Identification of a Major QTL-Controlling Resistance to the Subtropical Race 4 of Fusarium oxysporum f. sp. cubense in Musa acuminata ssp. malaccensis
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
OPP1213871
Bill and Melinda Gates Foundation
BA17006
Hort Innovation Australia
PubMed
36839561
PubMed Central
PMC9964652
DOI
10.3390/pathogens12020289
PII: pathogens12020289
Knihovny.cz E-zdroje
- Klíčová slova
- Fusarium oxysporum f. sp. cubense, QTL-seq, Subtropical Race 4, banana, bulk segregant analysis, fusarium wilt, host resistance, quantitative trait locus,
- Publikační typ
- časopisecké články MeSH
Vascular wilt caused by the ascomycete fungal pathogen Fusarium oxysporum f. sp. cubense (Foc) is a major constraint of banana production around the world. The virulent race, namely Tropical Race 4, can infect all Cavendish-type banana plants and is now widespread across the globe, causing devastating losses to global banana production. In this study, we characterized Foc Subtropical Race 4 (STR4) resistance in a wild banana relative which, through estimated genome size and ancestry analysis, was confirmed to be Musa acuminata ssp. malaccensis. Using a self-derived F2 population segregating for STR4 resistance, quantitative trait loci sequencing (QTL-seq) was performed on bulks consisting of resistant and susceptible individuals. Changes in SNP index between the bulks revealed a major QTL located on the distal end of the long arm of chromosome 3. Multiple resistance genes are present in this region. Identification of chromosome regions conferring resistance to Foc can facilitate marker assisted selection in breeding programs and paves the way towards identifying genes underpinning resistance.
CIRAD UMR AGAP Institut F 34398 Montpellier France
Department of Agriculture and Fisheries Maroochy Research Facility Nambour QLD 4560 Australia
Genome Innovation Hub University of Queensland Brisbane QLD 4072 Australia
Inari Agriculture West Lafayette IN 47906 USA
International Institute of Tropical Agriculture Kampala P O Box 7878 Uganda
School of Agriculture and Food Science The University of Queensland Brisbane QLD 4067 Australia
School of Biological Sciences The University of Western Australia Perth WA 6907 Australia
School of Life Science Jiaying University Meizhou 514015 China
UMR AGAP Institut Univ Montpellier CIRAD INRAE Institut Agro F 34398 Montpellier France
Zobrazit více v PubMed
FAO Food and Agriculture Organization of the United Nations. 2022. [(accessed on 4 February 2022)]. Available online: http://faostat.fao.org/
Ploetz R.C., Correll J.C. Vegetative compatibility among races of Fusarium oxysporum f. sp. cubense. Plant Dis. 1988;72:325–328. doi: 10.1094/PD-72-0325. DOI
Fourie G., Steenkamp E.T., Ploetz R.C., Gordon T.R., Viljoen A. Current status of the taxonomic position of Fusarium oxysporum formae specialis cubense within the Fusarium oxysporum complex. Infect. Genet. Evol. 2011;11:533–542. doi: 10.1016/j.meegid.2011.01.012. PubMed DOI
Mostert D., Molina A.B., Daniells J., Fourie G., Hermanto C., Chao C.P., Fabregar E., Sinohin V.G., Masdek N., Thangavelu R., et al. The distribution and host range of the banana Fusarium wilt fungus, Fusarium oxysporum f. sp. cubense, in Asia. PLoS ONE. 2017;12:e0181630. doi: 10.1371/journal.pone.0181630. PubMed DOI PMC
Dita M., Barquero M., Heck D., Mizubuti E.S.G., Staver C.P. Fusarium wilt of banana: Current knowledge on epidemiology and research needs toward sustainable disease management. Front. Plant Sci. 2018;9:1468. doi: 10.3389/fpls.2018.01468. PubMed DOI PMC
Pegg K.G., Coates L.M., O’neill W.T., Turner D.W. The epidemiology of Fusarium wilt of banana. Front. Plant Sci. 2019;10:1395. doi: 10.3389/fpls.2019.01395. PubMed DOI PMC
Thangavelu R., Loganathan M., Arthee R., Prabakaran M., Uma S. Fusarium wilt: A threat to banana cultivation and its management. CAB Rev. 2020;15:1–24. doi: 10.1079/PAVSNNR202015004. DOI
Warman N.M., Aitken E.A.B. The movement of Fusarium oxysporum f. sp. cubense (Sub-Tropical Race 4) in susceptible cultivars of banana. Front. Plant Sci. 2018;9:1748. doi: 10.3389/fpls.2018.01748. PubMed DOI PMC
Chen A., Sun J., Matthews A., Armas-Egas L., Chen N., Hamill S., Mintoff S., Tran-Nguyen L.T.T., Batley J., Aitken E.A.B. Assessing variations in host resistance to Fusarium oxysporum f sp. cubense race 4 in Musa species, with a focus on the subtropical race 4. Front Microbiol. 2019;10:1062. doi: 10.3389/fmicb.2019.01062. PubMed DOI PMC
Stover R.H. Fusarial Wilt (Panama Disease) of Bananas and other Musa Species. Commonwealth Mycological Institute; Kew, UK: 1962.
