Carbide-free one-zone sulfurization method grows thin MoS2 layers on polycrystalline CVD diamond
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic
Document type Journal Article
PubMed
30765759
PubMed Central
PMC6375934
DOI
10.1038/s41598-018-38472-9
PII: 10.1038/s41598-018-38472-9
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
The last few decades faced on the fabrication of advanced engineering materials involving also different composites. Here, we report on the fabrication of few-layer molybdenum disulfide on top of thin polycrystalline diamond substrates with a high specific surface area. In the method, pre-deposited molybdenum coatings were sulfurized in a one-zone furnace at ambient pressure. As-prepared MoS2 layers were characterized by several techniques including grazing-incidence wide-angle X-ray scattering, atomic force microscopy, scanning electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. We found out that the initial thickness of Mo films determined the final c-axis crystallographic orientation of MoS2 layer as previously observed on other substrates. Even though it is well-known that Mo diffuses into diamond at elevated temperatures, the competing sulfurization applied effectively suppressed the diffusion and a chemical reaction between molybdenum and diamond. In particular, a Mo2C layer does not form at the interface between the Mo film and diamond substrate. The combination of diamond high specific surface area along with a controllable layer orientation might be attractive for applications, such as water splitting or water disinfection.
Institute of Electrical Engineering SAS Dúbravská cesta 9 841 04 Bratislava Slovakia
Institute of Physics AS CR Cukrovarnícka 10 162 00 Praha 6 Czech Republic
Institute of Physics SAS Dúbravská cesta 9 845 11 Bratislava Slovakia
See more in PubMed
Liu C, et al. Rapid water disinfection using vertically aligned MoS2 nanofilms and visible light. Nature Nanotechnology. 2016;11:1098–1104. doi: 10.1038/nnano.2016.138. PubMed DOI
Massey AT, Gusain R, Kumari S, Khatri OP. Hierarchical Microspheres of MoS2 Nanosheets: Efficient and Regenerative Adsorbent for Removal of Water-Soluble Dyes. Industrial & Engineering Chemistry Research. 2016;55:7124–7131. doi: 10.1021/acs.iecr.6b01115. DOI
Xu J, Cao X. Characterization and mechanism of MoS2/CdS composite photocatalyst used for hydrogen production from water splitting under visible light. Chemical Engineering Journal. 2015;260:642–648. doi: 10.1016/j.cej.2014.07.046. DOI
Singh E, Kim KS, Yeom GY, Nalwa HS. Atomically Thin-Layered Molybdenum Disulfide (MoS2) for Bulk-Heterojunction Solar Cells. ACS Applied Materials & Interfaces. 2017;9:3223–3245. doi: 10.1021/acsami.6b13582. PubMed DOI
Tsai M-L, et al. Monolayer MoS2 Heterojunction Solar Cells. ACS Nano. 2014;8:8317–8322. doi: 10.1021/nn502776h. PubMed DOI
Hao LZ, et al. High-performance n-MoS2/i-SiO2/p-Si heterojunction solar cells. Nanoscale. 2015;7:8304–8308. doi: 10.1039/C5NR01275A. PubMed DOI
Gourmelon E, et al. MS2 (M = W, Mo) photosensitive thin films for solar cells. Solar Energy Materials and Solar Cells. 1997;46:115–121. doi: 10.1016/S0927-0248(96)00096-7. DOI
Ho W, Yu JC, Lin J, Yu J, Li P. Preparation and Photocatalytic Behavior of MoS2 and WS2 Nanocluster Sensitized TiO2. Langmuir. 2004;20:5865–5869. doi: 10.1021/la049838g. PubMed DOI
Mak KF, Lee C, Hone J, Shan J, Heinz TF. Atomically Thin MoS2: A New Direct-Gap Semiconductor. Physical Review Letters. 2010;105:136805. doi: 10.1103/PhysRevLett.105.136805. PubMed DOI
