Improved Gas Sensing Capabilities of MoS2/Diamond Heterostructures at Room Temperature
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37394733
PubMed Central
PMC10360066
DOI
10.1021/acsami.3c04438
Knihovny.cz E-zdroje
- Klíčová slova
- H-terminated diamond, MoS2, MoS2/H-NCD heterostructure, P−N junction, gas interaction model, gas sensors, room temperature, sensitivity,
- Publikační typ
- časopisecké články MeSH
Molybdenum disulfide (MoS2) and nanocrystalline diamond (NCD) have attracted considerable attention due to their unique electronic structure and extraordinary physical and chemical properties in many applications, including sensor devices in gas sensing applications. Combining MoS2 and H-terminated NCD (H-NCD) in a heterostructure design can improve the sensing performance due to their mutual advantages. In this study, the synthesis of MoS2 and H-NCD thin films using appropriate physical/chemical deposition methods and their analysis in terms of gas sensing properties in their individual and combined forms are demonstrated. The sensitivity and time domain characteristics of the sensors were investigated for three gases: oxidizing NO2, reducing NH3, and neutral synthetic air. It was observed that the MoS2/H-NCD heterostructure-based gas sensor exhibits improved sensitivity to oxidizing NO2 (0.157%·ppm-1) and reducing NH3 (0.188%·ppm-1) gases compared to pure active materials (pure MoS2 achieves responses of 0.018%·ppm-1 for NO2 and -0.0072%·ppm-1 for NH3, respectively, and almost no response for pure H-NCD at room temperature). Different gas interaction model pathways were developed to describe the current flow mechanism through the sensing area with/without the heterostructure. The gas interaction model independently considers the influence of each material (chemisorption for MoS2 and surface doping mechanism for H-NCD) as well as the current flow mechanism through the formed P-N heterojunction.
Zobrazit více v PubMed
Dhall S.; Mehta B. R.; Tyagi A. K.; Sood K. A review on environmental gas sensors: Materials and technologies. Sens. Int. 2021, 2, 100116.10.1016/j.sintl.2021.100116. DOI
Zhou Y.; Liu G.; Zhu X.; Guo Y. Ultrasensitive NO2 gas sensing based on rGO/MoS2 nanocomposite film at low temperature. Sens. Actuators, B 2017, 251, 280–290. 10.1016/j.snb.2017.05.060. DOI
Neetika; Kumar A.; Chandra R.; Malik V. K. MoS2 nanoworm thin films for NO2 gas sensing application. Thin Solid Films 2021, 725, 138625.10.1016/j.tsf.2021.138625. DOI
Reddeppa M.; Park B.-G.; Murali G.; Choi S. H.; Chinh N. D.; Kim D.; Yang W.; Kim M.-D. NOx gas sensors based on layer-transferred n-MoS2/p-GaN heterojunction at room temperature: Study of UV light illuminations and humidity. Sens. Actuators, B 2020, 308, 127700.10.1016/j.snb.2020.127700. DOI
Yan H.; Song P.; Zhang S.; Zhang J.; Yang Z.; Wang Q. A low temperature gas sensor based on Au-loaded MoS2 hierarchical nanostructures for detecting ammonia. Ceram. Int. 2016, 42, 9327–9331. 10.1016/j.ceramint.2016.02.160. DOI
Luo H.; Cao Y.; Zhou J.; Feng J.; Cao J.; Guo H. Adsorption of NO2, NH3 on monolayer MoS2 doped with Al, Si, and P: A first-principles study. Chem. Phys. Lett. 2016, 643, 27–33. 10.1016/j.cplett.2015.10.077. DOI
Akbari E.; Jahanbin K.; Afroozeh A.; Yupapin P.; Buntat Z. Brief review of monolayer molybdenum disulfide application in gas sensor. Phys. B 2018, 545, 510–518. 10.1016/j.physb.2018.06.033. DOI
Mak K. F.; Lee C.; Hone J.; Shan J.; Heinz T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.10.1103/physrevlett.105.136805. PubMed DOI
Kim S.; Konar A.; Hwang W.-S.; Lee J. H.; Lee J.; Yang J.; Jung C.; Kim H.; Yoo J.-B.; Choi J.-Y.; et al. High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat. Commun. 2012, 3, 1011.10.1038/ncomms2018. PubMed DOI