Leslie J.F., Summerell B.A. The Fusarium Laboratory Manual. Blackwell Pub; Ames, IA, USA: 2006. Morphological Characters; pp. 111–119. DOI
Buddenhagen I. Understanding strain diversity in Fusarium oxysporum f. sp. cubense and history of introduction of ‘Tropical Race 4’ to better manage banana production. Acta Hortic. 2009;828:193–204. doi: 10.17660/ActaHortic.2009.828.19. DOI
Waite B., Dunlap V. Preliminary host range studies with Fusarium oxysporum f. sp. cubense. Plant Dis. 1953;37:79–80.
Pittaway P.A., Nasir N., Pegg K.G. Soil receptivity and host-pathogen dynamics in soils naturally infested with Fusarium oxysporum f. sp. cubense, the cause of Panama disease in bananas. Aust. J. Agric. Res. 1999;50:623–628. doi: 10.1071/A98152. DOI
Hennessy C., Walduck G., Daly A., Padovan A. Weed hosts of Fusarium oxysporum f. sp. cubense tropical race 4 in northern Australia. Australas. Plant Pathol. 2005;34:115–117. doi: 10.1071/AP04091. DOI
Scheerer L., Pemsl D., Dita M., Vicente L.P., Staver C. A quantified approach to projecting losses caused by Fusarium wilt tropical race 4. Acta Hortic. 2018;1196:211–218. doi: 10.17660/ActaHortic.2018.1196.26. DOI
Ploetz R.C. Fusarium Wilt of Banana. Phytopathology. 2015;105:1512–1521. doi: 10.1094/PHYTO-04-15-0101-RVW. PubMed DOI
Ploetz R.C. Management of Fusarium wilt of banana: A review with special reference to tropical race 4. Crop Prot. 2015;73:7–15. doi: 10.1016/j.cropro.2015.01.007. DOI
Staver C., Pemsl D.E., Scheerer L., Perez Vicente L., Dita M. Ex ante assessment of returns on research investments to address the impact of Fusarium wilt Tropical Race 4 on global banana production. Front. Plant Sci. 2020;11:844. doi: 10.3389/fpls.2020.00844. PubMed DOI PMC
Li W.M., Dita M., Wu W., Hu G.B., Xie J.H., Ge X.J. Resistance sources to Fusarium oxysporum f. sp cubense tropical race 4 in banana wild relatives. Plant Pathol. 2015;64:1061–1067. doi: 10.1111/ppa.12340. DOI
Fraser-Smith S., Czislowski E., Daly A., Meldrum R., Hamill S., Smith M., Aitken E.A.B. Single gene resistance to Fusarium oxysporum f. sp. cubense Race 4 in the wild banana Musa acuminata subsp. malaccensis. Acta Horti. 2016;1114:95–100. doi: 10.17660/ActaHortic.2016.1114.13. DOI
Dita M., Teixeira L.A.J., O’neill W., Pattison A.B., Weinert M.P., Li C.Y., Zheng S.J., Staver C., Thangavelu R., Viljoen A. Current state of Fusarium wilt of banana in the subtropics. Acta Hortic. 2020;1272:45–56. doi: 10.17660/ActaHortic.2020.1272.7. DOI
Smith M.K., Hamill S.D. Early detection of dwarf off-types from micropropagated Cavendish bananas. Aust. J. Exp. Agric. 1993;33:639–644. doi: 10.1071/EA9930639. DOI
Healey A., Furtado A., Cooper T., Henry R.J. Protocol: A simple method for extracting next-generation sequencing quality genomic DNA from recalcitrant plant species. Plant Methods. 2014;10:21. doi: 10.1186/1746-4811-10-21. PubMed DOI PMC
Takagi H., Abe A., Yoshida K., Kosugi S., Natsume S., Mitsuoka C., Uemura A., Utsushi H., Tamiru M., Takuno S., et al. QTL-seq: Rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J. 2013;74:174–183. doi: 10.1111/tpj.12105. PubMed DOI
Bolger A.M., Lohse M., Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Li H., Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–1760. doi: 10.1093/bioinformatics/btp324. PubMed DOI PMC
