Chromosome-scale genome assembly provides insights into rye biology, evolution and agronomic potential
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
BB/P016855/1
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
33737754
PubMed Central
PMC8035072
DOI
10.1038/s41588-021-00807-0
PII: 10.1038/s41588-021-00807-0
Knihovny.cz E-zdroje
- MeSH
- fyziologická adaptace genetika MeSH
- fyziologický stres MeSH
- genom rostlinný * MeSH
- genová introgrese MeSH
- imunita rostlin genetika MeSH
- karyotyp MeSH
- mapování chromozomů metody MeSH
- pšenice genetika MeSH
- regulace genové exprese u rostlin MeSH
- rostlinné proteiny genetika metabolismus MeSH
- šlechtění rostlin metody MeSH
- zemědělské plodiny genetika imunologie MeSH
- žito genetika imunologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- rostlinné proteiny MeSH
Rye (Secale cereale L.) is an exceptionally climate-resilient cereal crop, used extensively to produce improved wheat varieties via introgressive hybridization and possessing the entire repertoire of genes necessary to enable hybrid breeding. Rye is allogamous and only recently domesticated, thus giving cultivated ryes access to a diverse and exploitable wild gene pool. To further enhance the agronomic potential of rye, we produced a chromosome-scale annotated assembly of the 7.9-gigabase rye genome and extensively validated its quality by using a suite of molecular genetic resources. We demonstrate applications of this resource with a broad range of investigations. We present findings on cultivated rye's incomplete genetic isolation from wild relatives, mechanisms of genome structural evolution, pathogen resistance, low-temperature tolerance, fertility control systems for hybrid breeding and the yield benefits of rye-wheat introgressions.
Aquatic and Crop Resource Development National Research Council Saskatoon Saskatchewan Canada
Canadian Grain Commission Winnipeg Manitoba Canada
Chinese Academy of Agricultural Sciences Beijing China
Federal University of Pernambuco Pernambuco Brazil
Georg August Universität Göttingen Göttingen Germany
Huazhong Agricultural University Wuhan China
HYBRO Saatzucht GmbH and Co KG Isernhagen Germany
Institute for Biosafety in Plant Biotechnology Julius Kühn Institut Quedlinburg Germany
Institute for Breeding Research on Agricultural Crops Julius Kühn Institut Sanitz Germany
Institute for Resistance Research and Stress Tolerance Julius Kühn Institute Quedlinburg Germany
Institute of Biotechnology and Viikki Plant Science Centre University of Helsinki Helsinki Finland
Institute of Experimental Botany of the Czech Academy of Sciences Olomouc Czech Republic
Kansas State University Manhattan KS USA
KWS SAAT SE and Co Einbeck Germany
Leibniz Institute of Plant Genetics and Crop Plant Research Seeland Germany
Montana BioAg Inc Durham NC USA
Noble Research Institute Ardmore OK USA
Plant Genome and Systems Biology Helmholtz Center Munich Neuherberg Germany
Production Systems Natural Resources Institute Finland Helsinki Finland
Sabanci University Tuzla Turkey
Saint Petersburg State University Saint Petersburg Russia
Technical University Munich Munich Germany
The University of Western Australia Crawley Western Australia Australia
TUM School of Life Sciences Weihenstephan Technical University of Munich Freising Germany
University of Cukurova Cukurova Turkey
University of Maryland College Park MD USA
University of Saskatchewan Saskatoon Saskatchewan Canada
University of Zürich Zurich Switzerland
Vavilov Institute of General Genetics Russian Academy of Sciences Saint Petersburg Russia
Warsaw University of Life Sciences SGGW Warsaw Poland
West Pomeranian University of Technology Szczecin Szczecin Poland
Zobrazit více v PubMed
Beck HE, et al. Present and future Köppen–Geiger climate classification maps at 1-km resolution. Sci. Data. 2018;5:180214. PubMed PMC
Sharma S, et al. Integrated genetic map and genetic analysis of a region associated with root traits on the short arm of rye chromosome 1 in bread wheat. Theor. Appl. Genet. 2009;119:783–793. PubMed PMC
Lukaszewski, A.J. in Alien Introgression in Wheat (eds Molnár-Láng, M. et al.) 163–189 (Springer, 2015).