Lee E.; Yoon Y. S.; Kim D.-J. Two-Dimensional Transition Metal Dichalcogenides and Metal Oxide Hybrids for Gas Sensing. ACS Sens. 2018, 3, 2045–2060. 10.1021/acssensors.8b01077. PubMed DOI
Chromik Š.; Sojková M.; Vretenár V.; Rosová A.; Dobročka E.; Hulman M. Influence of GaN/AlGaN/GaN (0001) and Si (100) substrates on structural properties of extremely thin MoS 2 films grown by pulsed laser deposition. Appl. Surf. Sci. 2017, 395, 232–236. 10.1016/j.apsusc.2016.06.038. DOI
Kannan P. K.; Late D. J.; Morgan H.; Rout C. S. Recent developments in 2D layered inorganic nanomaterials for sensing. Nanoscale 2015, 7, 13293–13312. 10.1039/c5nr03633j. PubMed DOI
Sojkova M.; Vegso K.; Mrkyvkova N.; Hagara J.; Hutar P.; Rosova A.; Caplovicova M.; Ludacka U.; Skakalova V.; Majkova E.; et al. Tuning the orientation of few-layer MoS2 films using one-zone sulfurization. RSC Adv. 2019, 9, 29645–29651. 10.1039/c9ra06770a. PubMed DOI PMC
Shokri A.; Salami N. Gas sensor based on MoS2 monolayer. Sens. Actuators, B 2016, 236, 378–385. 10.1016/j.snb.2016.06.033. DOI
Yu X.; Chen X.; Ding X.; Yu X.; Zhao X.; Chen X. Facile fabrication of flower-like MoS2/nanodiamond nanocomposite toward high-performance humidity detection. Sens. Actuators, B 2020, 317, 128168.10.1016/j.snb.2020.128168. DOI
Saravanan A.; Huang B.-R.; Chu J. P.; Prasannan A.; Tsai H.-C. Interface engineering of ultrananocrystalline diamond/MoS2-ZnO heterostructures and its highly enhanced hydrogen gas sensing properties. Sens. Actuators, B 2019, 292, 70–79. 10.1016/j.snb.2019.04.108. DOI
Petit-Domínguez M. D.; Quintana C.; Vazquez L.; Del Pozo M.; Cuadrado I.; Maria Parra-Alfambra A.; Casero E. Synergistic effect of MoS2 and diamond nanoparticles in electrochemical sensors: determination of the anticonvulsant drug valproic acid. Microchim. Acta 2018, 185, 334.10.1007/s00604-018-2793-7. PubMed DOI
Niu Y.; Wang R.; Jiao W.; Ding G.; Hao L.; Yang F.; He X. MoS2 graphene fiber based gas sensing devices. Carbon 2015, 95, 34–41. 10.1016/j.carbon.2015.08.002. DOI
Yan H.; Song P.; Zhang S.; Yang Z.; Wang Q. Facile synthesis, characterization and gas sensing performance of ZnO nanoparticles-coated MoS2 nanosheets. J. Alloys Compd. 2016, 662, 118–125. 10.1016/j.jallcom.2015.12.066. DOI
Liu A.; Lv S.; Jiang L.; Liu F.; Zhao L.; Wang J.; Hu X.; Yang Z.; He J.; Wang C.; et al. The gas sensor utilizing polyaniline/MoS2 nanosheets/SnO2 nanotubes for the room temperature detection of ammonia. Sens. Actuators, B 2021, 332, 129444.10.1016/j.snb.2021.129444. DOI
Wang F.; Liu H.; Hu K.; Li Y.; Zeng W.; Zeng L. Hierarchical composites of MoS2 nanoflower anchored on SnO2 nanofiber for methane sensing. RSC Adv. 2019, 45, 22981–22986. 10.1016/j.ceramint.2019.07.342. DOI
Luo Y.; Zhang C. Pt-activated TiO2-MoS2 nanocomposites for H2 detection at low temperature. J. Alloys Compd. 2018, 747, 550–557. 10.1016/j.jallcom.2018.03.068. DOI
Liskova J.; Babchenko O.; Varga M.; Kromka A.; Hadraba D.; Svindrych Z.; Burdikova Z.; Bacakova L. Osteogenic cell differentiation on H-terminated and O-terminated nanocrystalline diamond films. Int. J. Nanomed. 2015, 10, 869–884. 10.2147/ijn.s73628. PubMed DOI PMC
Davydova M.; Kulha P.; Laposa A.; Hruska K.; Demo P.; Kromka A. Gas sensing properties of nanocrystalline diamond at room temperature. Beilstein J. Nanotechnol. 2014, 5, 2339–2345. 10.3762/bjnano.5.243. PubMed DOI PMC
Gurbuz Y.; Kang W. P.; Davidson J. L.; Kinser D. L.; Kerns D. V. Diamond microelectronic gas sensors. Sens. Actuators, B 1996, 33, 100–104. 10.1016/0925-4005(96)01839-4. DOI
