Improved Gas Sensing Capabilities of MoS2/Diamond Heterostructures at Room Temperature

. 2023 Jul 19 ; 15 (28) : 34206-34214. [epub] 20230702

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37394733

Molybdenum disulfide (MoS2) and nanocrystalline diamond (NCD) have attracted considerable attention due to their unique electronic structure and extraordinary physical and chemical properties in many applications, including sensor devices in gas sensing applications. Combining MoS2 and H-terminated NCD (H-NCD) in a heterostructure design can improve the sensing performance due to their mutual advantages. In this study, the synthesis of MoS2 and H-NCD thin films using appropriate physical/chemical deposition methods and their analysis in terms of gas sensing properties in their individual and combined forms are demonstrated. The sensitivity and time domain characteristics of the sensors were investigated for three gases: oxidizing NO2, reducing NH3, and neutral synthetic air. It was observed that the MoS2/H-NCD heterostructure-based gas sensor exhibits improved sensitivity to oxidizing NO2 (0.157%·ppm-1) and reducing NH3 (0.188%·ppm-1) gases compared to pure active materials (pure MoS2 achieves responses of 0.018%·ppm-1 for NO2 and -0.0072%·ppm-1 for NH3, respectively, and almost no response for pure H-NCD at room temperature). Different gas interaction model pathways were developed to describe the current flow mechanism through the sensing area with/without the heterostructure. The gas interaction model independently considers the influence of each material (chemisorption for MoS2 and surface doping mechanism for H-NCD) as well as the current flow mechanism through the formed P-N heterojunction.

Zobrazit více v PubMed

Dhall S.; Mehta B. R.; Tyagi A. K.; Sood K. A review on environmental gas sensors: Materials and technologies. Sens. Int. 2021, 2, 100116.10.1016/j.sintl.2021.100116. DOI

Zhou Y.; Liu G.; Zhu X.; Guo Y. Ultrasensitive NO2 gas sensing based on rGO/MoS2 nanocomposite film at low temperature. Sens. Actuators, B 2017, 251, 280–290. 10.1016/j.snb.2017.05.060. DOI

Neetika; Kumar A.; Chandra R.; Malik V. K. MoS2 nanoworm thin films for NO2 gas sensing application. Thin Solid Films 2021, 725, 138625.10.1016/j.tsf.2021.138625. DOI

Reddeppa M.; Park B.-G.; Murali G.; Choi S. H.; Chinh N. D.; Kim D.; Yang W.; Kim M.-D. NOx gas sensors based on layer-transferred n-MoS2/p-GaN heterojunction at room temperature: Study of UV light illuminations and humidity. Sens. Actuators, B 2020, 308, 127700.10.1016/j.snb.2020.127700. DOI

Yan H.; Song P.; Zhang S.; Zhang J.; Yang Z.; Wang Q. A low temperature gas sensor based on Au-loaded MoS2 hierarchical nanostructures for detecting ammonia. Ceram. Int. 2016, 42, 9327–9331. 10.1016/j.ceramint.2016.02.160. DOI

Luo H.; Cao Y.; Zhou J.; Feng J.; Cao J.; Guo H. Adsorption of NO2, NH3 on monolayer MoS2 doped with Al, Si, and P: A first-principles study. Chem. Phys. Lett. 2016, 643, 27–33. 10.1016/j.cplett.2015.10.077. DOI

Akbari E.; Jahanbin K.; Afroozeh A.; Yupapin P.; Buntat Z. Brief review of monolayer molybdenum disulfide application in gas sensor. Phys. B 2018, 545, 510–518. 10.1016/j.physb.2018.06.033. DOI

Mak K. F.; Lee C.; Hone J.; Shan J.; Heinz T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.10.1103/physrevlett.105.136805. PubMed DOI

Kim S.; Konar A.; Hwang W.-S.; Lee J. H.; Lee J.; Yang J.; Jung C.; Kim H.; Yoo J.-B.; Choi J.-Y.; et al. High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat. Commun. 2012, 3, 1011.10.1038/ncomms2018. PubMed DOI

Lee E.; Yoon Y. S.; Kim D.-J. Two-Dimensional Transition Metal Dichalcogenides and Metal Oxide Hybrids for Gas Sensing. ACS Sens. 2018, 3, 2045–2060. 10.1021/acssensors.8b01077. PubMed DOI

Chromik Š.; Sojková M.; Vretenár V.; Rosová A.; Dobročka E.; Hulman M. Influence of GaN/AlGaN/GaN (0001) and Si (100) substrates on structural properties of extremely thin MoS 2 films grown by pulsed laser deposition. Appl. Surf. Sci. 2017, 395, 232–236. 10.1016/j.apsusc.2016.06.038. DOI