Cingolani P., Platts A., Wang L.L., Coon M., Nguyen T., Wang L., Land S.J., Lu X., Ruden D.M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly. 2012;6:80–92. doi: 10.4161/fly.19695. PubMed DOI PMC
Wang K., Li M., Hakonarson H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38:e164. doi: 10.1093/nar/gkq603. PubMed DOI PMC
Martin G., Cardi C., Sarah G., Ricci S., Jenny C., Fondi E., Perrier X., Glaszmann J., D’Hont A., Yahiaoui N. Genome ancestry mosaics reveal multiple and cryptic contributors to cultivated banana. Plant J. 2020;102:1008–1025. doi: 10.1111/tpj.14683. PubMed DOI PMC
Christelová P., Valárik M., Hřibová E., Van Den Houwe I., Channelière S., Roux N., Doležel J. A platform for efficient genotyping in Musa using microsatellite markers. AoB Plant. 2011;2011:plr024. doi: 10.1093/aobpla/plr024. PubMed DOI PMC
Němečková A., Christelová P., Čížková J., Nyine M., Van Den Houwe I., Svačina R., Uwimana B., Swennen R., Doležel J., Hřibová E. Molecular and cytogenetic study of East African highland banana. Front. Plant Sci. 2018;9:1371. doi: 10.3389/fpls.2018.01371. PubMed DOI PMC
Christelová P., De Langhe E., Hřibová E., Čížková J., Sardos J., Hušáková M., Houwe I.V.D., Sutanto A., Kepler A.K., Swennen R., et al. Molecular and cytological characterization of the global Musa germplasm collection provides insights into the treasure of banana diversity. Biodivers. Conserv. 2017;26:801–824. doi: 10.1007/s10531-016-1273-9. DOI
D’hont A., Denoeud F., Aury J.M., Baurens F.C., Carreel F., Garsmeur O., Noel B., Bocs S., Droc G., Rouard M., et al. The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature. 2012;488:213–217. doi: 10.1038/nature11241. PubMed DOI
Viljoen A., Mostert D., Chiconela T., Beukes I., Fraser C., Dwyer J. Occurrence and spread of the banana fungus Fusarium oxysporum f. sp. cubense TR4 in Mozambique. S. Afr. J. Sci. 2020;116:1–11. doi: 10.17159/sajs.2020/8608. DOI
García-Bastidas F.A., Quintero-Vargas J.C., Ayala-Vasquez M., Schermer T., Seidl M.F., Santos-Paiva M., Noguera A.M., Aguilera-Galvez C., Wittenberg A., Hofstede R., et al. First report of Fusarium wilt Tropical Race 4 in Cavendish bananas caused by Fusarium odoratissimum in Colombia. Plant Dis. 2019;104:994. doi: 10.1094/PDIS-09-19-1922-PDN. DOI
Acuña R., Rouard M., Leiva A.M., Marques C., Olortegui A., Ureta C., Cabrera-Pintado R.M., Rojas J.C., Lopez-Alvarez D., Cenci A., et al. First report of Fusarium oxysporum f. sp. cubense Tropical Race 4, causing Fusarium wilt in Cavendish bananas in Peru. Plant Dis. 2021;106:2268. doi: 10.1094/PDIS-09-21-1951-PDN. PubMed DOI
Zuo C.W., Deng G.M., Li B., Huo H.Q., Li C.Y., Hu C.H., Kuang R., Yang Q., Dong T., Sheng O., et al. Germplasm screening of Musa spp. for resistance to Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4) Eur. J. Plant Pathol. 2018;151:723–734. doi: 10.1007/s10658-017-1406-3. DOI
Rijzaani H., Bayer P.E., Rouard M., Doležel J., Batley J., Edwards D. The pangenome of banana highlights differences between genera and genomes. Plant Genome. 2022;15:e20100. doi: 10.1002/tpg2.20100. PubMed DOI
Simmonds N.W., editor. The Evolution of the Bananas. Longmans; London, UK: 1962.