Kim W, Johnson J, Baenziger P, Lukaszewski A, Gaines C. Agronomic effect of wheat–rye translocation carrying rye chromatin (1R) from different sources. Crop Sci. 2004;44:1254–1258.
Crespo-Herrera LA, Garkava-Gustavsson L, Åhman I. A systematic review of rye (Secale cereale L.) as a source of resistance to pathogens and pests in wheat (Triticum aestivum L.) Hereditas. 2017;154:14. PubMed PMC
Doležel J, et al. Plant genome size estimation by flow cytometry: inter-laboratory comparison. Ann. Bot. 1998;82:17–26.
IWGSC. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science361, eaar7191 (2018). PubMed
Martis MM, et al. Reticulate evolution of the rye genome. Plant Cell. 2013;25:3685–3698. PubMed PMC
Bauer E, et al. Towards a whole-genome sequence for rye (Secale cereale L.) Plant J. 2017;89:853–869. PubMed
Schneider A, Rakszegi M, Molnár-Láng M, Szakács É. Production and cytomolecular identification of new wheat-perennial rye (Secale cereanum) disomic addition lines with yellow rust resistance (6R) and increased arabinoxylan and protein content (1R, 4R, 6R) Theor. Appl. Genet. 2016;129:1045–1059. PubMed
Li J, Zhou R, Endo TR, Stein N. High‐throughput development of SSR marker candidates and their chromosomal assignment in rye (Secale cereale L.) Plant Breed. 2018;137:561–572.
Hackauf B, et al. QTL mapping and comparative genome analysis of agronomic traits including grain yield in winter rye. Theor. Appl. Genet. 2017;130:1801–1817. PubMed
Mascher M, et al. A chromosome conformation capture ordered sequence of the barley genome. Nature. 2017;544:427–433. PubMed
Maccaferri M, et al. Durum wheat genome highlights past domestication signatures and future improvement targets. Nat. Genet. 2019;51:885. PubMed
Zhu T, et al. Improved genome sequence of wild emmer wheat Zavitan with the aid of optical maps. G3. 2019;9:619–624. PubMed PMC
Zimin AV, et al. Hybrid assembly of the large and highly repetitive genome of Aegilops tauschii, a progenitor of bread wheat, with the MaSuRCA mega-reads algorithm. Genome Res. 2017;27:787–792. PubMed PMC
Braun E-M, et al. Gene expression profiling and fine mapping identifies a gibberellin 2-oxidase gene co-segregating with the dominant dwarfing gene Ddw1 rye (Secale cereale L.) Front. Plant Sci. 2019;10:857. PubMed PMC
Lieberman-Aiden E, et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 2009;326:289–293. PubMed PMC
Wicker T, et al. A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 2007;8:973–982. PubMed
Ou S, Chen J, Jiang N. Assessing genome assembly quality using the LTR Assembly Index (LAI) Nucleic Acids Res. 2018;46:e126. PubMed PMC
Wicker, T., Gundlach, H. & Schulman, A.H. in The Barley Genome (eds SteinGary, N. & J. Muehlbauer, J.) 123–138 (Springer, 2018).
Wicker T, et al. Impact of transposable elements on genome structure and evolution in bread wheat. Genome Biol. 2018;19:103. PubMed PMC
Himmelbach A, et al. Discovery of multi‐megabase polymorphic inversions by chromosome conformation capture sequencing in large‐genome plant species. Plant J. 2018;96:1309–1316. PubMed
Lowry, D.B. & Willis, J.H. A widespread chromosomal inversion polymorphism contributes to a major life-history transition, local adaptation, and reproductive isolation. PLoS Biol.8, e1000500 (2010). PubMed PMC
Schreiber M, Himmelbach A, Börner A, Mascher M. Genetic diversity and relationship between domesticated rye and its wild relatives as revealed through genotyping‐by‐sequencing. Evol. Appl. 2019;12:66–77. PubMed PMC
Friebe B, Jiang J, Raupp W, McIntosh R, Gill B. Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica. 1996;91:59–87.
Graybosch RA. Mini review: uneasy unions: quality effects of rye chromatin transfers to wheat. J. Cereal Sci. 2001;33:3–16.
Kumlay A, et al. Understanding the effect of rye chromatin in bread wheat. Crop Sci. 2003;43:1643–1651.
