Chromosome-scale genome assembly provides insights into rye biology, evolution and agronomic potential

. 2021 Apr ; 53 (4) : 564-573. [epub] 20210318

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33737754

Grantová podpora
BB/P016855/1 Biotechnology and Biological Sciences Research Council - United Kingdom

Odkazy

PubMed 33737754
PubMed Central PMC8035072
DOI 10.1038/s41588-021-00807-0
PII: 10.1038/s41588-021-00807-0
Knihovny.cz E-zdroje

Rye (Secale cereale L.) is an exceptionally climate-resilient cereal crop, used extensively to produce improved wheat varieties via introgressive hybridization and possessing the entire repertoire of genes necessary to enable hybrid breeding. Rye is allogamous and only recently domesticated, thus giving cultivated ryes access to a diverse and exploitable wild gene pool. To further enhance the agronomic potential of rye, we produced a chromosome-scale annotated assembly of the 7.9-gigabase rye genome and extensively validated its quality by using a suite of molecular genetic resources. We demonstrate applications of this resource with a broad range of investigations. We present findings on cultivated rye's incomplete genetic isolation from wild relatives, mechanisms of genome structural evolution, pathogen resistance, low-temperature tolerance, fertility control systems for hybrid breeding and the yield benefits of rye-wheat introgressions.

Aquatic and Crop Resource Development National Research Council Saskatoon Saskatchewan Canada

Canadian Grain Commission Winnipeg Manitoba Canada

Chinese Academy of Agricultural Sciences Beijing China

Earlham Institute Norwich UK

ETH Zürich Zürich Switzerland

Federal University of Pernambuco Pernambuco Brazil

Georg August Universität Göttingen Göttingen Germany

Harrow Research and Development Centre Agriculture and Agri Food Canada Saskatoon Saskatchewan Canada

Huazhong Agricultural University Wuhan China

HYBRO Saatzucht GmbH and Co KG Isernhagen Germany

Institute for Biosafety in Plant Biotechnology Julius Kühn Institut Quedlinburg Germany

Institute for Breeding Research on Agricultural Crops Julius Kühn Institut Sanitz Germany

Institute for Resistance Research and Stress Tolerance Julius Kühn Institute Quedlinburg Germany

Institute of Biotechnology and Viikki Plant Science Centre University of Helsinki Helsinki Finland

Institute of Experimental Botany of the Czech Academy of Sciences Olomouc Czech Republic

John Innes Centre Norwich UK

Kansas State University Manhattan KS USA

KWS SAAT SE and Co Einbeck Germany

Leibniz Institute of Plant Genetics and Crop Plant Research Seeland Germany

Lethbridge Research and Development Centre Agriculture and Agri Food Canada Lethbridge Alberta Canada

Montana BioAg Inc Durham NC USA

Noble Research Institute Ardmore OK USA

Plant Genome and Systems Biology Helmholtz Center Munich Neuherberg Germany

Production Systems Natural Resources Institute Finland Helsinki Finland

Sabanci University Tuzla Turkey

Saint Petersburg State University Saint Petersburg Russia

Technical University Munich Munich Germany

The University of Western Australia Crawley Western Australia Australia

TUM School of Life Sciences Weihenstephan Technical University of Munich Freising Germany

University of Cukurova Cukurova Turkey

University of Maryland College Park MD USA

University of Saskatchewan Saskatoon Saskatchewan Canada

University of Zürich Zurich Switzerland

Vavilov Institute of General Genetics Russian Academy of Sciences Saint Petersburg Russia

Warsaw University of Life Sciences SGGW Warsaw Poland

West Pomeranian University of Technology Szczecin Szczecin Poland

Zobrazit více v PubMed

Beck HE, et al. Present and future Köppen–Geiger climate classification maps at 1-km resolution. Sci. Data. 2018;5:180214. PubMed PMC

Sharma S, et al. Integrated genetic map and genetic analysis of a region associated with root traits on the short arm of rye chromosome 1 in bread wheat. Theor. Appl. Genet. 2009;119:783–793. PubMed PMC

Lukaszewski, A.J. in Alien Introgression in Wheat (eds Molnár-Láng, M. et al.) 163–189 (Springer, 2015).

Kim W, Johnson J, Baenziger P, Lukaszewski A, Gaines C. Agronomic effect of wheat–rye translocation carrying rye chromatin (1R) from different sources. Crop Sci. 2004;44:1254–1258.

