Telomere-to-telomere gapless chromosomes of banana using nanopore sequencing
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
ANR-10-LABX-0001-01
Agence Nationale de la Recherche (French National Research Agency)
ANR-10-INBS-09-08
Agence Nationale de la Recherche (French National Research Agency)
PubMed
34493830
PubMed Central
PMC8423783
DOI
10.1038/s42003-021-02559-3
PII: 10.1038/s42003-021-02559-3
Knihovny.cz E-zdroje
- MeSH
- banánovník genetika MeSH
- chromozomy rostlin genetika MeSH
- genom rostlinný * MeSH
- nanoporové sekvenování MeSH
- nanopóry MeSH
- telomery * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Long-read technologies hold the promise to obtain more complete genome assemblies and to make them easier. Coupled with long-range technologies, they can reveal the architecture of complex regions, like centromeres or rDNA clusters. These technologies also make it possible to know the complete organization of chromosomes, which remained complicated before even when using genetic maps. However, generating a gapless and telomere-to-telomere assembly is still not trivial, and requires a combination of several technologies and the choice of suitable software. Here, we report a chromosome-scale assembly of a banana genome (Musa acuminata) generated using Oxford Nanopore long-reads. We generated a genome coverage of 177X from a single PromethION flowcell with near 17X with reads longer than 75 kbp. From the 11 chromosomes, 5 were entirely reconstructed in a single contig from telomere to telomere, revealing for the first time the content of complex regions like centromeres or clusters of paralogous genes.
CIRAD UMR AGAP Institut Montpellier France
Commissariat à l'Energie Atomique Institut François Jacob Genoscope Evry France
UMR AGAP Institut Univ Montpellier CIRAD INRAE Institut Agro Montpellier France
Zobrazit více v PubMed
Michael TP, VanBuren R. Building near-complete plant genomes. Curr. Opin. Plant Biol. 2020;54:26–33. doi: 10.1016/j.pbi.2019.12.009. PubMed DOI
Rousseau-Gueutin, M. et al. Long-read assembly of the Brassica napus reference genome Darmor-bzh. GigaScience9, giaa137 (2020). PubMed PMC
Zhang W, et al. Genome assembly of wild tea tree DASZ reveals pedigree and selection history of tea varieties. Nat. Commun. 2020;11:3719. doi: 10.1038/s41467-020-17498-6. PubMed DOI PMC
Schmidt MH-W, et al. De novo assembly of a New Solanum pennellii accession using nanopore sequencing. Plant Cell. 2017;29:2336–2348. doi: 10.1105/tpc.17.00521. PubMed DOI PMC
Miga KH, et al. Telomere-to-telomere assembly of a complete human X chromosome. Nature. 2020;585:79–84. doi: 10.1038/s41586-020-2547-7. PubMed DOI PMC
Martin G, et al. Genome ancestry mosaics reveal multiple and cryptic contributors to cultivated banana. Plant J. 2020;102:1008–1025. doi: 10.1111/tpj.14683. PubMed DOI PMC
Němečková, A. et al. Molecular and cytogenetic study of East African Highland Banana. Front. Plant Sci. 9, 1371(2018). PubMed PMC
Langhe ED, Vrydaghs L, Maret P, de, Perrier X, Denham T. Why bananas matter: an introduction to the history of banana domestication. Ethnobot. Res. Appl. 2009;7:165–177. doi: 10.17348/era.7.0.165-177. DOI
D’Hont A, et al. The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature. 2012;488:213–217. doi: 10.1038/nature11241. PubMed DOI
Martin G, et al. Improvement of the banana “Musa acuminata” reference sequence using NGS data and semi-automated bioinformatics methods. BMC Genomics. 2016;17:243. doi: 10.1186/s12864-016-2579-4. PubMed DOI PMC
Chen Y, et al. Efficient assembly of nanopore reads via highly accurate and intact error correction. Nat. Commun. 2021;12:60. doi: 10.1038/s41467-020-20236-7. PubMed DOI PMC
Vaser R, Sović I, Nagarajan N, Šikić M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 2017;27:737–746. doi: 10.1101/gr.214270.116. PubMed DOI PMC
nanoporetech/medaka. (Oxford Nanopore Technologies, 2021).