Chen, L. & Liu, Y.-G. Male sterility and fertility restoration in crops. Annu. Rev. Plant Biol. 65, 579–606 (2014). PubMed
Melonek J, Stone JD, Small I. Evolutionary plasticity of restorer-of-fertility-like proteins in rice. Sci. Rep. 2016;6:35152. PubMed PMC
Bernhard T, Koch M, Snowdon RJ, Friedt W, Wittkop B. Undesired fertility restoration in msm1 barley associates with two mTERF genes. Theor. Appl. Genet. 2019;132:1335–1350. PubMed
Hackauf B, Korzun V, Wortmann H, Wilde P, Wehling P. Development of conserved ortholog set markers linked to the restorer gene Rfp1 in rye. Mol. Breed. 2012;30:1507–1518.
Geiger, H., Yuan, Y., Miedaner, T. & Wilde, P. Environmental sensitivity of cytoplasmic genic male sterility (CMS) in Secale cereale L. Fortschr. Pflanzen.18, 7–18 (1995).
Geiger H. Cytoplasmatisch-genische pollensterilität in roggenformen iranischer abstammung. Naturwissenschaften. 1971;58:98–99. PubMed
Geiger H, Schnell F. Cytoplasmic male sterility in rye (Secale cereale L.) 1. Crop Sci. 1970;10:590–593.
Stojałowski S, Jaciubek Moa, Masojć P. Rye SCAR markers for male fertility restoration in the P cytoplasm are also applicable to marker-assisted selection in the C cytoplasm. J. Appl. Genet. 2005;46:371–373. PubMed
Wilde, P. et al. Restorer plants. US patent application 16/064,304 (2019).
Tsunewaki K. Fine mapping of the first multi-fertility-restoring gene, Rfmulti, of wheat for three Aegilops plasmons, using 1BS-1RS recombinant lines. Theor. Appl. Genet. 2015;128:723–732. PubMed
Hohn CE, Lukaszewski AJ. Engineering the 1BS chromosome arm in wheat to remove the Rf multi locus restoring male fertility in cytoplasms of Aegilops kotschyi, Ae. uniaristata and Ae. mutica. Theor. Appl. Genet. 2016;129:1769–1774. PubMed
Jung WJ, Seo YW. Employment of wheat–rye translocation in wheat improvement and broadening its genetic basis. J. Crop Sci. Biotechnol. 2014;17:305–313.
Lukaszewski AJ. Chromosomes 1BS and 1RS for control of male fertility in wheats and triticales with cytoplasms of Aegilops kotschyi, Ae. mutica and Ae. uniaristata. Theor. Appl Genet. 2017;130:2521–2526. PubMed
Hensel G. Genetic transformation of Triticeae cereals—summary of almost three-decade’s development. Biotechnol. Adv. 2020;40:107484. PubMed
Kourelis J, van der Hoorn RA. Defended to the nines: 25 years of resistance gene cloning identifies nine mechanisms for R protein function. Plant Cell. 2018;30:285–299. PubMed PMC
Steuernagel B, et al. The NLR-Annotator tool enables annotation of the intracellular immune receptor repertoire. Plant Physiol. 2020;183:468–482. PubMed PMC
Dvorak J, Fowler D. Cold hardiness potential of triticale and teraploid Rye 1. Crop Sci. 1978;18:477–478.
Jung WJ, Seo YW. Identification of novel C-repeat binding factor (CBF) genes in rye (Secale cereale L.) and expression studies. Gene. 2019;684:82–94. PubMed
Börner A, Korzun V, Voylokov A, Worland A, Weber W. Genetic mapping of quantitative trait loci in rye (Secale cereale L.) Euphytica. 2000;116:203–209.
