Highly Sensitive Gas and Ethanol Vapor Sensors Based on Carbon Heterostructures for Room Temperature Detection
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39980374
PubMed Central
PMC11891861
DOI
10.1021/acsami.4c21591
Knihovny.cz E-zdroje
- Klíčová slova
- ethanol vapor detection, gas sensor, graphene oxide, hydrogen-terminated nanocrystalline diamond, reduced graphene oxide, thiol-functionalized graphene oxide,
- Publikační typ
- časopisecké články MeSH
Graphene oxides (GOs) and hydrogen-terminated nanocrystalline diamonds (H-NCD) have attracted considerable attention due to their unique electronic structure and extraordinary physical and chemical properties in various applications, including gas sensing. Currently, there is a significant focus on air quality and the presence of pollutants (NH3, NO2, etc.), as well as volatile organic compounds (VOC) such as ethanol vapor from industry. This study examines the synthesis of GO, reduced graphene oxide (rGO), thiol-functionalized graphene oxide (SH-GO), and H-NCD thin films and their combination in heterostructures. The materials were analyzed for their ability to detect NO2, NH3, and ethanol vapor at room temperature (22 °C). Among the tested materials, the SH-GO/H-NCD heterostructure exhibited the highest sensitivity, with approximately 630% for ethanol vapor, 41% for NH3 and -19% for NO2. The SH-GO/H-NCD heterostructure also demonstrated reasonable response (272 s) and recovery (34 s) times. Cross-selectivity measurements revealed that the heterostructure's response to ethanol vapor at 100 ppm remained dominant and was minimally affected by the presence of NH3 (100 ppm) or CO2 (100 ppm). The response variations were -1.3% for NO2 and 2.4% for NH3, respectively. These findings suggest that this heterostructure has the potential to be used as an active layer in low-temperature gas sensors. Furthermore, this research proposes a primary mechanism that explains the enhanced sensor response of the heterostructure compared with bare GOs and H-NCD layers.
Zobrazit více v PubMed
Dhall S.; Mehta B. R.; Tyagi A. K.; Sood K. A review on environmental gas sensors: Materials and technologies. Sensors International 2021, 2, 10011610.1016/j.sintl.2021.100116. DOI
Fraden J.Handbook of modern sensors: Physics, designs, and applications/Jacob Fraden, 3rd ed.; Springer: New York, 2003.
Nasri A.; Jaleh B.; Daneshnazar M.; Varma R. S. Sensing Properties of g-C3N4/Au Nanocomposite for Organic Vapor Detection. Biosensors 2023, 13, 315.10.3390/bios13030315. PubMed DOI PMC
Nihal; Sharma R.; Kaur N.; Sharma M.; Choudhary B. C.; Goswamy J. K. Improved room temperature ethanol vapors sensing using silver nanoparticles decorated graphitic carbon nitride (Ag-gCN) nanocomposite. Mater. Lett. 2023, 342, 13434310.1016/j.matlet.2023.134343. DOI
European Road Safety Observatory. Monitoring Road Safety in the EU: towards a comprehensive set of Safety Performance Indicators: 2018, 2018.
World Health Organization . Who guidelines for indoor air quality: Selected pollutants; WHO: Copenhagen, 2010. PubMed
Nadeau V.; Lamoureux D.; Beuter A.; Charbonneau M.; Tardif R. Neuromotor effects of acute ethanol inhalation exposure in humans: a preliminary study. Journal of occupational health 2003, 45, 215–222. 10.1539/joh.45.215. PubMed DOI
Abedi S. P.; Rahmani M. B.; Rezaii F. α-Fe 2 O 3 thin films deposited by a facile spray pyrolysis technique for enhanced ethanol sensing. Phys. Scr. 2023, 98, 55901.10.1088/1402-4896/acc6a0. DOI
Chakraborty B.; Gayakwad A.; Sahai M.; Manjuladevi V.; Gupta R. K.; Bhattacharyya P. Correlation of Volumetric Vaporsorption and Vapor Sensing Phenomenon of Flower-Like MoS 2 -Based Sensor. IEEE Sensors J. 2023, 23, 5858–5865. 10.1109/JSEN.2023.3242763. DOI
