Flow Sorting-Assisted Optical Mapping

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37335494

Optical mapping-a technique that visualizes short sequence motives along DNA molecules of hundred kilobases to megabase in size-has found an important place in genome research. It is widely used to facilitate genome sequence assemblies and analyses of genome structural variations. Application of the technique is conditional on availability of highly pure ultra-long high-molecular-weight DNA (uHMW DNA), which is challenging to achieve in plants due to the presence of the cell wall, chloroplasts, and secondary metabolites, just as a high content of polysaccharides and DNA nucleases in some species. These obstacles can be overcome by employment of flow cytometry, enabling a fast and highly efficient purification of cell nuclei or metaphase chromosomes, which are afterward embedded in agarose plugs and used to isolate the uHMW DNA in situ. Here, we provide a detailed protocol for the flow sorting-assisted uHMW DNA preparation that has been successfully used to construct whole-genome as well as chromosomal optical maps for 20 plant species from several plant families.

Zobrazit více v PubMed

Schwartz DC, Li X, Hernandez LI et al (1993) Ordered restriction maps of Saccharomyces cerevisiae chromosomes constructed by optical mapping. Science 262(5130):110–114 PubMed DOI

Dimalanta ET, Lim A, Runnheim R et al (2004) A microfluidic system for large DNA molecule arrays. Anal Chem 76(18):5293–5301 PubMed DOI

Lam ET, Hastie A, Lin C et al (2012) Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly. Nat Biotechnol 30:771–776 PubMed DOI

Liu J, Seetharam AS, Chougule K et al (2020) Gapless assembly of maize chromosomes using long-read technologies. Genome Biol 21:121 PubMed DOI PMC

Belser C, Baurens FC, Noel B et al (2021) Telomere-to-telomere gapless chromosomes of banana using nanopore sequencing. Commun Biol 4:1047 PubMed DOI PMC

Nurk S, Koren S, Rhie A et al (2022) The complete sequence of a human genome. Science 376(6588):44–53 PubMed DOI PMC

Cao H, Hastie AR, Cao D et al (2014) Rapid detection of structural variation in a human genome using nanochannel-based genome mapping technology. GigaScience 3:34 PubMed DOI PMC

Yuan Y, Milec Z, Bayer PE et al (2018) Large-scale structural variation detection in subterranean clover subtypes using optical mapping. Front Plant Sci 9:971 PubMed DOI PMC

Tulpová Z, Toegelová H, Lapitan NLV et al (2019) Accessing a Russian Wheat Aphid resistance gene in bread wheat by long-read technologies. Plant Genome 12:180065 DOI

Zhang M, Zhang Y, Scheuring CF et al (2012) Preparation of megabase-sized DNA from a variety of organisms using the nuclei method for advanced genomics research. Nat Protoc 7(3):467–478 PubMed DOI

Šimková H, Číhalíková J, Vrána J et al (2003) Preparation of HMW DNA from plant nuclei and chromosomes isolated from root tips. Biol Plant 46:369–373 DOI

Gaiero P, Šimková H, Vrána J et al (2018) Intact DNA purified from flow-sorted nuclei unlocks the potential of next-generation genome mapping and assembly in Solanum species. MethodsX 5:328–336 PubMed DOI PMC

Doležel J, Lucretti S, Molnár I et al (2021) Chromosome analysis and sorting. Cytometry 99:328–342 PubMed DOI PMC

Tulpová Z, Kovařík A, Toegelová H et al (2022) Fine structure and transcription dynamics of bread wheat ribosomal DNA loci deciphered by a multi-omics approach. Plant Genome 15:e20191 PubMed DOI

Mascher M, Gundlach H, Himmelbach A et al (2017) A chromosome conformation capture ordered sequence of the barely genome. Nature 544:427–433 PubMed DOI

Mascher M, Wicker T, Jenkins J et al (2021) Long-read sequence assembly: a technical evaluation in barely. Plant Cell 33:1888–1906 PubMed DOI PMC

Himmelbach A, Ruban A, Walde I et al (2018) Discovery of multi-megabase polymorphic inversions by chromosome conformation capture sequencing in large genome plant species. Plant J 96:1309–1316 PubMed DOI

Kreplak J, Madoui MA, Cápal P et al (2019) A reference genome for pea provides insight into legume genome evolution. Nat Genet 51:1411–1422 PubMed DOI

Hofstatter PG, Thangavel G, Lux T et al (2022) Repeat-based holocentromeres influence genome architecture and karyotype evolution. Cell 185:1–16 DOI

Rabanus-Wallace MT, Hackauf B, Mascher M et al (2021) Chromosome-scale genome assembly provides insights into rye biology, evolution and agronomic potential. Nat Genet 53:564–573 PubMed DOI PMC

Kaur P, Bayer PE, Milec Z et al (2017) An advanced reference genome of Trifolium subterraneum L. reveals genes related to agronomic performance. Plant Biotechnol J 15:1034–1046 PubMed DOI PMC

Staňková H, Hastie AR, Chan S et al (2016) BioNano genome mapping of individual chromosomes supports physical mapping and sequence assembly in complex plant genomes. Plant Biotechnol J 14:1523–1531 PubMed DOI PMC

International Wheat Genome Sequencing Consortium (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361:7191 DOI

Keeble-Gagnère G, Rigault P, Tibbits J et al (2018) Optical and physical mapping with local finishing enables megabase-scale resolution of agronomically important regions in the wheat genome. Genome Biol 19:112 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...