Perrier X., De Langhe E., Donohue M., Lentfer C., Vrydaghs L., Bakry F., Carreel F., Hippolyte I., Horry J.-P., Jenny C., et al. Multidisciplinary perspectives on banana (Musa spp.) domestication. Proc. Natl. Acad. Sci. USA. 2011;108:11311–11318. doi: 10.1073/pnas.1102001108. PubMed DOI PMC
De Langhe E., Vrydaghs L., De Maret P., Perrier X., Denham T. Why Bananas Matter: An introduction to the history of banana domestication. [(accessed on 4 February 2022)];Ethnobot. Res. Appl. 2009 7:165–177. doi: 10.17348/era.7.0.165-177. Available online: https://ethnobotanyjournal.org/index.php/era/article/view/356. DOI
Kennedy J. Bananas and people in the homeland of genus Musa: Not just pretty fruit. [(accessed on 4 February 2022)];Ethnobot. Res. Appl. 2009 7:179–197. doi: 10.17348/era.7.0.179-197. Available online: https://ethnobotanyjournal.org/index.php/era/article/view/360. DOI
Janssens S.B., Vandelook F., De Langhe E., Verstraete B., Smets E., Vandenhouwe I., Swennen R. Evolutionary dynamics and biogeography of Musaceae reveal a correlation between the diversification of the banana family and the geological and climatic history of Southeast Asia. New Phytol. 2016;210:1453–1465. doi: 10.1111/nph.13856. PubMed DOI PMC
Belser C., Baurens F.C., Noel B., Martin G., Cruaud C., Istace B., Yahiaoui N., Labadie K., Hřibová E., Doležel J., et al. Telomere-to-telomere gapless chromosomes of banana using nanopore sequencing. Commun. Biol. 2021;4:1047. doi: 10.1038/s42003-021-02559-3. PubMed DOI PMC
Ahmad F., Martawi N.M., Poerba Y.S., De Jong H., Schouten H., Kema G.H.J. Genetic mapping of Fusarium wilt resistance in a wild banana Musa acuminata ssp. malaccensis accession. Theor. Appl. Genet. 2020;133:3409–3418. doi: 10.1007/s00122-020-03677-y. PubMed DOI PMC
Hammond-Kosack K.E., Jones J.D.G. Plant disease resistance genes. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1997;48:575–607. doi: 10.1146/annurev.arplant.48.1.575. PubMed DOI
Ooijen G.V., Burg H.A.V.D., Cornelissen B.J.C., Takken F.L.W. Structure and function of resistance proteins in Solanaceous Plants. Annu. Rev. Phytopathol. 2007;45:43–72. doi: 10.1146/annurev.phyto.45.062806.094430. PubMed DOI
Shiu S.H., Bleecker A.B. Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc. Natl. Acad. Sci. USA. 2001;98:10763–10768. doi: 10.1073/pnas.181141598. PubMed DOI PMC
Jose J., Ghantasala S., Roy Choudhury S. Arabidopsis transmembrane receptor-like kinases (RLKs): A bridge between extracellular signal and intracellular regulatory machinery. Int. J. Mol. Sci. 2020;21:4000. doi: 10.3390/ijms21114000. PubMed DOI PMC
Chinchilla D., Shan L., He P., De Vries S., Kemmerling B. One for all: The receptor-associated kinase BAK1. Trends Plant Sci. 2009;14:535–541. doi: 10.1016/j.tplants.2009.08.002. PubMed DOI PMC
Racolta A., Bryan A.C., Tax F.E. The receptor-like kinases GSO1 and GSO2 together regulate root growth in Arabidopsis through control of cell division and cell fate specification. Dev. Dyn. 2014;243:257–278. doi: 10.1002/dvdy.24066. PubMed DOI