Crespo-Herrera LA, Garkava-Gustavsson L, Åhman I. A systematic review of rye (Secale cereale L.) as a source of resistance to pathogens and pests in wheat (Triticum aestivum L.) Hereditas. 2017;154:14. PubMed PMC

Doležel J, et al. Plant genome size estimation by flow cytometry: inter-laboratory comparison. Ann. Bot. 1998;82:17–26.

IWGSC. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science361, eaar7191 (2018). PubMed

Martis MM, et al. Reticulate evolution of the rye genome. Plant Cell. 2013;25:3685–3698. PubMed PMC

Bauer E, et al. Towards a whole-genome sequence for rye (Secale cereale L.) Plant J. 2017;89:853–869. PubMed

Schneider A, Rakszegi M, Molnár-Láng M, Szakács É. Production and cytomolecular identification of new wheat-perennial rye (Secale cereanum) disomic addition lines with yellow rust resistance (6R) and increased arabinoxylan and protein content (1R, 4R, 6R) Theor. Appl. Genet. 2016;129:1045–1059. PubMed

Li J, Zhou R, Endo TR, Stein N. High‐throughput development of SSR marker candidates and their chromosomal assignment in rye (Secale cereale L.) Plant Breed. 2018;137:561–572.

Hackauf B, et al. QTL mapping and comparative genome analysis of agronomic traits including grain yield in winter rye. Theor. Appl. Genet. 2017;130:1801–1817. PubMed

Mascher M, et al. A chromosome conformation capture ordered sequence of the barley genome. Nature. 2017;544:427–433. PubMed

Maccaferri M, et al. Durum wheat genome highlights past domestication signatures and future improvement targets. Nat. Genet. 2019;51:885. PubMed

Zhu T, et al. Improved genome sequence of wild emmer wheat Zavitan with the aid of optical maps. G3. 2019;9:619–624. PubMed PMC

Zimin AV, et al. Hybrid assembly of the large and highly repetitive genome of Aegilops tauschii, a progenitor of bread wheat, with the MaSuRCA mega-reads algorithm. Genome Res. 2017;27:787–792. PubMed PMC

Braun E-M, et al. Gene expression profiling and fine mapping identifies a gibberellin 2-oxidase gene co-segregating with the dominant dwarfing gene Ddw1 rye (Secale cereale L.) Front. Plant Sci. 2019;10:857. PubMed PMC

Lieberman-Aiden E, et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 2009;326:289–293. PubMed PMC

Wicker T, et al. A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 2007;8:973–982. PubMed

Ou S, Chen J, Jiang N. Assessing genome assembly quality using the LTR Assembly Index (LAI) Nucleic Acids Res. 2018;46:e126. PubMed PMC

Wicker, T., Gundlach, H. & Schulman, A.H. in The Barley Genome (eds SteinGary, N. & J. Muehlbauer, J.) 123–138 (Springer, 2018).

Wicker T, et al. Impact of transposable elements on genome structure and evolution in bread wheat. Genome Biol. 2018;19:103. PubMed PMC

Himmelbach A, et al. Discovery of multi‐megabase polymorphic inversions by chromosome conformation capture sequencing in large‐genome plant species. Plant J. 2018;96:1309–1316. PubMed

Lowry, D.B. & Willis, J.H. A widespread chromosomal inversion polymorphism contributes to a major life-history transition, local adaptation, and reproductive isolation. PLoS Biol.8, e1000500 (2010). PubMed PMC

Schreiber M, Himmelbach A, Börner A, Mascher M. Genetic diversity and relationship between domesticated rye and its wild relatives as revealed through genotyping‐by‐sequencing. Evol. Appl. 2019;12:66–77. PubMed PMC

Friebe B, Jiang J, Raupp W, McIntosh R, Gill B. Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica. 1996;91:59–87.

Graybosch RA. Mini review: uneasy unions: quality effects of rye chromatin transfers to wheat. J. Cereal Sci. 2001;33:3–16.

Kumlay A, et al. Understanding the effect of rye chromatin in bread wheat. Crop Sci. 2003;43:1643–1651.

Chen, L. & Liu, Y.-G. Male sterility and fertility restoration in crops. Annu. Rev. Plant Biol. 65, 579–606 (2014). PubMed

Melonek J, Stone JD, Small I. Evolutionary plasticity of restorer-of-fertility-like proteins in rice. Sci. Rep. 2016;6:35152. PubMed PMC

Bernhard T, Koch M, Snowdon RJ, Friedt W, Wittkop B. Undesired fertility restoration in msm1 barley associates with two mTERF genes. Theor. Appl. Genet. 2019;132:1335–1350. PubMed

Hackauf B, Korzun V, Wortmann H, Wilde P, Wehling P. Development of conserved ortholog set markers linked to the restorer gene Rfp1 in rye. Mol. Breed. 2012;30:1507–1518.