Aury, J.-M. & Istace, B. Hapo-G, haplotype-aware polishing of genome assemblies with accurate reads. NAR Genom. Bioinform. 3, lqab034 (2021). PubMed PMC
Istace B, Belser C, Aury J-M. BiSCoT: improving large eukaryotic genome assemblies with optical maps. PeerJ. 2020;8:e10150. doi: 10.7717/peerj.10150. PubMed DOI PMC
Rhie A, Walenz BP, Koren S, Phillippy AM. Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies. Genome Biol. 2020;21:245. doi: 10.1186/s13059-020-02134-9. PubMed DOI PMC
Čížková J, et al. Molecular analysis and genomic organization of major DNA satellites in banana (Musa spp.) PLoS One. 2013;8:e54808. doi: 10.1371/journal.pone.0054808. PubMed DOI PMC
Tran TD, et al. Centromere and telomere sequence alterations reflect the rapid genome evolution within the carnivorous plant genus Genlisea. Plant J. Cell Mol. Biol. 2015;84:1087–1099. doi: 10.1111/tpj.13058. PubMed DOI
Neumann P, et al. Plant centromeric retrotransposons: a structural and cytogenetic perspective. Mob. DNA. 2011;2:4. doi: 10.1186/1759-8753-2-4. PubMed DOI PMC
Panchy N, Lehti-Shiu M, Shiu S-H. Evolution of gene duplication in plants. Plant Physiol. 2016;171:2294–2316. doi: 10.1104/pp.16.00523. PubMed DOI PMC
Del Terra L, et al. Functional characterization of three Coffea arabica L. monoterpene synthases: Insights into the enzymatic machinery of coffee aroma. Phytochemistry. 2013;89:6–14. doi: 10.1016/j.phytochem.2013.01.005. PubMed DOI
Jiang S-Y, Jin J, Sarojam R, Ramachandran S. A comprehensive survey on the terpene synthase gene family provides new insight into its evolutionary patterns. Genome Biol. Evol. 2019;11:2078–2098. doi: 10.1093/gbe/evz142. PubMed DOI PMC
Falara V, et al. The tomato terpene synthase gene family. Plant Physiol. 2011;157:770–789. doi: 10.1104/pp.111.179648. PubMed DOI PMC
Martin DM, et al. Functional annotation, genome organization and phylogeny of the grapevine (Vitis vinifera) terpene synthase gene family based on genome assembly, FLcDNA cloning, and enzyme assays. BMC Plant Biol. 2010;10:226. doi: 10.1186/1471-2229-10-226. PubMed DOI PMC
Wersch Svan, Li X. Stronger when together: clustering of plant NLR disease resistance genes. Trends Plant Sci. 2019;24:688–699. doi: 10.1016/j.tplants.2019.05.005. PubMed DOI
Steuernagel B, et al. The NLR-annotator tool enables annotation of the intracellular immune receptor repertoire. Plant Physiol. 2020;183:468–482. doi: 10.1104/pp.19.01273. PubMed DOI PMC
Belser C, et al. Chromosome-scale assemblies of plant genomes using nanopore long reads and optical maps. Nat. Plants. 2018;4:879–887. doi: 10.1038/s41477-018-0289-4. PubMed DOI
Wang Z, et al. Musa balbisiana genome reveals subgenome evolution and functional divergence. Nat. Plants. 2019;5:810–821. doi: 10.1038/s41477-019-0452-6. PubMed DOI PMC
Lang, D. et al. Comparison of the two up-to-date sequencing technologies for genome assembly: HiFi reads of Pacific Biosciences Sequel II system and ultralong reads of Oxford Nanopore. GigaScience9, giaa123 (2020). PubMed PMC
Yang X, et al. Amplification and adaptation of centromeric repeats in polyploid switchgrass species. N. Phytol. 2018;218:1645–1657. doi: 10.1111/nph.15098. PubMed DOI
Miga KH. Centromere studies in the era of ‘telomere-to-telomere’ genomics. Exp. Cell Res. 2020;394:112127. doi: 10.1016/j.yexcr.2020.112127. PubMed DOI PMC
Comai L, Maheshwari S, Marimuthu MPA. Plant centromeres. Curr. Opin. Plant Biol. 2017;36:158–167. doi: 10.1016/j.pbi.2017.03.003. PubMed DOI
Bellaire L, de L, de, Fouré E, Abadie C, Carlier J. Black leaf streak disease is challenging the banana industry. Fruits. 2010;65:327–342. doi: 10.1051/fruits/2010034. DOI
Kema, G. H. J. et al. Editorial: Fusarium wilt of banana, a recurring threat to global banana production. Front. Plant Sci. 11, 628888 (2021). PubMed PMC
Ahmad F, et al. Genetic mapping of Fusarium wilt resistance in a wild banana Musa acuminata ssp. malaccensis accession. Theor. Appl. Genet. 2020;133:3409–3418. doi: 10.1007/s00122-020-03677-y. PubMed DOI PMC
Gawel NJ, Jarret RL. A modified CTAB DNA extraction procedure forMusa andIpomoea. Plant Mol. Biol. Rep. 1991;9:262–266. doi: 10.1007/BF02672076. DOI
Safár J, et al. Creation of a BAC resource to study the structure and evolution of the banana (Musa balbisiana) genome. Genome. 2004;47:1182–1191. doi: 10.1139/g04-062. PubMed DOI
Šimková H, Číhalíková J, Vrána J, Lysák MA, Doležel J. Preparation of HMW DNA from plant nuclei and chromosomes isolated from root tips. Biol. Plant. 2003;46:369–373. doi: 10.1023/A:1024322001786. DOI
Engelen S., Aury J. M. fastxtend https://www.genoscope.cns.fr/externe/fastxtend/.