Kannan P. K.; Late D. J.; Morgan H.; Rout C. S. Recent developments in 2D layered inorganic nanomaterials for sensing. Nanoscale 2015, 7, 13293–13312. 10.1039/c5nr03633j. PubMed DOI

Sojkova M.; Vegso K.; Mrkyvkova N.; Hagara J.; Hutar P.; Rosova A.; Caplovicova M.; Ludacka U.; Skakalova V.; Majkova E.; et al. Tuning the orientation of few-layer MoS2 films using one-zone sulfurization. RSC Adv. 2019, 9, 29645–29651. 10.1039/c9ra06770a. PubMed DOI PMC

Shokri A.; Salami N. Gas sensor based on MoS2 monolayer. Sens. Actuators, B 2016, 236, 378–385. 10.1016/j.snb.2016.06.033. DOI

Yu X.; Chen X.; Ding X.; Yu X.; Zhao X.; Chen X. Facile fabrication of flower-like MoS2/nanodiamond nanocomposite toward high-performance humidity detection. Sens. Actuators, B 2020, 317, 128168.10.1016/j.snb.2020.128168. DOI

Saravanan A.; Huang B.-R.; Chu J. P.; Prasannan A.; Tsai H.-C. Interface engineering of ultrananocrystalline diamond/MoS2-ZnO heterostructures and its highly enhanced hydrogen gas sensing properties. Sens. Actuators, B 2019, 292, 70–79. 10.1016/j.snb.2019.04.108. DOI

Petit-Domínguez M. D.; Quintana C.; Vazquez L.; Del Pozo M.; Cuadrado I.; Maria Parra-Alfambra A.; Casero E. Synergistic effect of MoS2 and diamond nanoparticles in electrochemical sensors: determination of the anticonvulsant drug valproic acid. Microchim. Acta 2018, 185, 334.10.1007/s00604-018-2793-7. PubMed DOI

Niu Y.; Wang R.; Jiao W.; Ding G.; Hao L.; Yang F.; He X. MoS2 graphene fiber based gas sensing devices. Carbon 2015, 95, 34–41. 10.1016/j.carbon.2015.08.002. DOI

Yan H.; Song P.; Zhang S.; Yang Z.; Wang Q. Facile synthesis, characterization and gas sensing performance of ZnO nanoparticles-coated MoS2 nanosheets. J. Alloys Compd. 2016, 662, 118–125. 10.1016/j.jallcom.2015.12.066. DOI

Liu A.; Lv S.; Jiang L.; Liu F.; Zhao L.; Wang J.; Hu X.; Yang Z.; He J.; Wang C.; et al. The gas sensor utilizing polyaniline/MoS2 nanosheets/SnO2 nanotubes for the room temperature detection of ammonia. Sens. Actuators, B 2021, 332, 129444.10.1016/j.snb.2021.129444. DOI

Wang F.; Liu H.; Hu K.; Li Y.; Zeng W.; Zeng L. Hierarchical composites of MoS2 nanoflower anchored on SnO2 nanofiber for methane sensing. RSC Adv. 2019, 45, 22981–22986. 10.1016/j.ceramint.2019.07.342. DOI

Luo Y.; Zhang C. Pt-activated TiO2-MoS2 nanocomposites for H2 detection at low temperature. J. Alloys Compd. 2018, 747, 550–557. 10.1016/j.jallcom.2018.03.068. DOI

Liskova J.; Babchenko O.; Varga M.; Kromka A.; Hadraba D.; Svindrych Z.; Burdikova Z.; Bacakova L. Osteogenic cell differentiation on H-terminated and O-terminated nanocrystalline diamond films. Int. J. Nanomed. 2015, 10, 869–884. 10.2147/ijn.s73628. PubMed DOI PMC

Davydova M.; Kulha P.; Laposa A.; Hruska K.; Demo P.; Kromka A. Gas sensing properties of nanocrystalline diamond at room temperature. Beilstein J. Nanotechnol. 2014, 5, 2339–2345. 10.3762/bjnano.5.243. PubMed DOI PMC

Gurbuz Y.; Kang W. P.; Davidson J. L.; Kinser D. L.; Kerns D. V. Diamond microelectronic gas sensors. Sens. Actuators, B 1996, 33, 100–104. 10.1016/0925-4005(96)01839-4. DOI

Helwig A.; Müller G.; Garrido J. A.; Eickhoff M. Gas sensing properties of hydrogen-terminated diamond. Sens. Actuators, B 2008, 133, 156–165. 10.1016/j.snb.2008.02.007. DOI

Raju P.; Li Q. Review—Semiconductor Materials and Devices for Gas Sensors. J. Electrochem. Soc. 2022, 169, 057518.10.1149/1945-7111/ac6e0a. DOI