Lim C.W., Yang S.H., Shin K.H., Lee S.C., Kim S.H. The AtLRK10L1.2, Arabidopsis ortholog of wheat LRK10, is involved in ABA-mediated signaling and drought resistance. Plant Cell Rep. 2015;34:447–455. doi: 10.1007/s00299-014-1724-2. PubMed DOI
Ma X., Xu G., He P., Shan L. SERKing coreceptors for receptors. Trends Plant Sci. 2016;21:1017–1033. doi: 10.1016/j.tplants.2016.08.014. PubMed DOI
Saintenac C., Cambon F., Aouini L., Verstappen E., Ghaffary S.M.T., Poucet T., Marande W., Berges H., Xu S., Jaouannet M., et al. A wheat cysteine-rich receptor-like kinase confers broad-spectrum resistance against Septoria tritici blotch. Nat. Commun. 2021;12:433. doi: 10.1038/s41467-020-20685-0. PubMed DOI PMC
Ron M., Avni A. The receptor for the fungal elicitor ethylene-inducing xylanase is a member of a resistance-like gene family in tomato. Plant Cell. 2004;16:1604–1615. doi: 10.1105/tpc.022475. PubMed DOI PMC
Kawchuk L.M., Hachey J., Lynch D.R., Kulcsar F., Van Rooijen G., Waterer D.R., Robertson A., Kokko E., Byers R., Howard R.J., et al. Tomato Ve disease resistance genes encode cell surface-like receptors. Proc. Natl. Acad. Sci. USA. 2001;98:6511–6515. doi: 10.1073/pnas.091114198. PubMed DOI PMC
Bittner-Eddy P.D., Crute I.R., Holub E.B., Beynon J.L. RPP13 is a simple locus in Arabidopsis thaliana for alleles that specify downy mildew resistance to different avirulence determinants in Peronospora parasitica. Plant J. 2000;21:177–188. doi: 10.1046/j.1365-313x.2000.00664.x. PubMed DOI
Pei X., Li S., Jiang Y., Zhang Y., Wang Z., Jia S. Isolation, characterization and phylogenetic analysis of the resistance gene analogues (RGAs) in banana (Musa spp.) Plant Sci. 2007;172:1166–1174. doi: 10.1016/j.plantsci.2007.02.019. DOI
Peraza-Echeverria S., Dale J.L., Harding R.M., Smith M.K., Collet C. Characterization of disease resistance gene candidates of the nucleotide binding site (NBS) type from banana and correlation of a transcriptional polymorphism with resistance to Fusarium oxysporum f.sp cubense race 4. Mol. Breed. 2008;22:565–579. doi: 10.1007/s11032-008-9199-x. DOI
Ori N., Eshed Y., Paran I., Presting G., Aviv D., Tanksley S., Zamir D., Fluhr R. The I2C family from the wilt disease resistance locus I2 belongs to the nucleotide binding, leucine-rich repeat superfamily of plant resistance genes. Plant Cell. 1997;9:521–532. doi: 10.1105/tpc.9.4.521. PubMed DOI PMC
Joobeur T., King J.J., Nolin S.J., Thomas C.E., Dean R.A. The Fusarium wilt resistance locus Fom-2 of melon contains a single resistance gene with complex features. Plant J. 2004;39:283–297. doi: 10.1111/j.1365-313X.2004.02134.x. PubMed DOI
Dale J., James A., Paul J.Y., Khanna H., Smith M., Peraza-Echeverria S., Garcia-Bastidas F., Kema G., Waterhouse P., Mengersen K., et al. Transgenic Cavendish bananas with resistance to Fusarium wilt tropical race 4. Nat. Commun. 2017;8:1496. doi: 10.1038/s41467-017-01670-6. PubMed DOI PMC