Kashid RV, et al. Enhanced Field-Emission Behavior of Layered MoS2 Sheets. Small. 2013;9:2730–2734. doi: 10.1002/smll.201300002. PubMed DOI
Kim S, et al. High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nature Communications. 2012;3:1011. doi: 10.1038/ncomms2018. PubMed DOI
Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A. Ultrasensitive photodetectors based on monolayer MoS2. Nature Nanotechnology. 2013;8:497–501. doi: 10.1038/nnano.2013.100. PubMed DOI
Bernardi M, Palummo M, Grossman JC. Extraordinary Sunlight Absorption and One Nanometer Thick Photovoltaics Using Two-Dimensional Monolayer Materials. Nano Letters. 2013;13:3664–3670. doi: 10.1021/nl401544y. PubMed DOI
Fontana M, et al. Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions. Scientific Reports. 2013;3:1634. doi: 10.1038/srep01634. PubMed DOI PMC
Britnell L, et al. Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films. Science. 2013;340:1311–1314. doi: 10.1126/science.1235547. PubMed DOI
Chang Y-H, et al. Highly Efficient Electrocatalytic Hydrogen Production by MoSx Grown on Graphene-Protected 3D Ni Foams. Advanced Materials. 2013;25:756–760. doi: 10.1002/adma.201202920. PubMed DOI
Chang Y-H, et al. Three-Dimensional Molybdenum Sulfide Sponges for Electrocatalytic Water Splitting. Small. 2014;10:895–900. doi: 10.1002/smll.201302407. PubMed DOI
Tang, K. et al. Molybdenum disulfide (MoS2) nanosheets vertically coated on titanium for disinfection in the dark. Arabian Journal of Chemistry, 10.1016/j.arabjc.2017.12.013 (2017).
May PW. Diamond thin films: a 21st-century material. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2000;358:473–495. doi: 10.1098/rsta.2000.0542. DOI
Kalish R. Diamond as a unique high-tech electronic material: difficulties and prospects. Journal of Physics D: Applied Physics. 2007;40:6467–6478. doi: 10.1088/0022-3727/40/20/S22. DOI
Amaral, M. Biotribology and biological behaviour of nanocrystalline diamond (NCD) coatings for medical applications. In Diamond-Based Materials for Biomedical Applications 48–70, 10.1533/9780857093516.1.48 (Elsevier, 2013).
Hollman P, Björkman H, Alahelisten A, Hogmark S. Diamond coatings applied to mechanical face seals. Surface and Coatings Technology. 1998;105:169–174. doi: 10.1016/S0257-8972(98)00481-2. DOI
Grögler T, Plewa O, Rosiwal SM, Singer RF. CVD diamond films as protective coatings on titanium alloys. International Journal of Refractory Metals and Hard Materials. 1998;16:217–222. doi: 10.1016/S0263-4368(98)00021-3. DOI
Koidl P, Klages C-P. Optical applications of polycrystalline diamond. Diamond and Related Materials. 1992;1:1065–1074. doi: 10.1016/0925-9635(92)90076-Z. DOI
Bachmann PK, Wiechert DU. Optical characterization of diamond. Diamond and Related Materials. 1992;1:422–433. doi: 10.1016/0925-9635(92)90141-A. DOI
Kohn E, Gluche P, Adamschik M. Diamond MEMS — a new emerging technology. Diamond and Related Materials. 1999;8:934–940. doi: 10.1016/S0925-9635(98)00294-5. DOI
Denisenko A, Kohn E. Diamond power devices. Concepts and limits. Diamond and Related Materials. 2005;14:491–498. doi: 10.1016/j.diamond.2004.12.043. DOI
Seelmann-Eggebert M, et al. Heat-spreading diamond films for GaN-based high-power transistor devices. Diamond and Related Materials. 2001;10:744–749. doi: 10.1016/S0925-9635(00)00562-8. DOI