Kumar R.; Avasthi D. K.; Kaur A. Fabrication of chemiresistive gas sensors based on multistep reduced graphene oxide for low parts per million monitoring of sulfur dioxide at room temperature. Sens. Actuators, B 2017, 242, 461–468. 10.1016/j.snb.2016.11.018. DOI

Ding L.; Qin Z.; Dou Z.; Shen Y.; Cai Y.; Zhang Y.; Zhou Y. Morphology-promoted synergistic effects on the sensing properties of polyaniline ultrathin layers on reduced graphene oxide sheets for ammonia and formaldehyde detection. J. Mater. Sci. 2018, 53, 7595–7608. 10.1007/s10853-018-2109-7. DOI

Hur J.; Park S.; Kim J. H.; Cho J. Y.; Kwon B.; Lee J. H.; Bae G. Y.; Kim H.; Han J. T.; Lee W. H. Ultrasensitive, Transparent, Flexible, and Ecofriendly NO 2 Gas Sensors Enabled by Oxidized Single-Walled Carbon Nanotube Bundles on Cellulose with Engineered Surface Roughness. ACS Sustainable Chem. Eng. 2022, 10, 3227–3235. 10.1021/acssuschemeng.1c07559. DOI

Shooshtari M.; Salehi A. An electronic nose based on carbon nanotube -titanium dioxide hybrid nanostructures for detection and discrimination of volatile organic compounds. Sens. Actuators, B 2022, 357, 131418.10.1016/j.snb.2022.131418. DOI

Gavgani J. N.; Hasani A.; Nouri M.; Mahyari M.; Salehi A. Highly sensitive and flexible ammonia sensor based on S and N co-doped graphene quantum dots/polyaniline hybrid at room temperature. Sens. Actuators, B 2016, 229, 239–248. 10.1016/j.snb.2016.01.086. DOI

Seekaew Y.; Wisitsoraat A.; Wongchoosuk C. ZnO quantum dots decorated carbon nanotubes-based sensors for methanol detection at room temperature. Diamond Relat. Mater. 2023, 132, 109630.10.1016/j.diamond.2022.109630. DOI

Gao J.; Wu H.; Zhou J.; Yao L.; Zhang G.; Xu S.; Xie Y.; Li L.; Shi K. Mesoporous In 2 O 3 nanocrystals: synthesis, characterization and NO x gas sensor at room temperature. New J. Chem. 2016, 40, 1306–1311. 10.1039/c5nj02214b. DOI

Qu F.; Liu H.; Guarecuco R.; Jiao Y.; Yang M. Mesoporous InN/In2O3 heterojunction with improved sensitivity and selectivity for room temperature NO2 gas sensing. Nanotechnology 2016, 27, 385501.10.1088/0957-4484/27/38/385501. PubMed DOI

Shaik M.; Rao V. K.; Gupta M.; Murthy K. S. R. C.; Jain R. Chemiresistive gas sensor for the sensitive detection of nitrogen dioxide based on nitrogen doped graphene nanosheets. RSC Adv. 2016, 6, 1527–1534. 10.1039/c5ra21184k. DOI

Wang S.-C.; Shaikh M. O. A Room Temperature H2 Sensor Fabricated Using High Performance Pt-Loaded SnO2 Nanoparticles. Sensors 2015, 15, 14286–14297. 10.3390/s150614286. PubMed DOI PMC

Sojkova M.; Siffalovic P.; Babchenko O.; Vanko G.; Dobrocka E.; Hagara J.; Mrkyvkova N.; Majkova E.; Izak T.; Kromka A.; et al. Carbide-free one-zone sulfurization method grows thin MoS2 layers on polycrystalline CVD diamond. Sci. Rep. 2019, 9, 2001.10.1038/s41598-018-38472-9. PubMed DOI PMC

Chromik S.; Rosová A.; Dobročka E.; Kobzev A. P.; Hulman M.; Sojkova M.; Hutár P.; Machajdík D.. MoS2 thin films prepared by sulfurization. In Nanoengineering: Fabrication, Properties, Optics, and Devices XIV; Campo E. M., Dobisz E. A., Eldada L. A., Eds.; SPIE, 2017; p 56.

Barzegar M.; Iraji zad A.; Tiwari A. On the performance of vertical MoS2 nanoflakes as a gas sensor. Vacuum 2019, 167, 90–97. 10.1016/j.vacuum.2019.05.033. DOI

Koci M.; Kromka A.; Boura A.; Szabo O.; Husak M. Hydrogen-Terminated Diamond Surface as a Gas Sensor: A Comparative Study of Its Sensitivities. Sensors 2021, 21, 5390.10.3390/s21165390. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...