Identification of a Major QTL-Controlling Resistance to the Subtropical Race 4 of Fusarium oxysporum f. sp. cubense in Musa acuminata ssp. malaccensis

. 2023 Feb 09 ; 12 (2) : . [epub] 20230209

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36839561

Grantová podpora
OPP1213871 Bill and Melinda Gates Foundation
BA17006 Hort Innovation Australia

Vascular wilt caused by the ascomycete fungal pathogen Fusarium oxysporum f. sp. cubense (Foc) is a major constraint of banana production around the world. The virulent race, namely Tropical Race 4, can infect all Cavendish-type banana plants and is now widespread across the globe, causing devastating losses to global banana production. In this study, we characterized Foc Subtropical Race 4 (STR4) resistance in a wild banana relative which, through estimated genome size and ancestry analysis, was confirmed to be Musa acuminata ssp. malaccensis. Using a self-derived F2 population segregating for STR4 resistance, quantitative trait loci sequencing (QTL-seq) was performed on bulks consisting of resistant and susceptible individuals. Changes in SNP index between the bulks revealed a major QTL located on the distal end of the long arm of chromosome 3. Multiple resistance genes are present in this region. Identification of chromosome regions conferring resistance to Foc can facilitate marker assisted selection in breeding programs and paves the way towards identifying genes underpinning resistance.

Zobrazit více v PubMed

FAO Food and Agriculture Organization of the United Nations. 2022. [(accessed on 4 February 2022)]. Available online: http://faostat.fao.org/

Ploetz R.C., Correll J.C. Vegetative compatibility among races of Fusarium oxysporum f. sp. cubense. Plant Dis. 1988;72:325–328. doi: 10.1094/PD-72-0325. DOI

Fourie G., Steenkamp E.T., Ploetz R.C., Gordon T.R., Viljoen A. Current status of the taxonomic position of Fusarium oxysporum formae specialis cubense within the Fusarium oxysporum complex. Infect. Genet. Evol. 2011;11:533–542. doi: 10.1016/j.meegid.2011.01.012. PubMed DOI

Mostert D., Molina A.B., Daniells J., Fourie G., Hermanto C., Chao C.P., Fabregar E., Sinohin V.G., Masdek N., Thangavelu R., et al. The distribution and host range of the banana Fusarium wilt fungus, Fusarium oxysporum f. sp. cubense, in Asia. PLoS ONE. 2017;12:e0181630. doi: 10.1371/journal.pone.0181630. PubMed DOI PMC

Dita M., Barquero M., Heck D., Mizubuti E.S.G., Staver C.P. Fusarium wilt of banana: Current knowledge on epidemiology and research needs toward sustainable disease management. Front. Plant Sci. 2018;9:1468. doi: 10.3389/fpls.2018.01468. PubMed DOI PMC

Pegg K.G., Coates L.M., O’neill W.T., Turner D.W. The epidemiology of Fusarium wilt of banana. Front. Plant Sci. 2019;10:1395. doi: 10.3389/fpls.2019.01395. PubMed DOI PMC

Thangavelu R., Loganathan M., Arthee R., Prabakaran M., Uma S. Fusarium wilt: A threat to banana cultivation and its management. CAB Rev. 2020;15:1–24. doi: 10.1079/PAVSNNR202015004. DOI

Warman N.M., Aitken E.A.B. The movement of Fusarium oxysporum f. sp. cubense (Sub-Tropical Race 4) in susceptible cultivars of banana. Front. Plant Sci. 2018;9:1748. doi: 10.3389/fpls.2018.01748. PubMed DOI PMC

Chen A., Sun J., Matthews A., Armas-Egas L., Chen N., Hamill S., Mintoff S., Tran-Nguyen L.T.T., Batley J., Aitken E.A.B. Assessing variations in host resistance to Fusarium oxysporum f sp. cubense race 4 in Musa species, with a focus on the subtropical race 4. Front Microbiol. 2019;10:1062. doi: 10.3389/fmicb.2019.01062. PubMed DOI PMC

Stover R.H. Fusarial Wilt (Panama Disease) of Bananas and other Musa Species. Commonwealth Mycological Institute; Kew, UK: 1962.

