee W.H., Jaleh B., Nasrollahzadeh M., Bakhshali-Dehkordi R., Nasri A., Orooji Y. Lignin valorization: Facile synthesis, characterization and catalytic activity of multiwalled carbon nanotubes/kraft lignin/Pd nanocomposite for environmental remediation. Sep. Purif. Technol. 2022;290:120793. doi: 10.1016/j.seppur.2022.120793. DOI
Jamkhande P.G., Ghule N.W., Bamer A.H., Kalaskar M.G. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. J. Drug Deliv. Sci. Technol. 2019;53:101174. doi: 10.1016/j.jddst.2019.101174. DOI
Nasri A., Jaleh B., Nezafat Z., Nasrollahzadeh M., Azizian S., Jang H.W., Shokouhimehr M. Fabrication of g-C3N4/Au nanocomposite using laser ablation and its application as an effective catalyst in the reduction of organic pollutants in water. Ceram. Int. 2021;47:3565–3572. doi: 10.1016/j.ceramint.2020.09.204. DOI
Oberländer J., Jildeh Z.B., Kirchner P., Wendeler L., Bromm A., Iken H., Wagner P., Keusgen M., Schöning M.J. Study of interdigitated electrode arrays using experiments and finite element models for the evaluation of sterilization processes. Sensors. 2015;15:26115–26127. doi: 10.3390/s151026115. PubMed DOI PMC
Araghi M.E.A., Vatanpour V. Tuning the band gap of the graphene oxide-chloro aluminum phthalocyanine nanocomposite by reducing the rate of graphene oxide. Physica E Low Dimens. Syst. Nanostruct. 2020;115:113636.
Daneshnazar M., Jaleh B., Eslamipanah M., Varma R.S. Optical and gas sensing properties of TiO2/RGO for methanol, ethanol and acetone vapors. Inorg. Chem. Commun. 2022;145:110014. doi: 10.1016/j.inoche.2022.110014. DOI
Arafat M., Dinan B., Akbar S.A., Haseeb A. Gas sensors based on one dimensional nanostructured metal-oxides: A review. Sensors. 2012;12:7207–7258. doi: 10.3390/s120607207. PubMed DOI PMC
Kumar A., De A., Saxena A., Mozumdar S. Environmentally benign synthesis of positively charged, ultra-low sized colloidal gold in universal solvent. Adv. Nat. Sci. Nanosci. 2014;5:025017. doi: 10.1088/2043-6262/5/2/025017. DOI
Venkateswarlu K., Bose A.C., Rameshbabu N. X-ray peak broadening studies of nanocrystalline hydroxyapatite by Williamson–Hall analysis. Phys. B Condens. Matter. 2010;405:4256–4261. doi: 10.1016/j.physb.2010.07.020. DOI
Yang S., Gong Y., Zhang J., Zhan L., Ma L., Fang Z., Vajtai R., Wang X., Ajayan P.M. Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Adv. Mater. 2013;25:2452–2456. doi: 10.1002/adma.201204453. PubMed DOI
Meng W., Wu S., Wang X., Zhang D. High-sensitivity resistive humidity sensor based on graphitic carbon nitride nanosheets and its application. Sens. Actuators B Chem. 2020;315:128058. doi: 10.1016/j.snb.2020.128058. DOI
Jiang G., Zhou C.-H., Xia X., Yang F., Tong D., Yu W., Liu S. Controllable preparation of graphitic carbon nitride nanosheets via confined interlayer nanospace of layered clays. Mater. Lett. 2010;64:2718–2721. doi: 10.1016/j.matlet.2010.09.004. DOI
Gao J., Wang J., Qian X., Dong Y., Xu H., Song R., Yan C., Zhu H., Zhong Q., Qian G. One-pot synthesis of copper-doped graphitic carbon nitride nanosheet by heating Cu-melamine supramolecular network and its enhanced visible-light-driven photocatalysis. J. Solid State Chem. 2015;228:60–64. doi: 10.1016/j.jssc.2015.04.027. DOI
Azizi-Toupkanloo H., Karimi-Nazarabad M., Shakeri M., Eftekhari M. Photocatalytic mineralization of hard-degradable morphine by visible light-driven Ag@g-C3N4 nanostructures. Environ. Sci. Pollut. Res. 2019;26:30941–30953. doi: 10.1007/s11356-019-06274-9. PubMed DOI
Makuła P., Pacia M., Macyk W. How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV-Vis spectra. J. Phys. Chem. Lett. 2018;9:6814–6817. doi: 10.1021/acs.jpclett.8b02892. PubMed DOI
Nazila Z., Rasuli R. Anchored Cu2O nanoparticles on graphene sheets as an inorganic hole transport layer for improvement in solar cell performance. Appl. Phys. A. 2018;124:814. doi: 10.1007/s00339-018-2229-6. DOI
Zhang H.-p., Du A., Gandhi N.S., Jiao Y., Zhang Y., Lin X., Lu X., Tang Y. Metal-doped graphitic carbon nitride (g-C3N4) as selective NO2 sensors: A first-principles study. Appl. Surf. Sci. 2018;455:1116–1122. doi: 10.1016/j.apsusc.2018.06.034. DOI