Helwig A.; Müller G.; Garrido J. A.; Eickhoff M. Gas sensing properties of hydrogen-terminated diamond. Sens. Actuators, B 2008, 133, 156–165. 10.1016/j.snb.2008.02.007. DOI
Raju P.; Li Q. Review—Semiconductor Materials and Devices for Gas Sensors. J. Electrochem. Soc. 2022, 169, 057518.10.1149/1945-7111/ac6e0a. DOI
Kumar R.; Avasthi D. K.; Kaur A. Fabrication of chemiresistive gas sensors based on multistep reduced graphene oxide for low parts per million monitoring of sulfur dioxide at room temperature. Sens. Actuators, B 2017, 242, 461–468. 10.1016/j.snb.2016.11.018. DOI
Ding L.; Qin Z.; Dou Z.; Shen Y.; Cai Y.; Zhang Y.; Zhou Y. Morphology-promoted synergistic effects on the sensing properties of polyaniline ultrathin layers on reduced graphene oxide sheets for ammonia and formaldehyde detection. J. Mater. Sci. 2018, 53, 7595–7608. 10.1007/s10853-018-2109-7. DOI
Hur J.; Park S.; Kim J. H.; Cho J. Y.; Kwon B.; Lee J. H.; Bae G. Y.; Kim H.; Han J. T.; Lee W. H. Ultrasensitive, Transparent, Flexible, and Ecofriendly NO 2 Gas Sensors Enabled by Oxidized Single-Walled Carbon Nanotube Bundles on Cellulose with Engineered Surface Roughness. ACS Sustainable Chem. Eng. 2022, 10, 3227–3235. 10.1021/acssuschemeng.1c07559. DOI
Shooshtari M.; Salehi A. An electronic nose based on carbon nanotube -titanium dioxide hybrid nanostructures for detection and discrimination of volatile organic compounds. Sens. Actuators, B 2022, 357, 131418.10.1016/j.snb.2022.131418. DOI
Gavgani J. N.; Hasani A.; Nouri M.; Mahyari M.; Salehi A. Highly sensitive and flexible ammonia sensor based on S and N co-doped graphene quantum dots/polyaniline hybrid at room temperature. Sens. Actuators, B 2016, 229, 239–248. 10.1016/j.snb.2016.01.086. DOI
Seekaew Y.; Wisitsoraat A.; Wongchoosuk C. ZnO quantum dots decorated carbon nanotubes-based sensors for methanol detection at room temperature. Diamond Relat. Mater. 2023, 132, 109630.10.1016/j.diamond.2022.109630. DOI
Gao J.; Wu H.; Zhou J.; Yao L.; Zhang G.; Xu S.; Xie Y.; Li L.; Shi K. Mesoporous In 2 O 3 nanocrystals: synthesis, characterization and NO x gas sensor at room temperature. New J. Chem. 2016, 40, 1306–1311. 10.1039/c5nj02214b. DOI
Qu F.; Liu H.; Guarecuco R.; Jiao Y.; Yang M. Mesoporous InN/In2O3 heterojunction with improved sensitivity and selectivity for room temperature NO2 gas sensing. Nanotechnology 2016, 27, 385501.10.1088/0957-4484/27/38/385501. PubMed DOI
Shaik M.; Rao V. K.; Gupta M.; Murthy K. S. R. C.; Jain R. Chemiresistive gas sensor for the sensitive detection of nitrogen dioxide based on nitrogen doped graphene nanosheets. RSC Adv. 2016, 6, 1527–1534. 10.1039/c5ra21184k. DOI
Wang S.-C.; Shaikh M. O. A Room Temperature H2 Sensor Fabricated Using High Performance Pt-Loaded SnO2 Nanoparticles. Sensors 2015, 15, 14286–14297. 10.3390/s150614286. PubMed DOI PMC
Sojkova M.; Siffalovic P.; Babchenko O.; Vanko G.; Dobrocka E.; Hagara J.; Mrkyvkova N.; Majkova E.; Izak T.; Kromka A.; et al. Carbide-free one-zone sulfurization method grows thin MoS2 layers on polycrystalline CVD diamond. Sci. Rep. 2019, 9, 2001.10.1038/s41598-018-38472-9. PubMed DOI PMC
Chromik S.; Rosová A.; Dobročka E.; Kobzev A. P.; Hulman M.; Sojkova M.; Hutár P.; Machajdík D.. MoS2 thin films prepared by sulfurization. In Nanoengineering: Fabrication, Properties, Optics, and Devices XIV; Campo E. M., Dobisz E. A., Eldada L. A., Eds.; SPIE, 2017; p 56.
Barzegar M.; Iraji zad A.; Tiwari A. On the performance of vertical MoS2 nanoflakes as a gas sensor. Vacuum 2019, 167, 90–97. 10.1016/j.vacuum.2019.05.033. DOI
Koci M.; Kromka A.; Boura A.; Szabo O.; Husak M. Hydrogen-Terminated Diamond Surface as a Gas Sensor: A Comparative Study of Its Sensitivities. Sensors 2021, 21, 5390.10.3390/s21165390. PubMed DOI PMC