Li R, Li Y, Kristiansen K, Wang J. SOAP: short oligonucleotide alignment program. Bioinformatics. 2008;24:713–714. doi: 10.1093/bioinformatics/btn025. PubMed DOI
Alberti A, et al. Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition. Sci. Data. 2017;4:170093. doi: 10.1038/sdata.2017.93. PubMed DOI PMC
rrwick/Filtlong. quality filtering tool for long reads https://github.com/rrwick/Filtlong.
Liu H, Wu S, Li A, Ruan J. SMARTdenovo: a de novo assembler using long noisy reads. Gigabyte. 2021;2021:1–9. doi: 10.46471/gigabyte.15. PubMed DOI PMC
Ruan J, Li H. Fast and accurate long-read assembly with wtdbg2. Nat. Methods. 2020;17:155–158. doi: 10.1038/s41592-019-0669-3. PubMed DOI PMC
Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 2019;37:540–546. doi: 10.1038/s41587-019-0072-8. PubMed DOI
Miller JR, et al. Aggressive assembly of pyrosequencing reads with mates. Bioinformatics. 2008;24:2818–2824. doi: 10.1093/bioinformatics/btn548. PubMed DOI PMC
Droc, G. et al. The banana genome hub. Database2013, bat035 (2013). PubMed PMC
SouthGreenPlatform/scaffhunter. (South Green Bioinformatics platform, 2019).
Martin G, Baurens F-C, Cardi C, Aury J-M, D’Hont A. The complete chloroplast genome of banana (Musa acuminata, Zingiberales): insight into plastid monocotyledon evolution. PLoS One. 2013;8:e67350. doi: 10.1371/journal.pone.0067350. PubMed DOI PMC
Fang Y, et al. A complete sequence and transcriptomic analyses of date palm (Phoenix dactylifera L.) mitochondrial genome. PLoS One. 2012;7:e37164. doi: 10.1371/journal.pone.0037164. PubMed DOI PMC
Krumsiek J, Arnold R, Rattei T. Gepard: a rapid and sensitive tool for creating dotplots on genome scale. Bioinformatics. 2007;23:1026–1028. doi: 10.1093/bioinformatics/btm039. PubMed DOI
Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 1999;27:573–580. doi: 10.1093/nar/27.2.573. PubMed DOI PMC
Smit, A. F. A., Hubley, R. & Green, P. RepeatMasker http://repeatmasker.org/.
Bao W, Kojima KK, Kohany O. Repbase update, a database of repetitive elements in eukaryotic genomes. Mob. DNA. 2015;6:11. doi: 10.1186/s13100-015-0041-9. PubMed DOI PMC
Kent WJ. BLAT—the BLAST-like alignment tool. Genome Res. 2002;12:656–664. doi: 10.1101/gr.229202. PubMed DOI PMC
Birney E, Clamp M, Durbin R. GeneWise and Genomewise. Genome Res. 2004;14:988. doi: 10.1101/gr.1865504. PubMed DOI PMC
Martin, G. et al. Improvement of the banana “Musa acuminata” reference sequence using NGS data and semi-automated bioinformatics methods. BMC Genomics17, 243 (2016). PubMed PMC
Mott R. EST_GENOME: a program to align spliced DNA sequences to unspliced genomic DNA. Comput. Appl. Biosci. CABIOS. 1997;13:477–478. PubMed
Dubarry, M. et al. Gmove a tool for eukaryotic gene predictions using various evidences. F1000Research5 (2016).
Waterhouse RM, et al. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol. Biol. Evol. 2018;35:543–548. doi: 10.1093/molbev/msx319. PubMed DOI PMC
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–842. doi: 10.1093/bioinformatics/btq033. PubMed DOI PMC
Wicker T, et al. A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 2007;8:973–982. doi: 10.1038/nrg2165. PubMed DOI
Nattestad M, Schatz MC. Assemblytics: a web analytics tool for the detection of variants from an assembly. Bioinformatics. 2016;32:3021–3023. doi: 10.1093/bioinformatics/btw369. PubMed DOI PMC
Kurtz S, et al. Versatile and open software for comparing large genomes. Genome Biol. 2004;5:R12. doi: 10.1186/gb-2004-5-2-r12. PubMed DOI PMC
Krzywinski, M. I. et al. Circos: an information aesthetic for comparative genomics. Genome Res. 10.1101/gr.092759.109 (2009). PubMed PMC
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI
Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat. Methods. 2015;12:59–60. doi: 10.1038/nmeth.3176. PubMed DOI
Tang H, et al. Synteny and collinearity in plant genomes. Science. 2008;320:486–488. doi: 10.1126/science.1153917. PubMed DOI
Belser, C. et al. Musa acuminata DH-Pahang genome assembly: associated data. Zenodo 10.5281/zenodo.5120019 (2021).
Flow Sorting-Assisted Optical Mapping
The Role of Repetitive Sequences in Repatterning of Major Ribosomal DNA Clusters in Lepidoptera