Leslie J.F., Summerell B.A. The Fusarium Laboratory Manual. Blackwell Pub; Ames, IA, USA: 2006. Morphological Characters; pp. 111–119. DOI

Buddenhagen I. Understanding strain diversity in Fusarium oxysporum f. sp. cubense and history of introduction of ‘Tropical Race 4’ to better manage banana production. Acta Hortic. 2009;828:193–204. doi: 10.17660/ActaHortic.2009.828.19. DOI

Waite B., Dunlap V. Preliminary host range studies with Fusarium oxysporum f. sp. cubense. Plant Dis. 1953;37:79–80.

Pittaway P.A., Nasir N., Pegg K.G. Soil receptivity and host-pathogen dynamics in soils naturally infested with Fusarium oxysporum f. sp. cubense, the cause of Panama disease in bananas. Aust. J. Agric. Res. 1999;50:623–628. doi: 10.1071/A98152. DOI

Hennessy C., Walduck G., Daly A., Padovan A. Weed hosts of Fusarium oxysporum f. sp. cubense tropical race 4 in northern Australia. Australas. Plant Pathol. 2005;34:115–117. doi: 10.1071/AP04091. DOI

Scheerer L., Pemsl D., Dita M., Vicente L.P., Staver C. A quantified approach to projecting losses caused by Fusarium wilt tropical race 4. Acta Hortic. 2018;1196:211–218. doi: 10.17660/ActaHortic.2018.1196.26. DOI

Ploetz R.C. Fusarium Wilt of Banana. Phytopathology. 2015;105:1512–1521. doi: 10.1094/PHYTO-04-15-0101-RVW. PubMed DOI

Ploetz R.C. Management of Fusarium wilt of banana: A review with special reference to tropical race 4. Crop Prot. 2015;73:7–15. doi: 10.1016/j.cropro.2015.01.007. DOI

Staver C., Pemsl D.E., Scheerer L., Perez Vicente L., Dita M. Ex ante assessment of returns on research investments to address the impact of Fusarium wilt Tropical Race 4 on global banana production. Front. Plant Sci. 2020;11:844. doi: 10.3389/fpls.2020.00844. PubMed DOI PMC

Li W.M., Dita M., Wu W., Hu G.B., Xie J.H., Ge X.J. Resistance sources to Fusarium oxysporum f. sp cubense tropical race 4 in banana wild relatives. Plant Pathol. 2015;64:1061–1067. doi: 10.1111/ppa.12340. DOI

Fraser-Smith S., Czislowski E., Daly A., Meldrum R., Hamill S., Smith M., Aitken E.A.B. Single gene resistance to Fusarium oxysporum f. sp. cubense Race 4 in the wild banana Musa acuminata subsp. malaccensis. Acta Horti. 2016;1114:95–100. doi: 10.17660/ActaHortic.2016.1114.13. DOI

Dita M., Teixeira L.A.J., O’neill W., Pattison A.B., Weinert M.P., Li C.Y., Zheng S.J., Staver C., Thangavelu R., Viljoen A. Current state of Fusarium wilt of banana in the subtropics. Acta Hortic. 2020;1272:45–56. doi: 10.17660/ActaHortic.2020.1272.7. DOI

Smith M.K., Hamill S.D. Early detection of dwarf off-types from micropropagated Cavendish bananas. Aust. J. Exp. Agric. 1993;33:639–644. doi: 10.1071/EA9930639. DOI

Healey A., Furtado A., Cooper T., Henry R.J. Protocol: A simple method for extracting next-generation sequencing quality genomic DNA from recalcitrant plant species. Plant Methods. 2014;10:21. doi: 10.1186/1746-4811-10-21. PubMed DOI PMC