Geiger, H., Yuan, Y., Miedaner, T. & Wilde, P. Environmental sensitivity of cytoplasmic genic male sterility (CMS) in Secale cereale L. Fortschr. Pflanzen.18, 7–18 (1995).

Geiger H. Cytoplasmatisch-genische pollensterilität in roggenformen iranischer abstammung. Naturwissenschaften. 1971;58:98–99. PubMed

Geiger H, Schnell F. Cytoplasmic male sterility in rye (Secale cereale L.) 1. Crop Sci. 1970;10:590–593.

Stojałowski S, Jaciubek Moa, Masojć P. Rye SCAR markers for male fertility restoration in the P cytoplasm are also applicable to marker-assisted selection in the C cytoplasm. J. Appl. Genet. 2005;46:371–373. PubMed

Wilde, P. et al. Restorer plants. US patent application 16/064,304 (2019).

Tsunewaki K. Fine mapping of the first multi-fertility-restoring gene, Rfmulti, of wheat for three Aegilops plasmons, using 1BS-1RS recombinant lines. Theor. Appl. Genet. 2015;128:723–732. PubMed

Hohn CE, Lukaszewski AJ. Engineering the 1BS chromosome arm in wheat to remove the Rf multi locus restoring male fertility in cytoplasms of Aegilops kotschyi, Ae. uniaristata and Ae. mutica. Theor. Appl. Genet. 2016;129:1769–1774. PubMed

Jung WJ, Seo YW. Employment of wheat–rye translocation in wheat improvement and broadening its genetic basis. J. Crop Sci. Biotechnol. 2014;17:305–313.

Lukaszewski AJ. Chromosomes 1BS and 1RS for control of male fertility in wheats and triticales with cytoplasms of Aegilops kotschyi, Ae. mutica and Ae. uniaristata. Theor. Appl Genet. 2017;130:2521–2526. PubMed

Hensel G. Genetic transformation of Triticeae cereals—summary of almost three-decade’s development. Biotechnol. Adv. 2020;40:107484. PubMed

Kourelis J, van der Hoorn RA. Defended to the nines: 25 years of resistance gene cloning identifies nine mechanisms for R protein function. Plant Cell. 2018;30:285–299. PubMed PMC

Steuernagel B, et al. The NLR-Annotator tool enables annotation of the intracellular immune receptor repertoire. Plant Physiol. 2020;183:468–482. PubMed PMC

Dvorak J, Fowler D. Cold hardiness potential of triticale and teraploid Rye 1. Crop Sci. 1978;18:477–478.

Jung WJ, Seo YW. Identification of novel C-repeat binding factor (CBF) genes in rye (Secale cereale L.) and expression studies. Gene. 2019;684:82–94. PubMed

Börner A, Korzun V, Voylokov A, Worland A, Weber W. Genetic mapping of quantitative trait loci in rye (Secale cereale L.) Euphytica. 2000;116:203–209.

Vágújfalvi A, Galiba G, Cattivelli L, Dubcovsky J. The cold-regulated transcriptional activator Cbf3 is linked to the frost-tolerance locus Fr-A2 on wheat chromosome 5A. Mol. Genet. Genomics. 2003;269:60–67. PubMed PMC

Båga M, et al. Identification of quantitative trait loci and associated candidate genes for low-temperature tolerance in cold-hardy winter wheat. Funct. Integr. Genom. 2007;7:53–68. PubMed

Fowler D, N’Diaye A, Laudencia-Chingcuanco D, Pozniak C. Quantitative trait loci associated with phenological development, low-temperature tolerance, grain quality, and agronomic characters in wheat (Triticum aestivum L.) PLoS ONE. 2016;11:e0152185. PubMed PMC

Francia E, et al. Two loci on chromosome 5H determine low-temperature tolerance in a ‘Nure’(winter)בTremois’(spring) barley map. Theor. Appl. Genet. 2004;108:670–680. PubMed

Stockinger EJ, Gilmour SJ, Thomashow MF. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc. Natl Acad. Sci. USA. 1997;94:1035–1040. PubMed PMC

Campoli C, Matus-Cádiz MA, Pozniak CJ, Cattivelli L, Fowler DB. Comparative expression of Cbf genes in the Triticeae under different acclimation induction temperatures. Mol. Genet. Genomics. 2009;282:141–152. PubMed PMC