Vágújfalvi A, Galiba G, Cattivelli L, Dubcovsky J. The cold-regulated transcriptional activator Cbf3 is linked to the frost-tolerance locus Fr-A2 on wheat chromosome 5A. Mol. Genet. Genomics. 2003;269:60–67. PubMed PMC
Båga M, et al. Identification of quantitative trait loci and associated candidate genes for low-temperature tolerance in cold-hardy winter wheat. Funct. Integr. Genom. 2007;7:53–68. PubMed
Fowler D, N’Diaye A, Laudencia-Chingcuanco D, Pozniak C. Quantitative trait loci associated with phenological development, low-temperature tolerance, grain quality, and agronomic characters in wheat (Triticum aestivum L.) PLoS ONE. 2016;11:e0152185. PubMed PMC
Francia E, et al. Two loci on chromosome 5H determine low-temperature tolerance in a ‘Nure’(winter)בTremois’(spring) barley map. Theor. Appl. Genet. 2004;108:670–680. PubMed
Stockinger EJ, Gilmour SJ, Thomashow MF. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc. Natl Acad. Sci. USA. 1997;94:1035–1040. PubMed PMC
Campoli C, Matus-Cádiz MA, Pozniak CJ, Cattivelli L, Fowler DB. Comparative expression of Cbf genes in the Triticeae under different acclimation induction temperatures. Mol. Genet. Genomics. 2009;282:141–152. PubMed PMC
Würschum T, Longin CFH, Hahn V, Tucker MR, Leiser WL. Copy number variations of CBF genes at the Fr‐A2 locus are essential components of winter hardiness in wheat. Plant J. 2017;89:764–773. PubMed
Avni R, et al. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science. 2017;357:93–97. PubMed
Ling H-Q, et al. Draft genome of the wheat A-genome progenitor Triticum urartu. Nature. 2013;496:87–90. PubMed
Luo, M. et al. Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature551, 498–502 (2017). PubMed PMC
IWGSC. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science. 2014;345:1251788. PubMed
Monat C, et al. TRITEX: chromosome-scale sequence assembly of Triticeae genomes with open-source tools. Genome Biol. 2019;20:284. PubMed PMC
Dolezel J, Kubaláková M, Paux E, Bartos J, Feuillet C. Chromosome-based genomics in the cereals. Chromosome Res. 2007;15:51–66. PubMed
Dolezel J, Bartos J, Voglmayr H, Greilhuber J. Nuclear DNA content and genome size of trout and human. Cytom. A. 2003;51:127–128. PubMed
Aliyeva-Schnorr, L., Ma, L. & Houben, A. A fast air-dry dropping chromosome preparation method suitable for FISH in plants. J. Vis. Exp.16, e53470 (2015). PubMed PMC
Cuadrado A, Jouve N, Ceoloni C. Variation in highly repetitive DNA composition of heterochromatin in rye studied by fluorescence in situ hybridization. Genome. 1995;38:1061–1069. PubMed
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. PubMed
Paradis E, Schliep K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2018;35:526–528. PubMed
Zheng X, et al. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics. 2012;28:3326–3328. PubMed PMC
Green RE, et al. A draft sequence of the Neandertal genome. Science. 2010;328:710–722. PubMed PMC
Pont C, et al. Tracing the ancestry of modern bread wheats. Nat. Genet. 2019;51:905–911. PubMed
Rife, T.W., Graybosch, R.A. & Poland, J.A. Genomic analysis and prediction within a US public collaborative winter wheat regional testing nursery. Plant Genome11, e180004 (2018). PubMed
Keilwagen J, et al. Detecting large chromosomal modifications using short read data from genotyping-by-sequencing. Front. Plant Sci. 2019;10:1133. PubMed PMC
Li H, Durbin R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics. 2010;26:589–595. PubMed PMC
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10–12.
Li H, et al. The sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–2079. PubMed PMC
Zhang M, et al. Preparation of megabase-sized DNA from a variety of organisms using the nuclei method for advanced genomics research. Nat. Protoc. 2012;7:467–478. PubMed
Abyzov A, Urban AE, Snyder M, Gerstein M. CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res. 2011;21:974–984. PubMed PMC
Klambauer G, et al. cn. MOPS: mixture of poissons for discovering copy number variations in next-generation sequencing data with a low false discovery rate. Nucleic Acids Res. 2012;40:e69. PubMed PMC
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. PubMed PMC
Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods. 2015;12:357–360. PubMed PMC
Anders S, Pyl PT, Huber W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31:166–169. PubMed PMC
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. PubMed PMC
The genetic mechanism of B chromosome drive in rye illuminated by chromosome-scale assembly
Flow Cytometric Analysis and Sorting of Plant Chromosomes
Flow Sorting-Assisted Optical Mapping
An unusual tandem kinase fusion protein confers leaf rust resistance in wheat
A DUF3494 ice-binding protein with a root cap domain in a streptophyte glacier ice alga
Isolation and Sequencing of Chromosome Arm 7RS of Rye, Secale cereale
Long-read sequence assembly: a technical evaluation in barley