Takagi H., Abe A., Yoshida K., Kosugi S., Natsume S., Mitsuoka C., Uemura A., Utsushi H., Tamiru M., Takuno S., et al. QTL-seq: Rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J. 2013;74:174–183. doi: 10.1111/tpj.12105. PubMed DOI

Bolger A.M., Lohse M., Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC

Li H., Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–1760. doi: 10.1093/bioinformatics/btp324. PubMed DOI PMC

Cingolani P., Platts A., Wang L.L., Coon M., Nguyen T., Wang L., Land S.J., Lu X., Ruden D.M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly. 2012;6:80–92. doi: 10.4161/fly.19695. PubMed DOI PMC

Wang K., Li M., Hakonarson H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38:e164. doi: 10.1093/nar/gkq603. PubMed DOI PMC

Martin G., Cardi C., Sarah G., Ricci S., Jenny C., Fondi E., Perrier X., Glaszmann J., D’Hont A., Yahiaoui N. Genome ancestry mosaics reveal multiple and cryptic contributors to cultivated banana. Plant J. 2020;102:1008–1025. doi: 10.1111/tpj.14683. PubMed DOI PMC

Christelová P., Valárik M., Hřibová E., Van Den Houwe I., Channelière S., Roux N., Doležel J. A platform for efficient genotyping in Musa using microsatellite markers. AoB Plant. 2011;2011:plr024. doi: 10.1093/aobpla/plr024. PubMed DOI PMC

Němečková A., Christelová P., Čížková J., Nyine M., Van Den Houwe I., Svačina R., Uwimana B., Swennen R., Doležel J., Hřibová E. Molecular and cytogenetic study of East African highland banana. Front. Plant Sci. 2018;9:1371. doi: 10.3389/fpls.2018.01371. PubMed DOI PMC

Christelová P., De Langhe E., Hřibová E., Čížková J., Sardos J., Hušáková M., Houwe I.V.D., Sutanto A., Kepler A.K., Swennen R., et al. Molecular and cytological characterization of the global Musa germplasm collection provides insights into the treasure of banana diversity. Biodivers. Conserv. 2017;26:801–824. doi: 10.1007/s10531-016-1273-9. DOI

D’hont A., Denoeud F., Aury J.M., Baurens F.C., Carreel F., Garsmeur O., Noel B., Bocs S., Droc G., Rouard M., et al. The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature. 2012;488:213–217. doi: 10.1038/nature11241. PubMed DOI

Viljoen A., Mostert D., Chiconela T., Beukes I., Fraser C., Dwyer J. Occurrence and spread of the banana fungus Fusarium oxysporum f. sp. cubense TR4 in Mozambique. S. Afr. J. Sci. 2020;116:1–11. doi: 10.17159/sajs.2020/8608. DOI

García-Bastidas F.A., Quintero-Vargas J.C., Ayala-Vasquez M., Schermer T., Seidl M.F., Santos-Paiva M., Noguera A.M., Aguilera-Galvez C., Wittenberg A., Hofstede R., et al. First report of Fusarium wilt Tropical Race 4 in Cavendish bananas caused by Fusarium odoratissimum in Colombia. Plant Dis. 2019;104:994. doi: 10.1094/PDIS-09-19-1922-PDN. DOI

Acuña R., Rouard M., Leiva A.M., Marques C., Olortegui A., Ureta C., Cabrera-Pintado R.M., Rojas J.C., Lopez-Alvarez D., Cenci A., et al. First report of Fusarium oxysporum f. sp. cubense Tropical Race 4, causing Fusarium wilt in Cavendish bananas in Peru. Plant Dis. 2021;106:2268. doi: 10.1094/PDIS-09-21-1951-PDN. PubMed DOI

Zuo C.W., Deng G.M., Li B., Huo H.Q., Li C.Y., Hu C.H., Kuang R., Yang Q., Dong T., Sheng O., et al. Germplasm screening of Musa spp. for resistance to Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4) Eur. J. Plant Pathol. 2018;151:723–734. doi: 10.1007/s10658-017-1406-3. DOI

Rijzaani H., Bayer P.E., Rouard M., Doležel J., Batley J., Edwards D. The pangenome of banana highlights differences between genera and genomes. Plant Genome. 2022;15:e20100. doi: 10.1002/tpg2.20100. PubMed DOI

Simmonds N.W., editor. The Evolution of the Bananas. Longmans; London, UK: 1962.

Perrier X., De Langhe E., Donohue M., Lentfer C., Vrydaghs L., Bakry F., Carreel F., Hippolyte I., Horry J.-P., Jenny C., et al. Multidisciplinary perspectives on banana (Musa spp.) domestication. Proc. Natl. Acad. Sci. USA. 2011;108:11311–11318. doi: 10.1073/pnas.1102001108. PubMed DOI PMC

De Langhe E., Vrydaghs L., De Maret P., Perrier X., Denham T. Why Bananas Matter: An introduction to the history of banana domestication. [(accessed on 4 February 2022)];Ethnobot. Res. Appl. 2009 7:165–177. doi: 10.17348/era.7.0.165-177. Available online: https://ethnobotanyjournal.org/index.php/era/article/view/356. DOI

Kennedy J. Bananas and people in the homeland of genus Musa: Not just pretty fruit. [(accessed on 4 February 2022)];Ethnobot. Res. Appl. 2009 7:179–197. doi: 10.17348/era.7.0.179-197. Available online: https://ethnobotanyjournal.org/index.php/era/article/view/360. DOI

Janssens S.B., Vandelook F., De Langhe E., Verstraete B., Smets E., Vandenhouwe I., Swennen R. Evolutionary dynamics and biogeography of Musaceae reveal a correlation between the diversification of the banana family and the geological and climatic history of Southeast Asia. New Phytol. 2016;210:1453–1465. doi: 10.1111/nph.13856. PubMed DOI PMC

Belser C., Baurens F.C., Noel B., Martin G., Cruaud C., Istace B., Yahiaoui N., Labadie K., Hřibová E., Doležel J., et al. Telomere-to-telomere gapless chromosomes of banana using nanopore sequencing. Commun. Biol. 2021;4:1047. doi: 10.1038/s42003-021-02559-3. PubMed DOI PMC

Ahmad F., Martawi N.M., Poerba Y.S., De Jong H., Schouten H., Kema G.H.J. Genetic mapping of Fusarium wilt resistance in a wild banana Musa acuminata ssp. malaccensis accession. Theor. Appl. Genet. 2020;133:3409–3418. doi: 10.1007/s00122-020-03677-y. PubMed DOI PMC

Hammond-Kosack K.E., Jones J.D.G. Plant disease resistance genes. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1997;48:575–607. doi: 10.1146/annurev.arplant.48.1.575. PubMed DOI

Ooijen G.V., Burg H.A.V.D., Cornelissen B.J.C., Takken F.L.W. Structure and function of resistance proteins in Solanaceous Plants. Annu. Rev. Phytopathol. 2007;45:43–72. doi: 10.1146/annurev.phyto.45.062806.094430. PubMed DOI

Shiu S.H., Bleecker A.B. Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc. Natl. Acad. Sci. USA. 2001;98:10763–10768. doi: 10.1073/pnas.181141598. PubMed DOI PMC

Jose J., Ghantasala S., Roy Choudhury S. Arabidopsis transmembrane receptor-like kinases (RLKs): A bridge between extracellular signal and intracellular regulatory machinery. Int. J. Mol. Sci. 2020;21:4000. doi: 10.3390/ijms21114000. PubMed DOI PMC

Chinchilla D., Shan L., He P., De Vries S., Kemmerling B. One for all: The receptor-associated kinase BAK1. Trends Plant Sci. 2009;14:535–541. doi: 10.1016/j.tplants.2009.08.002. PubMed DOI PMC