Baek SS, Choi B, Oh Y. Design of a high-density thermal inkjet using heat transfer from CVD diamond. Journal of Micromechanics and Microengineering. 2004;14:750–760. doi: 10.1088/0960-1317/14/5/014. DOI
Nebel CE, et al. Diamond and biology. Journal of The Royal Society Interface. 2007;4:439–461. doi: 10.1098/rsif.2006.0196. PubMed DOI PMC
Bajaj P, et al. Ultrananocrystalline diamond film as an optimal cell interface for biomedical applications. Biomedical Microdevices. 2007;9:787–794. doi: 10.1007/s10544-007-9090-2. PubMed DOI
Bergonzo P, et al. 3D shaped mechanically flexible diamond microelectrode arrays for eye implant applications: The MEDINAS project. IRBM. 2011;32:91–94. doi: 10.1016/j.irbm.2011.01.032. DOI
Medina O, et al. Bactericide and bacterial anti-adhesive properties of the nanocrystalline diamond surface. Diamond and Related Materials. 2012;22:77–81. doi: 10.1016/j.diamond.2011.12.022. DOI
Budil J, et al. Anti-adhesive properties of nanocrystalline diamond films against Escherichia coli bacterium: Influence of surface termination and cultivation medium. Diamond and Related Materials. 2018;83:87–93. doi: 10.1016/j.diamond.2018.02.001. DOI
Davydova M, et al. Fabrication of diamond nanorods for gas sensing applications. Applied Surface Science. 2010;256:5602–5605. doi: 10.1016/j.apsusc.2010.03.034. DOI
Kozak H, et al. Nanostructured Diamond Layers Enhance the Infrared Spectroscopy of Biomolecules. Langmuir. 2014;30:2054–2060. doi: 10.1021/la404814c. PubMed DOI
Niakan H, Zhang C, Hu Y, Szpunar JA, Yang Q. Thermal stability of diamond-like carbon–MoS2 thin films in different environments. Thin Solid Films. 2014;562:244–249. doi: 10.1016/j.tsf.2014.04.068. DOI
Niakan H, Zhang C, Yang L, Yang Q, Szpunar JA. Structure and properties of DLC–MoS2 thin films synthesized by BTIBD method. Journal of Physics and Chemistry of Solids. 2014;75:1289–1294. doi: 10.1016/j.jpcs.2014.07.002. DOI
Sojkova, M. et al. MoS2 thin films prepared by sulfurization. in (eds Campo, E. M., Dobisz, E. A. & Eldada, L. A.) 56, 10.1117/12.2273846 (SPIE, 2017).
Orofeo CM, Suzuki S, Sekine Y, Hibino H. Scalable synthesis of layer-controlled WS2 and MoS2 sheets by sulfurization of thin metal films. Applied Physics Letters. 2014;105:083112. doi: 10.1063/1.4893978. DOI
Yim C, et al. Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry. Applied Physics Letters. 2014;104:103114. doi: 10.1063/1.4868108. DOI
Wu C-R, Chang X-R, Wu C-H, Lin S-Y. The Growth Mechanism of Transition Metal Dichalcogenides by using Sulfurization of Pre-deposited Transition Metals and the 2D Crystal Hetero-structure Establishment. Scientific Reports. 2017;7:42146. doi: 10.1038/srep42146. PubMed DOI PMC
Mikhailov SN, et al. The behaviour of the molybdenum-CVD diamond interface at high temperature. Diamond and Related Materials. 1995;4:1137–1141. doi: 10.1016/0925-9635(95)00289-8. DOI
Yeh JJ, Pfeffer RL, Cole MW, Ohring M, Yehoda JE. Reactions between tungsten and molybdenum thin films and polycrystalline diamond substrates. Diamond and Related Materials. 1996;5:1195–1203. doi: 10.1016/0925-9635(96)00528-6. DOI
Jung Y, et al. Metal Seed Layer Thickness-Induced Transition From Vertical to Horizontal Growth of MoS2 and WS2. Nano Letters. 2014;14:6842–6849. doi: 10.1021/nl502570f. PubMed DOI
Kong D, et al. Synthesis of MoS2 and MoSe2 Films with Vertically Aligned Layers. Nano Letters. 2013;13:1341–1347. doi: 10.1021/nl400258t. PubMed DOI
Cho S-Y, et al. Highly Enhanced Gas Adsorption Properties in Vertically Aligned MoS2 Layers. ACS Nano. 2015;9:9314–9321. doi: 10.1021/acsnano.5b04504. PubMed DOI
