Hydrogen-Terminated Diamond Surface as a Gas Sensor: A Comparative Study of Its Sensitivities

. 2021 Aug 10 ; 21 (16) : . [epub] 20210810

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34450831

A nanocrystalline diamond (NCD) layer is used as an active (sensing) part of a conductivity gas sensor. The properties of the sensor with an NCD with H-termination (response and time characteristic of resistance change) are measured by the same equipment with a similar setup and compared with commercial sensors, a conductivity sensor with a metal oxide (MOX) active material (resistance change), and an infrared pyroelectric sensor (output voltage change) in this study. The deposited layer structure is characterized and analyzed by Scanning Electron Microscopy (SEM) and Raman spectroscopy. Electrical properties (resistance change for conductivity sensors and output voltage change for the IR pyroelectric sensor) are examined for two types of gases, oxidizing (NO2) and reducing (NH3). The parameters of the tested sensors are compared and critically evaluated. Subsequently, differences in the gas sensing principles of these conductivity sensors, namely H-terminated NCD and SnO2, are described.

Zobrazit více v PubMed

Wang C., Yin L., Zhang L., Xiang D., Gao R. Metal Oxide Gas Sensors: Sensitivity and Influencing Factors. Sensors. 2010;10:2088–2106. doi: 10.3390/s100302088. PubMed DOI PMC

Helwig A., Mueller G., Garrido J.A., Eickhoff M. Gas Sensing Properties of Hydrogen-Terminated Diamond. Sens. Actuators B Chem. 2008;133:156–165. doi: 10.1016/j.snb.2008.02.007. DOI

Liao M., Shen B., Wang Z. Ultra-Wide Bandgap Semiconductor Materials. Elsevier; Amsterdam, The Netherlands: 2019.

Sze S.M., Ng K.K. Physics of Semiconductor Devices. 3rd, ed. Wiley; Hoboken, NJ, USA: 2007.

Adachi S. Properties of Group-IV, III-V and II-VI Semiconductors. Wiley; Hoboken, NJ, USA: 2005.

Joshi R.K., Weber J.E., Hu Q., Johnson B., Zimmer J.W., Kumar A. Carbon Monoxide Sensing at Room Temperature via Electron Donation in Boron Doped Diamond Films. Sens. Actuators B Chem. 2010;145:527–532. doi: 10.1016/j.snb.2009.12.070. DOI

Gurbuz Y., Kang W.P., Davidson J.L., Kinser D.L., Kerns D.V. Diamond Microelectronic Gas Sensors. Sens. Actuators B Chem. 1996;33:100–104. doi: 10.1016/0925-4005(96)01839-4. DOI

Sato H., Kasu M. Electronic Properties of H-terminated Diamond during NO2 and O3 Adsorption and Desorption. Diam. Relat. Mater. 2012;24:99–103. doi: 10.1016/j.diamond.2011.12.004. DOI

Laposa A., Kroutil J., Davydova M., Taylor A., Voves J., Klimsa L., Kopecek J., Husak M. Inkjet Seeded CVD-Grown Hydrogenated Diamond Gas Sensor Under UV-LED Illumination. IEEE Sens. J. 2020;20:1158–1165. doi: 10.1109/JSEN.2019.2946947. DOI

Davydova M., Kulha P., Laposa A., Hruska K., Demo P., Kromka A. Gas Sensing Properties of Nanocrystalline Diamond at Room Temperature. Beilstein J. Nanotechnol. 2014;5:2339–2345. doi: 10.3762/bjnano.5.243. PubMed DOI PMC

Davydova M., Stuchlik M., Rezek B., Larsson K., Kromka A. Sensing of Phosgene by a Porous-Like Nanocrystalline Diamond Layer with Buried Metallic Electrodes. Sens. Actuators B Chem. 2013;188:675–680. doi: 10.1016/j.snb.2013.07.079. DOI

Mueller G., Krstev I., Maier K., Helwig A., Stutzmann M., Garrido J. Resettable, Low-Temperature Accumulation Gas Sensors Based on Hydrogenated Diamond Transducers. Eurosensors. 2015;120:590–593. doi: 10.1016/j.proeng.2015.08.733. DOI

Kromka A., Davydova M., Rezek B., Vanecek M., Stuchlik M., Exnar P., Kalbac M. Gas Sensing Properties of Nanocrystalline Diamond Films. Diam. Relat. Mater. 2010;19:196–200. doi: 10.1016/j.diamond.2009.10.006. DOI

FIGARO USA, INC TGS 826—For the Detection of Ammonia: Product Information. [(accessed on 22 December 2020)]; Available online: https://www.figarosensor.com/product/docs/TGS%20826%20%2805_04%29.pdf.

Štulík K., Barek J., Janata J., Král V., Kronďák M., Šťastný M. Sensors: General Aspects of Chemical Sensing. VŠCHT; Prague, Czech Republic: 2007.

Pyreos Limited, Thin Film Pyroelectric Dual Channel Sensor: Product Information. [(accessed on 22 December 2020)]; Available online: https://pyreos.com/wp-content/uploads/2020/11/Pyreos-Analog-TO-Two-Channels.pdf.

FIGARO USA, INC FIGARO GAS SENSORS: 1-Series and 8-Series: Product Catalogue. [(accessed on 1 February 2020)]; Available online: https://www.figarosensor.com/product/docs/figaro_tgs_serien.pdf.

Nahlik J., Laposa A., Voves J., Kroutil J., Drahokoupil J., Davydova M. A High Sensitivity UV Photodetector with Inkjet Printed ZnO/Nanodiamond Active Layers. IEEE Sens. J. 2019;19:5587–5593. doi: 10.1109/JSEN.2019.2893572. DOI

Sharma A., Tomar M., Gupta V. SnO2 Thin Film Sensor with Enhanced Response for NO2 Gas at Lower Temperatures. Sens. Actuators B Chem. 2011;156:743–752. doi: 10.1016/j.snb.2011.02.033. DOI

Wang Y., Zhao Z., Sun Y., Li P., Ji J., Chen Y., Zhang W., Hu J. Fabrication and Gas Sensing Properties of Au-loaded SnO2 Composite Nanoparticles for Highly Sensitive Hydrogen Detection. Sens. Actuators B Chem. 2017;240:664–673. doi: 10.1016/j.snb.2016.09.024. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace