Isolation and Sequencing of Chromosome Arm 7RS of Rye, Secale cereale

. 2022 Sep 21 ; 23 (19) : . [epub] 20220921

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36232406

Grantová podpora
DP210100296 Australian Research Council
DP200100762 Australian Research Council
DE210100398 Australian Research Council
CZ.02.1.01/0.0/0.0/16_019/0000827) ERDF

Rye (Secale cereale) is a climate-resilient cereal grown extensively as grain or forage crop in Northern and Eastern Europe. In addition to being an important crop, it has been used to improve wheat through introgression of genomic regions for improved yield and disease resistance. Understanding the genomic diversity of rye will assist both the improvement of this crop and facilitate the introgression of more valuable traits into wheat. Here, we isolated and sequenced the short arm of rye chromosome 7 (7RS) from Triticale 380SD using flow cytometry and compared it to the public Lo7 rye whole genome reference assembly. We identify 2747 Lo7 genes present on the isolated chromosome arm and two clusters containing seven and sixty-five genes that are present on Triticale 380SD 7RS, but absent from Lo7 7RS. We identified 29 genes that are not assigned to chromosomal locations in the Lo7 assembly but are present on Triticale 380SD 7RS, suggesting a chromosome arm location for these genes. Our study supports the Lo7 reference assembly and provides a repertoire of genes on Triticale 7RS.

Zobrazit více v PubMed

Weipert D. Cereal Grain Quality. Springer; Manhattan, NY, USA: 1996. Rye and triticale; pp. 205–224.

Fowler D., Carles R. Growth, development, and cold tolerence of fall-acclimated cereal grains 1. Crop Sci. 1979;19:915–922. doi: 10.2135/cropsci1979.0011183X001900060040x. DOI

Schittenhelm S., Kraft M., Wittich K.-P. Performance of winter cereals grown on field-stored soil moisture only. Eur. J. Agron. 2014;52:247–258. doi: 10.1016/j.eja.2013.08.010. DOI

Gawroński P., Pawełkowicz M., Tofil K., Uszyński G., Sharifova S., Ahluwalia S., Tyrka M., Wędzony M., Kilian A., Bolibok-Brągoszewska H. DArT markers effectively target gene space in the rye genome. Front. Plant Sci. 2016;7:1600. doi: 10.3389/fpls.2016.01600. PubMed DOI PMC

Feldman M., Levy A.A. Genome evolution due to allopolyploidization in wheat. Genetics. 2012;192:763–774. doi: 10.1534/genetics.112.146316. PubMed DOI PMC

Huang X., Börner A., Röder M., Ganal M. Assessing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers. Theor. Appl. Genet. 2002;105:699–707. doi: 10.1007/s00122-002-0959-4. PubMed DOI

Riley R., Chapman V., Johnson R. The incorporation of alien disease resistance in wheat by genetic interference with the regulation of meiotic chromosome synapsis. Genet. Res. 1968;12:199–219. doi: 10.1017/S0016672300011800. DOI

Sears E. Transfer of alien genetic material to wheat. Wheat Sci. Today Tomorrow. 1981:75–89.

Rabinovich S. Importance of wheat-rye translocations for breeding modern cultivar of Triticum aestivum L. Euphytica. 1998;100:323–340. doi: 10.1023/A:1018361819215. DOI

Mater Y., Baenziger S., Gill K., Graybosch R., Whitcher L., Baker C., Specht J., Dweikat I. Linkage mapping of powdery mildew and greenbug resistance genes on recombinant 1RS from ‘Amigo’ and ‘Kavkaz’ wheat–rye translocations of chromosome 1RS.1AL. Genome. 2004;47:292–298. doi: 10.1139/g03-101. PubMed DOI

Jung W.J., Seo Y.W. Employment of wheat-rye translocation in wheat improvement and broadening its genetic basis. J. Crop Sci. Biotechnol. 2014;17:305–313. doi: 10.1007/s12892-014-0086-1. DOI

Bennett M.D., Smith J.B., Barclay I. Early seed development in the Triticeae. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 1975;272:199–227.

Bartoš J., Paux E., Kofler R., Havránková M., Kopecký D., Suchánková P., Šafář J., Šimková H., Town C., Lelley T., et al. A first survey of the rye (Secale cereale) genome composition through BAC end sequencing of the short arm of chromosome 1R. BMC Plant Biol. 2008;8:95. doi: 10.1186/1471-2229-8-95. PubMed DOI PMC

Appels R., Francki M., Chibbar R. Advances in cereal functional genomics. Funct. Integr. Genom. 2003;3:1–24. doi: 10.1007/s10142-002-0073-3. PubMed DOI

Bennetzen J. Transposable element contributions to plant gene and genome evolution. Plant Mol. Biol. 2000;42:251–269. doi: 10.1023/A:1006344508454. PubMed DOI

Rabanus-Wallace M.T., Hackauf B., Mascher M., Lux T., Wicker T., Gundlach H., Baez M., Houben A., Mayer K.F.X., Guo L., et al. Chromosome-scale genome assembly provides insights into rye biology, evolution and agronomic potential. Nat. Genet. 2021;53:564–573. doi: 10.1038/s41588-021-00807-0. PubMed DOI PMC

Li G., Wang L., Yang J., He H., Jin H., Li X., Ren T., Ren Z., Li F., Han X., et al. A high-quality genome assembly highlights rye genomic characteristics and agronomically important genes. Nat. Genet. 2021;53:574–584. doi: 10.1038/s41588-021-00808-z. PubMed DOI PMC

Parat F., Schwertfirm G., Rudolph U., Miedaner T., Korzun V., Bauer E., Schön C.C., Tellier A. Geography and end use drive the diversification of worldwide winter rye populations. Mol. Ecol. 2016;25:500–514. doi: 10.1111/mec.13495. PubMed DOI

Yang M., Ren T., Yan B., Li Z., Ren Z. Diversity resistance to Puccinia striiformis f. sp tritici in rye chromosome arm 1RS expressed in wheat. Genet. Mol. Res. 2014;13:8783–8793. doi: 10.4238/2014.October.27.20. PubMed DOI

Ren T., Tang Z., Fu S., Yan B., Tan F., Ren Z., Li Z. Molecular cytogenetic characterization of novel wheat-rye T1RS.1BL translocation lines with high resistance to diseases and great agronomic traits. Front. Plant Sci. 2017;8:799. doi: 10.3389/fpls.2017.00799. PubMed DOI PMC

Ruperao P., Chan C.K.K., Azam S., Karafiátová M., Hayashi S., Čížková J., Saxena R.K., Šimková H., Song C., Vrána J., et al. A chromosomal genomics approach to assess and validate the desi and kabuli draft chickpea genome assemblies. Plant Biotechnol. J. 2014;12:778–786. doi: 10.1111/pbi.12182. PubMed DOI

Berkman P.J., Skarshewski A., Lorenc M.T., Lai K., Duran C., Ling E.Y., Stiller J., Smits L., Imelfort M., Manoli S., et al. Sequencing and assembly of low copy and genic regions of isolated Triticum aestivum chromosome arm 7DS. Plant Biotechnol. J. 2011;9:768–775. PubMed

Berkman P.J., Skarshewski A., Manoli S., Lorenc M.T., Stiller J., Smits L., Lai K., Campbell E., Kubaláková M., Šimková H., et al. Sequencing wheat chromosome arm 7BS delimits the 7BS/4AL translocation and reveals homoeologous gene conservation. Theor. Appl. Genet. 2012;124:423–432. doi: 10.1007/s00122-011-1717-2. PubMed DOI

Berkman P.J., Visendi P., Lee H.C., Stiller J., Manoli S., Lorenc M.T., Lai K., Batley J., Fleury D., Šimková H., et al. Dispersion and domestication shaped the genome of bread wheat. Plant Biotechnol. J. 2013;11:564–571. PubMed

Kreplak J., Madoui M.-A., Cápal P., Novák P., Labadie K., Aubert G., Bayer P.E., Gali K.K., Syme R.A., Main D., et al. A reference genome for pea provides insight into legume genome evolution. Nat. Genet. 2019;51:1411–1422. doi: 10.1038/s41588-019-0480-1. PubMed DOI

Doležel J., Vrána J., Šafář J., Bartoš J., Kubaláková M., Šimková H. Chromosomes in the flow to simplify genome analysis. Funct. Integr. Genom. 2012;12:397–416. doi: 10.1007/s10142-012-0293-0. PubMed DOI PMC

Masojć P., Banek-Tabor A., Milczarski P., Twardowska M. TLs for resistance to preharvest sprouting in rye (Secale cereale L.) J. Appl. Genet. 2007;48:211–217. doi: 10.1007/BF03195215. PubMed DOI

Masojæ P., Milczarski P. Mapping QTLs for α-amylase activity in rye grain. J. Appl. Genet. 2005;46:115–123. PubMed

Hackauf B., Haffke S., Fromme F.J., Roux S.R., Kusterer B., Musmann D., Kilian A., Miedaner T. QTL mapping and comparative genome analysis of agronomic traits including grain yield in winter rye. Theor. Appl. Genet. 2017;130:1801–1817. doi: 10.1007/s00122-017-2926-0. PubMed DOI

Milczarski P., Masojć P. The mapping of QTLS for chlorophyll content and responsiveness to gibberellic (GA3) and abscisic (ABA) acids in rye. Cell. Mol. Biol. Lett. 2002;7:449–456. PubMed

Miedaner T., Laidig F. Advances in Plant Breeding Strategies: Cereals. Springer; Manhattan, NY, USA: 2019. Hybrid breeding in rye (Secale cereale L.) pp. 343–372.

Arseniuk E. Triticale Abiotic Stresses—An Overview. In: Eudes F., editor. Triticale. Springer International Publishing; Manhattan, NY, USA: 2015. pp. 69–81.

Alkhimova A.G., Heslop-Harrison J.S., Shchapova A.I., Vershinin A.V. Rye chromosome variability in wheat–rye addition and substitution lines. Chromosom. Res. 1999;7:205–212. PubMed

Fu S., Lv Z., Guo X., Zhang X., Han F. Alteration of Terminal Heterochromatin and Chromosome Rearrangements in Derivatives of Wheat-Rye Hybrids. J. Genet. Genom. 2013;40:413–420. PubMed

Niwa K., Sakamoto S. Origin of B chromosomes in cultivated rye. Genome. 1995;38:307–312. PubMed

Marques A., Banaei-Moghaddam A.M., Klemme S., Blattner F.R., Niwa K., Guerra M., Houben A. B chromosomes of rye are highly conserved and accompanied the development of early agriculture. Ann. Bot. 2013;112:527–534. doi: 10.1093/aob/mct121. PubMed DOI PMC

Figueiras A., González-Jaén M., Candela M., Benito C. Genic heterozygosity, chromosomal interchanges and fitness in rye: Any relationship? Genetica. 2006;128:273–286. PubMed

Li J., Endo T.R., Saito M., Ishikawa G., Nakamura T., Nasuda S. Homoeologous relationship of rye chromosome arms as detected with wheat PLUG markers. Chromosoma. 2013;122:555–564. doi: 10.1007/s00412-013-0428-7. PubMed DOI

Golicz A.A., Martinez P.A., Zander M., Patel D.A., Van De Wouw A.P., Visendi P., Fitzgerald T.L., Edwards D., Batley J. Gene loss in the fungal canola pathogen Leptosphaeria maculans. Funct. Integr. Genom. 2015;15:189–196. PubMed

Vrána J., Kubaláková M., Šimková H., Číhalíková J., Lysák M., Doležel J. Flow sorting of mitotic chromosomes in common wheat (Triticum aestivum L.) Genetics. 2000;156:2033–2041. PubMed PMC

Kubaláková M., Vrána J., Číhalíková J., Šimková H., Doležel J. Flow karyotyping and chromosome sorting in bread wheat (Triticum aestivum L.) Theor. Appl. Genet. 2002;104:1362–1372. PubMed

Doležel J., Binarová P., Lucretti S. Analysis of Nuclear DNA content in plant cells by flow cytometry. Biol. Plant. 1989;31:113–120.

Giorgi D., Farina A., Grosso V., Gennaro A., Ceoloni C., Lucretti S. FISHIS: Fluorescence in situ hybridization in suspension and chromosome flow sorting made easy. PLoS ONE. 2013;8:e57994. PubMed PMC

Kubaláková M., Macas J., Doležel J. Mapping of repeated DNA sequences in plant chromosomes by PRINS and C-PRINS. Theor. Appl. Genet. 1997;94:758–763. doi: 10.1007/s001220050475. DOI

Šimková H., Svensson J.T., Condamine P., Hřibová E., Suchánková P., Bhat P.R., Bartoš J., Šafář J., Close T.J., Doležel J. Coupling amplified DNA from flow-sorted chromosomes to high-density SNP mapping in barley. BMC Genom. 2008;9:294. doi: 10.1186/1471-2164-9-294. PubMed DOI PMC

Bolger A.M., Lohse M., Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. PubMed PMC

Langmead B., Salzberg S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 2012;9:357–359. PubMed PMC

Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R. 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–2079. PubMed PMC

R Core Team A language and environment for statistical computing. Open J. Stat. 2013;6:3.

Allaire J. Integrated Development Environment for R. Volume 770. RStudio; Boston, MA, USA: 2012. pp. 165–171.

Wickham H., Averick M., Bryan J., Chang W., McGowan L.D.A., François R., Grolemund G., Hayes A., Henry L., Hester J. Welcome to the Tidyverse. J. Open Source Softw. 2019;4:1686. doi: 10.21105/joss.01686. DOI

Dowle M., Srinivasan A., Gorecki J., Chirico M., Stetsenko P., Short T., Lianoglou S., Antonyan E., Bonsch M., Parsonage H. Package Data. Table; Extension of Data. Frame. 2019. [(accessed on 7 August 2022)]. Available online: https://CRAN.R-project.org/package=data.table.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...