George A.; Raj A.; Yang Q. Structural characteristics and gas sensing response of V2O5 nanorod thinfilms deposited by hot filament CVD. Sens. Actuators, B 2023, 378, 13307810.1016/j.snb.2022.133078. DOI
Shooshtari M.; Vollebregt S.; Vaseghi Y.; Rajati M.; Pahlavan S. The sensitivity enhancement of TiO2-based VOCs sensor decorated by gold at room temperature. Nanotechnology 2023, 34, 255501.10.1088/1361-6528/acc6d7. PubMed DOI
Tan Y.; Zhang J. Highly sensitive ethanol gas sensors based on Co-doped SnO2 nanobelts and pure SnO2 nanobelts. Physica E: Low-dimensional Systems and Nanostructures 2023, 147, 11560410.1016/j.physe.2022.115604. DOI
Ananthi S.; Kavitha M.; Balamurugan A.; Ranjith Kumar E.; Magesh G.; Abd El-Rehim A. F.; Srinivas C.; Anilkumar P.; Suryakanth J.; Sharmila Rahale C. Synthesis, analysis and characterization of camellia sinensis mediated synthesis of NiO nanoparticles for ethanol gas sensor applications. Sens. Actuators, B 2023, 387, 13374210.1016/j.snb.2023.133742. DOI
Kočí M.; Kromka A.; Bouřa A.; Szabó O.; Husák M. Hydrogen-Terminated Diamond Surface as a Gas Sensor: A Comparative Study of Its Sensitivities. Sensors (Basel, Switzerland) 2021, 21, 5390.10.3390/s21165390. PubMed DOI PMC
Hur J.; Park S.; Kim J. H.; Cho J. Y.; Kwon B.; Lee J. H.; Bae G. Y.; Kim H.; Han J. T.; Lee W. H. Ultrasensitive, Transparent, Flexible, and Ecofriendly NO 2 Gas Sensors Enabled by Oxidized Single-Walled Carbon Nanotube Bundles on Cellulose with Engineered Surface Roughness. ACS Sustainable Chem. Eng. 2022, 10, 3227–3235. 10.1021/acssuschemeng.1c07559. DOI
Shooshtari M.; Salehi A. An electronic nose based on carbon nanotube -titanium dioxide hybrid nanostructures for detection and discrimination of volatile organic compounds. Sens. Actuators, B 2022, 357, 13141810.1016/j.snb.2022.131418. DOI
Kumar R.; Avasthi D. K.; Kaur A. Fabrication of chemiresistive gas sensors based on multistep reduced graphene oxide for low parts per million monitoring of sulfur dioxide at room temperature. Sens. Actuators, B 2017, 242, 461–468. 10.1016/j.snb.2016.11.018. DOI
Gavgani J. N.; Hasani A.; Nouri M.; Mahyari M.; Salehi A. Highly sensitive and flexible ammonia sensor based on S and N co-doped graphene quantum dots/polyaniline hybrid at room temperature. Sens. Actuators, B 2016, 229, 239–248. 10.1016/j.snb.2016.01.086. DOI
Ding L.; Qin Z.; Dou Z.; Shen Y.; Cai Y.; Zhang Y.; Zhou Y. Morphology-promoted synergistic effects on the sensing properties of polyaniline ultrathin layers on reduced graphene oxide sheets for ammonia and formaldehyde detection. J. Mater. Sci. 2018, 53, 7595–7608. 10.1007/s10853-018-2109-7. DOI
Kareem M. H.; Hussein H. T.; Abdul Hussein A. M. Study of the effect of CNTs, and (CNTs-ZnO) on the porous silicon as sensor for acetone gas detection. Optik 2022, 259, 16882510.1016/j.ijleo.2022.168825. DOI
Midya A.; Mukherjee S.; Roy S.; Santra S.; Manna N.; Ray S. K. Selective chloroform sensor using thiol functionalized reduced graphene oxide at room temperature. Mater. Res. Express 2018, 5, 25604.10.1088/2053-1591/aaa67b. DOI
Meng F.-L.; Li H.-H.; Kong L.-T.; Liu J.-Y.; Jin Z.; Li W.; Jia Y.; Liu J.-H.; Huang X.-J. Parts per billion-level detection of benzene using SnO2/graphene nanocomposite composed of sub-6 nm SnO2 nanoparticles. Analytica chimica acta 2012, 736, 100–107. 10.1016/j.aca.2012.05.044. PubMed DOI
Rabchinskii M. K.; Sysoev V. V.; Ryzhkov S. A.; Eliseyev I. A.; Stolyarova D. Y.; Antonov G. A.; Struchkov N. S.; Brzhezinskaya M.; Kirilenko D. A.; Pavlov S. I.; et al. A Blueprint for the Synthesis and Characterization of Thiolated Graphene. Nanomaterials (Basel, Switzerland) 2022, 12, 45.10.3390/nano12010045. PubMed DOI PMC