Würschum T, Longin CFH, Hahn V, Tucker MR, Leiser WL. Copy number variations of CBF genes at the Fr‐A2 locus are essential components of winter hardiness in wheat. Plant J. 2017;89:764–773. PubMed

Avni R, et al. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science. 2017;357:93–97. PubMed

Ling H-Q, et al. Draft genome of the wheat A-genome progenitor Triticum urartu. Nature. 2013;496:87–90. PubMed

Luo, M. et al. Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature551, 498–502 (2017). PubMed PMC

IWGSC. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science. 2014;345:1251788. PubMed

Monat C, et al. TRITEX: chromosome-scale sequence assembly of Triticeae genomes with open-source tools. Genome Biol. 2019;20:284. PubMed PMC

Dolezel J, Kubaláková M, Paux E, Bartos J, Feuillet C. Chromosome-based genomics in the cereals. Chromosome Res. 2007;15:51–66. PubMed

Dolezel J, Bartos J, Voglmayr H, Greilhuber J. Nuclear DNA content and genome size of trout and human. Cytom. A. 2003;51:127–128. PubMed

Aliyeva-Schnorr, L., Ma, L. & Houben, A. A fast air-dry dropping chromosome preparation method suitable for FISH in plants. J. Vis. Exp.16, e53470 (2015). PubMed PMC

Cuadrado A, Jouve N, Ceoloni C. Variation in highly repetitive DNA composition of heterochromatin in rye studied by fluorescence in situ hybridization. Genome. 1995;38:1061–1069. PubMed

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. PubMed

Paradis E, Schliep K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2018;35:526–528. PubMed

Zheng X, et al. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics. 2012;28:3326–3328. PubMed PMC

Green RE, et al. A draft sequence of the Neandertal genome. Science. 2010;328:710–722. PubMed PMC

Pont C, et al. Tracing the ancestry of modern bread wheats. Nat. Genet. 2019;51:905–911. PubMed

Rife, T.W., Graybosch, R.A. & Poland, J.A. Genomic analysis and prediction within a US public collaborative winter wheat regional testing nursery. Plant Genome11, e180004 (2018). PubMed

Keilwagen J, et al. Detecting large chromosomal modifications using short read data from genotyping-by-sequencing. Front. Plant Sci. 2019;10:1133. PubMed PMC

Li H, Durbin R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics. 2010;26:589–595. PubMed PMC

Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10–12.

Li H, et al. The sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–2079. PubMed PMC

Zhang M, et al. Preparation of megabase-sized DNA from a variety of organisms using the nuclei method for advanced genomics research. Nat. Protoc. 2012;7:467–478. PubMed

Abyzov A, Urban AE, Snyder M, Gerstein M. CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res. 2011;21:974–984. PubMed PMC

Klambauer G, et al. cn. MOPS: mixture of poissons for discovering copy number variations in next-generation sequencing data with a low false discovery rate. Nucleic Acids Res. 2012;40:e69. PubMed PMC

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. PubMed PMC

Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods. 2015;12:357–360. PubMed PMC

Anders S, Pyl PT, Huber W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31:166–169. PubMed PMC

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The genetic mechanism of B chromosome drive in rye illuminated by chromosome-scale assembly

. 2024 Nov 08 ; 15 (1) : 9686. [epub] 20241108

DArTseq genotyping facilitates the transfer of "exotic" chromatin from a Secale cereale × S. strictum hybrid into wheat

. 2024 ; 15 () : 1407840. [epub] 20240906

Flow Cytometric Analysis and Sorting of Plant Chromosomes

Flow Sorting-Assisted Optical Mapping

An unusual tandem kinase fusion protein confers leaf rust resistance in wheat

. 2023 Jun ; 55 (6) : 914-920. [epub] 20230522

A DUF3494 ice-binding protein with a root cap domain in a streptophyte glacier ice alga

. 2023 ; 14 () : 1306511. [epub] 20240105

Isolation and Sequencing of Chromosome Arm 7RS of Rye, Secale cereale

. 2022 Sep 21 ; 23 (19) : . [epub] 20220921

Long-read sequence assembly: a technical evaluation in barley

. 2021 Jul 19 ; 33 (6) : 1888-1906.

A high-quality genome assembly highlights rye genomic characteristics and agronomically important genes

. 2021 Apr ; 53 (4) : 574-584. [epub] 20210318

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...