Solin SA, Ramdas AK. Raman Spectrum of Diamond. Physical Review B. 1970;1:1687–1698. doi: 10.1103/PhysRevB.1.1687. DOI
Hu T, et al. Oxidation-Sulfidation Approach for Vertically Growing MoS2 Nanofilms Catalysts on Molybdenum Foils as Efficient HER Catalysts. The Journal of Physical Chemistry C. 2016;120:25843–25850. doi: 10.1021/acs.jpcc.6b08120. DOI
Stern, C. et al. Growth Mechanisms and Electronic Properties of Vertically Aligned MoS2. Scientific Reports8 (2018). PubMed PMC
Siegel G, Venkata Subbaiah YP, Prestgard MC, Tiwari A. Growth of centimeter-scale atomically thin MoS2 films by pulsed laser deposition. APL Materials. 2015;3:056103. doi: 10.1063/1.4921580. DOI
Michail A, Delikoukos N, Parthenios J, Galiotis C, Papagelis K. Optical detection of strain and doping inhomogeneities in single layer MoS2. Applied Physics Letters. 2016;108:173102. doi: 10.1063/1.4948357. DOI
Wurstbauer U, Miller B, Parzinger E, Holleitner AW. Light–matter interaction in transition metal dichalcogenides and their heterostructures. Journal of Physics D: Applied Physics. 2017;50:173001. doi: 10.1088/1361-6463/aa5f81. DOI
Lee C, et al. Anomalous Lattice Vibrations of Single- and Few-Layer MoS2. ACS Nano. 2010;4:2695–2700. doi: 10.1021/nn1003937. PubMed DOI
Li D, et al. Optical properties of thickness-controlled MoS2 thin films studied by spectroscopic ellipsometry. Applied Surface Science. 2017;421:884–890. doi: 10.1016/j.apsusc.2016.09.069. DOI
Splendiani A, et al. Emerging Photoluminescence in Monolayer MoS2. Nano Letters. 2010;10:1271–1275. doi: 10.1021/nl903868w. PubMed DOI
Eda G, et al. Photoluminescence from Chemically Exfoliated MoS2. Nano Letters. 2011;11:5111–5116. doi: 10.1021/nl201874w. PubMed DOI
Pan LF, et al. Molybdenum carbide stabilized on graphene with high electrocatalytic activity for hydrogen evolution reaction. Chem. Commun. 2014;50:13135–13137. doi: 10.1039/C4CC05698A. PubMed DOI
Xiao T-C, et al. Preparation and Characterisation of Bimetallic Cobalt and Molybdenum Carbides. Journal of Catalysis. 2001;202:100–109. doi: 10.1006/jcat.2001.3247. DOI
Deokar G, Vignaud D, Arenal R, Louette P, Colomer J-F. Synthesis and characterization of MoS2 nanosheets. Nanotechnology. 2016;27:075604. doi: 10.1088/0957-4484/27/7/075604. PubMed DOI
Zhan Y, Liu Z, Najmaei S, Ajayan PM. & Lou, J. Large-Area Vapor-Phase Growth and Characterization of MoS2 Atomic Layers on a SiO2 Substrate. Small. 2012;8:966–971. doi: 10.1002/smll.201102654. PubMed DOI
Lu C, Liu W, Li H, Tay BK. A binder-free CNT network–MoS2 composite as a high performance anode material in lithium ion batteries. Chem. Commun. 2014;50:3338–3340. doi: 10.1039/C3CC49647C. PubMed DOI
Widjonarko N. Introduction to Advanced X-ray Diffraction Techniques for Polymeric Thin Films. Coatings. 2016;6:54. doi: 10.3390/coatings6040054. DOI
Nečas D, Klapetek P. Gwyddion: an open-source software for SPM data analysis. Open Physics. 2012;10:181–188. doi: 10.2478/s11534-011-0096-2. DOI
Pelliccione, M. & Lu, T.-M. Evolution of thin film morphology: modeling and simulations. (Springer, 2008).
Zhao Y. Dynamic Shadowing Growth and Its Energy Applications. Frontiers in Energy Research. 2014;2:38. doi: 10.3389/fenrg.2014.00038. DOI
Karabacak T. Thin-film growth dynamics with shadowing and re-emission effects. Journal of Nanophotonics. 2011;5:052501. doi: 10.1117/1.3543822. DOI
Improved Gas Sensing Capabilities of MoS2/Diamond Heterostructures at Room Temperature