Seekaew Y.; Wisitsoraat A.; Wongchoosuk C. ZnO quantum dots decorated carbon nanotubes-based sensors for methanol detection at room temperature. Diamond Relat. Mater. 2023, 132, 10963010.1016/j.diamond.2022.109630. DOI
Lv M.-S.; Li Y.-N.; Chen G.-L.; Gao R.; Zhang X.-F.; Deng Z.-P.; Xu Y.-M.; Huo L.-H.; Gao S. Biotemplate synthesis of NiO/ZnO tubes rich in oxygen vacancies for enhanced sensing detection of hydrazine at low temperature. Sens. Actuators, B 2023, 385, 13368410.1016/j.snb.2023.133684. DOI
Schedin F.; Geim A. K.; Morozov S. V.; Hill E. W.; Blake P.; Katsnelson M. I.; Novoselov K. S. Detection of individual gas molecules adsorbed on graphene. Nature materials 2007, 6, 652–655. 10.1038/nmat1967. PubMed DOI
Valentini L.; Armentano I.; Kenny J. M.; Cantalini C.; Lozzi L.; Santucci S. Sensors for sub-ppm NO2 gas detection based on carbon nanotube thin films. Appl. Phys. Lett. 2003, 82, 961–963. 10.1063/1.1545166. DOI
Yavari F.; Koratkar N. Graphene-Based Chemical Sensors. journal of physical chemistry letters 2012, 3, 1746–1753. 10.1021/jz300358t. PubMed DOI
Kočí M.; Izsák T.; Vanko G.; Sojková M.; Hrdá J.; Szabó O.; Husák M.; Végsö K.; Varga M.; Kromka A. Improved Gas Sensing Capabilities of MoS2/Diamond Heterostructures at Room Temperature. ACS Appl. Mater. Interfaces 2023, 15, 34206–34214. 10.1021/acsami.3c04438. PubMed DOI PMC
Helwig A.; Müller G.; Garrido J. A.; Eickhoff M. Gas sensing properties of hydrogen-terminated diamond. Sens. Actuators, B 2008, 133, 156–165. 10.1016/j.snb.2008.02.007. DOI
Wrobel P. S.; Wlodarski M. D.; Jedrzejewska A.; Placek K. M.; Szukiewicz R.; Kotowicz S.; Tokarska K.; Quang H. T.; Mendes R. G.; Liu Z.; et al. A comparative study on simple and practical chemical gas sensors from chemically modified graphene films. Mater. Res. Express 2019, 6, 15607.10.1088/2053-1591/aae6be. DOI
Zhang S.; Pang J.; Li Y.; Ibarlucea B.; Liu Y.; Wang T.; Liu X.; Peng S.; Gemming T.; Cheng Q.; et al. An effective formaldehyde gas sensor based on oxygen-rich three-dimensional graphene. Nanotechnology 2022, 33, 185702.10.1088/1361-6528/ac4eb4. PubMed DOI
Wu G.; Du H.; Cha Y. L.; Lee D.; Kim W.; Feyzbar-Khalkhali-Nejad F.; Oh T.-S.; Zhang X.; Kim D.-J. A wearable mask sensor based on polyaniline/CNT nanocomposites for monitoring ammonia gas and human breathing. Sens. Actuators, B 2023, 375, 13285810.1016/j.snb.2022.132858. DOI
Yan X.; Wu Y.; Li R.; Shi C.; Moro R.; Ma Y.; Ma L. High-Performance UV-Assisted NO2 Sensor Based on Chemical Vapor Deposition Graphene at Room Temperature. ACS omega 2019, 4, 14179–14187. 10.1021/acsomega.9b00935. PubMed DOI PMC
Tung T. T.; Castro M.; Pillin I.; Kim T. Y.; Suh K. S.; Feller J.-F. Graphene–Fe3O4/PIL–PEDOT for the design of sensitive and stable quantum chemo-resistive VOC sensors. Carbon 2014, 74, 104–112. 10.1016/j.carbon.2014.03.009. DOI
Kromka A.; Babchenko O.; Izak T.; Hruska K.; Rezek B. Linear antenna microwave plasma CVD deposition of diamond films over large areas. Vacuum 2012, 86, 776–779. 10.1016/j.vacuum.2011.07.008. DOI
Sun X.; Liu Z.; Welsher K.; Robinson J. T.; Goodwin A.; Zaric S.; Dai H. Nano-Graphene Oxide for Cellular Imaging and Drug Delivery. Nano research 2008, 1, 203–212. 10.1007/s12274-008-8021-8. PubMed DOI PMC
Zhu X.; Liu Q.; Zhu X.; Li C.; Xu M.; Liang Y. Reduction of Graphene Oxide Via Ascorbic Acid and Its Application for Simultaneous Detection of Dopamine And Ascorbic Acid. Int. J. Electrochem. Sci. 2012, 7, 5172–5184. 10.1016/S1452-3981(23)19612-X. DOI
Bachmatiuk A.; Mendes R. G.; Hirsch C.; Jähne C.; Lohe M. R.; Grothe J.; Kaskel S.; Fu L.; Klingeler R.; Eckert J.; et al. Few-layer graphene shells and nonmagnetic encapsulates: a versatile and nontoxic carbon nanomaterial. ACS Nano 2013, 7, 10552–10562. 10.1021/nn4051562. PubMed DOI