García-Bastidas F.A., Arango-Isaza R., Rodriguez-Cabal H.A., Seidl M.F., Cappadona G., Segura R., Salacinas M., Kema G.H.J. Induced resistance to Fusarium wilt of banana caused by Tropical Race 4 in Cavendish cv Grand Naine bananas after challenging with avirulent Fusarium spp. PLoS ONE. 2022;17:e0273335. doi: 10.1371/journal.pone.0273335. PubMed DOI PMC
Backer R., Naidoo S., Van Den Berg N. The NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1) and related family: Mechanistic insights in plant disease resistance. Front. Plant Sci. 2019;10:102. doi: 10.3389/fpls.2019.00102. PubMed DOI PMC
Bianchet C., Wong A., Quaglia M., Alqurashi M., Gehring C., Ntoukakis V., Pasqualini S. An Arabidopsis thaliana leucine-rich repeat protein harbors an adenylyl cyclase catalytic center and affects responses to pathogens. J. Plant Physiol. 2019;232:12–22. doi: 10.1016/j.jplph.2018.10.025. PubMed DOI
Garsmeur O., Schnable J.C., Almeida A., Jourda C., D’hont A., Freeling M. Two evolutionarily distinct classes of paleopolyploidy. Mol. Biol. Evol. 2013;31:448–454. doi: 10.1093/molbev/mst230. PubMed DOI
Cenci A., Hueber Y., Zorrilla-Fontanesi Y., Van Wesemael J., Kissel E., Gislard M., Sardos J., Swennen R., Roux N., Carpentier S.C., et al. Effect of paleopolyploidy and allopolyploidy on gene expression in banana. BMC Genom. 2019;20:244. doi: 10.1186/s12864-019-5618-0. PubMed DOI PMC
Flagel L.E., Wendel J.F. Gene duplication and evolutionary novelty in plants. New Phytol. 2009;183:557–564. doi: 10.1111/j.1469-8137.2009.02923.x. PubMed DOI
Shiu S.H., Bleecker A.B. Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol. 2003;132:530–543. doi: 10.1104/pp.103.021964. PubMed DOI PMC
Qiao X., Li Q., Yin H., Qi K., Li L., Wang R., Zhang S., Paterson A.H. Gene duplication and evolution in recurring polyploidization–diploidization cycles in plants. Genome Biol. 2019;20:38. doi: 10.1186/s13059-019-1650-2. PubMed DOI PMC
Schlötterer C., Tobler R., Kofler R., Nolte V. Sequencing pools of individuals—Mining genome-wide polymorphism data without big funding. Nat. Rev. Genet. 2014;15:749–763. doi: 10.1038/nrg3803. PubMed DOI
Singh V., Sinha P., Obala J., Khan A.W., Chitikineni A., Saxena R.K., Varshney R.K. QTL-seq for the identification of candidate genes for days to flowering and leaf shape in pigeonpea. Heredity. 2022;128:411–419. doi: 10.1038/s41437-021-00486-x. PubMed DOI PMC
Michelmore R.W., Paran I., Kesseli R. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proc. Natl. Acad. Sci. USA. 1991;88:9828–9832. doi: 10.1073/pnas.88.21.9828. PubMed DOI PMC
Heslop-Harrison J.S., Schwarzacher T. Domestication, genomics and the future for banana. Ann. Bot. 2007;100:1073–1084. doi: 10.1093/aob/mcm191. PubMed DOI PMC
Zou C., Wang P., Xu Y. Bulked sample analysis in genetics, genomics and crop improvement. Plant Biotechnol. J. 2016;14:1941–1955. doi: 10.1111/pbi.12559. PubMed DOI PMC
Sahu P.K., Sao R., Mondal S., Vishwakarma G., Gupta S.K., Kumar V., Singh S., Sharma D., Das B.K. Next generation sequencing based forward genetic approaches for identification and mapping of causal mutations in crop plants: A comprehensive review. Plants. 2020;9:1355. doi: 10.3390/plants9101355. PubMed DOI PMC