Racolta A., Bryan A.C., Tax F.E. The receptor-like kinases GSO1 and GSO2 together regulate root growth in Arabidopsis through control of cell division and cell fate specification. Dev. Dyn. 2014;243:257–278. doi: 10.1002/dvdy.24066. PubMed DOI

Lim C.W., Yang S.H., Shin K.H., Lee S.C., Kim S.H. The AtLRK10L1.2, Arabidopsis ortholog of wheat LRK10, is involved in ABA-mediated signaling and drought resistance. Plant Cell Rep. 2015;34:447–455. doi: 10.1007/s00299-014-1724-2. PubMed DOI

Ma X., Xu G., He P., Shan L. SERKing coreceptors for receptors. Trends Plant Sci. 2016;21:1017–1033. doi: 10.1016/j.tplants.2016.08.014. PubMed DOI

Saintenac C., Cambon F., Aouini L., Verstappen E., Ghaffary S.M.T., Poucet T., Marande W., Berges H., Xu S., Jaouannet M., et al. A wheat cysteine-rich receptor-like kinase confers broad-spectrum resistance against Septoria tritici blotch. Nat. Commun. 2021;12:433. doi: 10.1038/s41467-020-20685-0. PubMed DOI PMC

Ron M., Avni A. The receptor for the fungal elicitor ethylene-inducing xylanase is a member of a resistance-like gene family in tomato. Plant Cell. 2004;16:1604–1615. doi: 10.1105/tpc.022475. PubMed DOI PMC

Kawchuk L.M., Hachey J., Lynch D.R., Kulcsar F., Van Rooijen G., Waterer D.R., Robertson A., Kokko E., Byers R., Howard R.J., et al. Tomato Ve disease resistance genes encode cell surface-like receptors. Proc. Natl. Acad. Sci. USA. 2001;98:6511–6515. doi: 10.1073/pnas.091114198. PubMed DOI PMC

Bittner-Eddy P.D., Crute I.R., Holub E.B., Beynon J.L. RPP13 is a simple locus in Arabidopsis thaliana for alleles that specify downy mildew resistance to different avirulence determinants in Peronospora parasitica. Plant J. 2000;21:177–188. doi: 10.1046/j.1365-313x.2000.00664.x. PubMed DOI

Pei X., Li S., Jiang Y., Zhang Y., Wang Z., Jia S. Isolation, characterization and phylogenetic analysis of the resistance gene analogues (RGAs) in banana (Musa spp.) Plant Sci. 2007;172:1166–1174. doi: 10.1016/j.plantsci.2007.02.019. DOI

Peraza-Echeverria S., Dale J.L., Harding R.M., Smith M.K., Collet C. Characterization of disease resistance gene candidates of the nucleotide binding site (NBS) type from banana and correlation of a transcriptional polymorphism with resistance to Fusarium oxysporum f.sp cubense race 4. Mol. Breed. 2008;22:565–579. doi: 10.1007/s11032-008-9199-x. DOI

Ori N., Eshed Y., Paran I., Presting G., Aviv D., Tanksley S., Zamir D., Fluhr R. The I2C family from the wilt disease resistance locus I2 belongs to the nucleotide binding, leucine-rich repeat superfamily of plant resistance genes. Plant Cell. 1997;9:521–532. doi: 10.1105/tpc.9.4.521. PubMed DOI PMC

Joobeur T., King J.J., Nolin S.J., Thomas C.E., Dean R.A. The Fusarium wilt resistance locus Fom-2 of melon contains a single resistance gene with complex features. Plant J. 2004;39:283–297. doi: 10.1111/j.1365-313X.2004.02134.x. PubMed DOI

Dale J., James A., Paul J.Y., Khanna H., Smith M., Peraza-Echeverria S., Garcia-Bastidas F., Kema G., Waterhouse P., Mengersen K., et al. Transgenic Cavendish bananas with resistance to Fusarium wilt tropical race 4. Nat. Commun. 2017;8:1496. doi: 10.1038/s41467-017-01670-6. PubMed DOI PMC