Artemenko A.; Ižák T.; Marton M.; Ukraintsev E.; Stuchlík J.; Hruška K.; Vojs M.; Kromka A. Stability of the surface termination of nanocrystalline diamond and diamond-like carbon films exposed to open air conditions. Diamond Relat. Mater. 2019, 100, 10756210.1016/j.diamond.2019.107562. DOI
Davydova M.; Stuchlik M.; Rezek B.; Larsson K.; Kromka A. Sensing of phosgene by a porous-like nanocrystalline diamond layer with buried metallic electrodes. Sens. Actuators, B 2013, 188, 675–680. 10.1016/j.snb.2013.07.079. DOI
D’Amico A.; Di Natale C. A contribution on some basic definitions of sensors properties. IEEE Sensors J. 2001, 1, 183–190. 10.1109/JSEN.2001.954831. DOI
Huang J.; Wan Q. Gas sensors based on semiconducting metal oxide one-dimensional nanostructures. Sensors (Basel, Switzerland) 2009, 9, 9903–9924. 10.3390/s91209903. PubMed DOI PMC
Rossi A.; Impemba S.; Serrano-Ruiz M.; Caporali M.; Fabbri B.; Valt M.; Gaiardo A.; Filippi J.; Vanzetti L.; Banchelli M.; et al. 2D Amino-Functionalized Black Phosphorus: A New Approach to Improve Hydrogen Gas Detection Performance. ACS Appl. Mater. Interfaces 2024, 16, 39796–39806. 10.1021/acsami.4c06137. PubMed DOI
Cho B.; Yoon J.; Lim S. K.; Kim A. R.; Kim D.-H.; Park S.-G.; Kwon J.-D.; Lee Y.-J.; Lee K.-H.; Lee B. H.; et al. Chemical Sensing of 2D Graphene/MoS2 Heterostructure device. ACS Appl. Mater. Interfaces 2015, 7, 16775–16780. 10.1021/acsami.5b04541. PubMed DOI
Reddeppa M.; Park B.-G.; Murali G.; Choi S. H.; Chinh N. D.; Kim D.; Yang W.; Kim M.-D. NOx gas sensors based on layer-transferred n-MoS2/p-GaN heterojunction at room temperature: Study of UV light illuminations and humidity. Sens. Actuators, B 2020, 308, 12770010.1016/j.snb.2020.127700. DOI
Yan W.; Zhou S.; Ling M.; Peng X.; Zhou H. NH3 Sensor Based on ZIF-8/CNT Operating at Room Temperature with Immunity to Humidity. Inorganics 2022, 10, 193.10.3390/inorganics10110193. DOI
Alzate-Carvajal N.; Luican-Mayer A. Functionalized Graphene Surfaces for Selective Gas Sensing. ACS omega 2020, 5, 21320–21329. 10.1021/acsomega.0c02861. PubMed DOI PMC
Kawarada H. Diamond p-FETs using two-dimensional hole gas for high frequency and high voltage complementary circuits. J. Phys. D: Appl. Phys. 2023, 56, 53001.10.1088/1361-6463/aca61c. DOI
Davydova M.; Kulha P.; Laposa A.; Hruska K.; Demo P.; Kromka A. Gas sensing properties of nanocrystalline diamond at room temperature. Beilstein journal of nanotechnology 2014, 5, 2339–2345. 10.3762/bjnano.5.243. PubMed DOI PMC
Crawford K. G.; Maini I.; Macdonald D. A.; Moran D. A. Surface transfer doping of diamond: A review. Prog. Surf. Sci. 2021, 96, 10061310.1016/j.progsurf.2021.100613. DOI
Madvar H. R.; Kordrostami Z.; Mirzaei A. Sensitivity Enhancement of Resistive Ethanol Gas Sensor by Optimized Sputtered-Assisted CuO Decoration of ZnO Nanorods. Sensors (Basel, Switzerland) 2023, 23, 365.10.3390/s23010365. PubMed DOI PMC
Pham C. V.; Eck M.; Krueger M. Thiol functionalized reduced graphene oxide as a base material for novel graphene-nanoparticle hybrid composites. Chemical Engineering Journal 2013, 231, 146–154. 10.1016/j.cej.2013.07.007. DOI
Nurazzi N. M.; Abdullah N.; Demon S. Z. N.; Halim N. A.; Azmi A. F. M.; Knight V. F.; Mohamad I. S. The frontiers of functionalized graphene-based nanocomposites as chemical sensors. Nanotechnol. Rev. 2021, 10, 330–369. 10.1515/ntrev-2021-0030. DOI
Drewniak S.; Drewniak Ł.; Pustelny T. Mechanisms of NO2 Detection in Hybrid Structures Containing Reduced Graphene Oxide: A Review. Sensors (Basel, Switzerland) 2022, 22, 5316.10.3390/s22145316. PubMed DOI PMC