Hydrogen-Terminated Diamond Surface as a Gas Sensor: A Comparative Study of Its Sensitivities
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34450831
PubMed Central
PMC8400072
DOI
10.3390/s21165390
PII: s21165390
Knihovny.cz E-zdroje
- Klíčová slova
- gas detectors, metal oxide (MOX), nanocrystalline diamond (NCD),
- Publikační typ
- časopisecké články MeSH
A nanocrystalline diamond (NCD) layer is used as an active (sensing) part of a conductivity gas sensor. The properties of the sensor with an NCD with H-termination (response and time characteristic of resistance change) are measured by the same equipment with a similar setup and compared with commercial sensors, a conductivity sensor with a metal oxide (MOX) active material (resistance change), and an infrared pyroelectric sensor (output voltage change) in this study. The deposited layer structure is characterized and analyzed by Scanning Electron Microscopy (SEM) and Raman spectroscopy. Electrical properties (resistance change for conductivity sensors and output voltage change for the IR pyroelectric sensor) are examined for two types of gases, oxidizing (NO2) and reducing (NH3). The parameters of the tested sensors are compared and critically evaluated. Subsequently, differences in the gas sensing principles of these conductivity sensors, namely H-terminated NCD and SnO2, are described.
Zobrazit více v PubMed
Wang C., Yin L., Zhang L., Xiang D., Gao R. Metal Oxide Gas Sensors: Sensitivity and Influencing Factors. Sensors. 2010;10:2088–2106. doi: 10.3390/s100302088. PubMed DOI PMC
Helwig A., Mueller G., Garrido J.A., Eickhoff M. Gas Sensing Properties of Hydrogen-Terminated Diamond. Sens. Actuators B Chem. 2008;133:156–165. doi: 10.1016/j.snb.2008.02.007. DOI
Liao M., Shen B., Wang Z. Ultra-Wide Bandgap Semiconductor Materials. Elsevier; Amsterdam, The Netherlands: 2019.
Sze S.M., Ng K.K. Physics of Semiconductor Devices. 3rd, ed. Wiley; Hoboken, NJ, USA: 2007.
Adachi S. Properties of Group-IV, III-V and II-VI Semiconductors. Wiley; Hoboken, NJ, USA: 2005.
Joshi R.K., Weber J.E., Hu Q., Johnson B., Zimmer J.W., Kumar A. Carbon Monoxide Sensing at Room Temperature via Electron Donation in Boron Doped Diamond Films. Sens. Actuators B Chem. 2010;145:527–532. doi: 10.1016/j.snb.2009.12.070. DOI
Gurbuz Y., Kang W.P., Davidson J.L., Kinser D.L., Kerns D.V. Diamond Microelectronic Gas Sensors. Sens. Actuators B Chem. 1996;33:100–104. doi: 10.1016/0925-4005(96)01839-4. DOI
Sato H., Kasu M. Electronic Properties of H-terminated Diamond during NO2 and O3 Adsorption and Desorption. Diam. Relat. Mater. 2012;24:99–103. doi: 10.1016/j.diamond.2011.12.004. DOI
Laposa A., Kroutil J., Davydova M., Taylor A., Voves J., Klimsa L., Kopecek J., Husak M. Inkjet Seeded CVD-Grown Hydrogenated Diamond Gas Sensor Under UV-LED Illumination. IEEE Sens. J. 2020;20:1158–1165. doi: 10.1109/JSEN.2019.2946947. DOI
Davydova M., Kulha P., Laposa A., Hruska K., Demo P., Kromka A. Gas Sensing Properties of Nanocrystalline Diamond at Room Temperature. Beilstein J. Nanotechnol. 2014;5:2339–2345. doi: 10.3762/bjnano.5.243. PubMed DOI PMC
Davydova M., Stuchlik M., Rezek B., Larsson K., Kromka A. Sensing of Phosgene by a Porous-Like Nanocrystalline Diamond Layer with Buried Metallic Electrodes. Sens. Actuators B Chem. 2013;188:675–680. doi: 10.1016/j.snb.2013.07.079. DOI
Mueller G., Krstev I., Maier K., Helwig A., Stutzmann M., Garrido J. Resettable, Low-Temperature Accumulation Gas Sensors Based on Hydrogenated Diamond Transducers. Eurosensors. 2015;120:590–593. doi: 10.1016/j.proeng.2015.08.733. DOI
Kromka A., Davydova M., Rezek B., Vanecek M., Stuchlik M., Exnar P., Kalbac M. Gas Sensing Properties of Nanocrystalline Diamond Films. Diam. Relat. Mater. 2010;19:196–200. doi: 10.1016/j.diamond.2009.10.006. DOI
FIGARO USA, INC TGS 826—For the Detection of Ammonia: Product Information. [(accessed on 22 December 2020)]; Available online: https://www.figarosensor.com/product/docs/TGS%20826%20%2805_04%29.pdf.
Štulík K., Barek J., Janata J., Král V., Kronďák M., Šťastný M. Sensors: General Aspects of Chemical Sensing. VŠCHT; Prague, Czech Republic: 2007.
Pyreos Limited, Thin Film Pyroelectric Dual Channel Sensor: Product Information. [(accessed on 22 December 2020)]; Available online: https://pyreos.com/wp-content/uploads/2020/11/Pyreos-Analog-TO-Two-Channels.pdf.
FIGARO USA, INC FIGARO GAS SENSORS: 1-Series and 8-Series: Product Catalogue. [(accessed on 1 February 2020)]; Available online: https://www.figarosensor.com/product/docs/figaro_tgs_serien.pdf.
Nahlik J., Laposa A., Voves J., Kroutil J., Drahokoupil J., Davydova M. A High Sensitivity UV Photodetector with Inkjet Printed ZnO/Nanodiamond Active Layers. IEEE Sens. J. 2019;19:5587–5593. doi: 10.1109/JSEN.2019.2893572. DOI
Sharma A., Tomar M., Gupta V. SnO2 Thin Film Sensor with Enhanced Response for NO2 Gas at Lower Temperatures. Sens. Actuators B Chem. 2011;156:743–752. doi: 10.1016/j.snb.2011.02.033. DOI
Wang Y., Zhao Z., Sun Y., Li P., Ji J., Chen Y., Zhang W., Hu J. Fabrication and Gas Sensing Properties of Au-loaded SnO2 Composite Nanoparticles for Highly Sensitive Hydrogen Detection. Sens. Actuators B Chem. 2017;240:664–673. doi: 10.1016/j.snb.2016.09.024. DOI
Improved Gas Sensing Capabilities of MoS2/Diamond Heterostructures at Room Temperature