Zhu J., Diao T., Wang W., Xu X., Sun X., Carabineiro S.A., Zhao Z. Boron doped graphitic carbon nitride with acid-base duality for cycloaddition of carbon dioxide to epoxide under solvent-free condition. Appl. Catal. B Environ. 2017;219:92–100. doi: 10.1016/j.apcatb.2017.07.041. DOI
Tomer V.K., Malik R., Kailasam K. Near-room-temperature ethanol detection using Ag-loaded mesoporous carbon nitrides. ACS Omega. 2017;2:3658–3668. doi: 10.1021/acsomega.7b00479. PubMed DOI PMC
Sahani S., Park S.J., Myung Y., Pham T.-H., Tung T.T., Kim T. Enhanced Room-Temperature Ethanol Detection by Quasi 2D Nanosheets of an Exfoliated Polymeric Graphitized Carbon Nitride Composite-Based Patterned Sensor. ACS Omega. 2022;7:41905–41914. doi: 10.1021/acsomega.2c02962. PubMed DOI PMC
Deng J., Yu B., Lou Z., Wang L., Wang R., Zhang T. Facile synthesis and enhanced ethanol sensing properties of the brush-like ZnO-TiO2 heterojunctions nanofibers. Sens. Actuators B Chem. 2013;184:21–26. doi: 10.1016/j.snb.2013.04.020. DOI
Zhang Y., Zhang D., Guo W., Chen S. The α-Fe2O3/g-C3N4 heterostructural nanocomposites with enhanced ethanol gas sensing performance. J. Alloys Compd. 2016;685:84–90. doi: 10.1016/j.jallcom.2016.05.220. DOI
Malik R., Tomer V.K., Chaudhary V., Dahiya M.S., Rana P.S., Nehra S., Duhan S. Facile synthesis of hybridized mesoporous Au@TiO2/SnO2 as efficient photocatalyst and selective VOC sensor. ChemistrySelect. 2016;1:3247–3258. doi: 10.1002/slct.201600634. DOI
Cao J., Gong Y., Wang Y., Zhang B., Zhang H., Sun G., Bala H., Zhang Z. Cocoon-like ZnO decorated graphitic carbon nitride nanocomposite: Hydrothermal synthesis and ethanol gas sensing application. Mater. Lett. 2017;198:76–80. doi: 10.1016/j.matlet.2017.03.143. DOI
Cao J., Qin C., Wang Y. Synthesis of g-C3N4 nanosheets decorated flower-like tin oxide composites and their improved ethanol gas sensing properties. J. Alloys Compd. 2017;728:1101–1109. doi: 10.1016/j.jallcom.2017.09.073. DOI
Hu J., Zou C., Su Y., Li M., Yang Z., Ge M., Zhang Y. One-step synthesis of 2D C3N4-tin oxide gas sensors for enhanced acetone vapor detection. Sens. Actuators B Chem. 2017;253:641–651. doi: 10.1016/j.snb.2017.06.176. DOI
Wang Y., Cao J., Qin C., Zhang B., Sun G., Zhang Z. Synthesis and enhanced ethanol gas sensing properties of the g-C3N4 nanosheets-decorated tin oxide flower-like nanorods composite. Nanomaterials. 2017;7:285. doi: 10.3390/nano7100285. PubMed DOI PMC
Li S., Wang Z., Wang X., Sun F., Gao K., Hao N., Zhang Z., Ma Z., Li H., Huang X. Orientation controlled preparation of nanoporous carbon nitride fibers and related composite for gas sensing under ambient conditions. Nano Res. 2017;10:1710–1719. doi: 10.1007/s12274-017-1423-8. DOI
Li X., Tian W., Jia J., Cao J., Zhang Z., Wang Y. Synthesis of graphitic carbon nitride nanosheets decorated spherical-like nickel oxide composites for carbon monoxide gas-sensing application. Micro Nano Lett. 2019;14:1410–1413. doi: 10.1049/mnl.2019.0436. DOI
Li X., Li Y., Sun G., Luo N., Zhang B., Zhang Z. Synthesis of a flower-like g-C3N4/ZnO hierarchical structure with improved CH4 sensing properties. Nanomaterials. 2019;9:724. doi: 10.3390/nano9050724. PubMed DOI PMC
Karthik P., Gowthaman P., Venkatachalam M., Saroja M. Design and fabrication of g-C3N4 nanosheets decorated TiO2 hybrid sensor films for improved performance towards CO2 gas. Inorg. Chem. Commun. 2020;119:108060. doi: 10.1016/j.inoche.2020.108060. DOI
Wang H., Bai J., Dai M., Liu K., Liu Y., Zhou L., Liu F., Liu F., Gao Y., Yan X. Visible light activated excellent NO2 sensing based on 2D/2D ZnO/g-C3N4 heterojunction composites. Sens. Actuators B Chem. 2020;304:127287. doi: 10.1016/j.snb.2019.127287. DOI
Sun Q., Hao J., Zheng S., Wan P., Li J., Zhang D., Li Y., Wang T., Wang Y. 2D/2D heterojunction of g-C3N4/SnS2: Room-temperature sensing material for ultrasensitive and rapid-recoverable NO2 detection. Nanotechnology. 2020;31:425502. doi: 10.1088/1361-6528/aba05b. PubMed DOI
Akhtar A., Jiao C., Chu X., Liang S., Dong Y., He L. Acetone sensing properties of the g-C3N4-CuO nanocomposites prepared by hydrothermal method. Mater. Chem. Phys. 2021;265:124375. doi: 10.1016/j.matchemphys.2021.124375. DOI
Surface-Engineered 2D Nanomaterials in Gas Sensors: Advancement and Challenges