García-Bastidas F.A., Arango-Isaza R., Rodriguez-Cabal H.A., Seidl M.F., Cappadona G., Segura R., Salacinas M., Kema G.H.J. Induced resistance to Fusarium wilt of banana caused by Tropical Race 4 in Cavendish cv Grand Naine bananas after challenging with avirulent Fusarium spp. PLoS ONE. 2022;17:e0273335. doi: 10.1371/journal.pone.0273335. PubMed DOI PMC

Backer R., Naidoo S., Van Den Berg N. The NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1) and related family: Mechanistic insights in plant disease resistance. Front. Plant Sci. 2019;10:102. doi: 10.3389/fpls.2019.00102. PubMed DOI PMC

Bianchet C., Wong A., Quaglia M., Alqurashi M., Gehring C., Ntoukakis V., Pasqualini S. An Arabidopsis thaliana leucine-rich repeat protein harbors an adenylyl cyclase catalytic center and affects responses to pathogens. J. Plant Physiol. 2019;232:12–22. doi: 10.1016/j.jplph.2018.10.025. PubMed DOI

Garsmeur O., Schnable J.C., Almeida A., Jourda C., D’hont A., Freeling M. Two evolutionarily distinct classes of paleopolyploidy. Mol. Biol. Evol. 2013;31:448–454. doi: 10.1093/molbev/mst230. PubMed DOI

Cenci A., Hueber Y., Zorrilla-Fontanesi Y., Van Wesemael J., Kissel E., Gislard M., Sardos J., Swennen R., Roux N., Carpentier S.C., et al. Effect of paleopolyploidy and allopolyploidy on gene expression in banana. BMC Genom. 2019;20:244. doi: 10.1186/s12864-019-5618-0. PubMed DOI PMC

Flagel L.E., Wendel J.F. Gene duplication and evolutionary novelty in plants. New Phytol. 2009;183:557–564. doi: 10.1111/j.1469-8137.2009.02923.x. PubMed DOI

Shiu S.H., Bleecker A.B. Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol. 2003;132:530–543. doi: 10.1104/pp.103.021964. PubMed DOI PMC

Qiao X., Li Q., Yin H., Qi K., Li L., Wang R., Zhang S., Paterson A.H. Gene duplication and evolution in recurring polyploidization–diploidization cycles in plants. Genome Biol. 2019;20:38. doi: 10.1186/s13059-019-1650-2. PubMed DOI PMC

Schlötterer C., Tobler R., Kofler R., Nolte V. Sequencing pools of individuals—Mining genome-wide polymorphism data without big funding. Nat. Rev. Genet. 2014;15:749–763. doi: 10.1038/nrg3803. PubMed DOI

Singh V., Sinha P., Obala J., Khan A.W., Chitikineni A., Saxena R.K., Varshney R.K. QTL-seq for the identification of candidate genes for days to flowering and leaf shape in pigeonpea. Heredity. 2022;128:411–419. doi: 10.1038/s41437-021-00486-x. PubMed DOI PMC

Michelmore R.W., Paran I., Kesseli R. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proc. Natl. Acad. Sci. USA. 1991;88:9828–9832. doi: 10.1073/pnas.88.21.9828. PubMed DOI PMC

Heslop-Harrison J.S., Schwarzacher T. Domestication, genomics and the future for banana. Ann. Bot. 2007;100:1073–1084. doi: 10.1093/aob/mcm191. PubMed DOI PMC

Zou C., Wang P., Xu Y. Bulked sample analysis in genetics, genomics and crop improvement. Plant Biotechnol. J. 2016;14:1941–1955. doi: 10.1111/pbi.12559. PubMed DOI PMC

Sahu P.K., Sao R., Mondal S., Vishwakarma G., Gupta S.K., Kumar V., Singh S., Sharma D., Das B.K. Next generation sequencing based forward genetic approaches for identification and mapping of causal mutations in crop plants: A comprehensive review. Plants. 2020;9:1355. doi: 10.3390/plants9101355. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...