Genetic Mapping, Candidate Gene Identification and Marker Validation for Host Plant Resistance to the Race 4 of Fusarium oxysporum f. sp. cubense Using Musa acuminata ssp. malaccensis
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
37375510
PubMed Central
PMC10303076
DOI
10.3390/pathogens12060820
PII: pathogens12060820
Knihovny.cz E-zdroje
- Klíčová slova
- Fusarium oxysporum f. sp. cubense, Fusarium wilt, Musa acuminata ssp. malaccensis, RNAseq, banana, fine mapping, marker-assisted selection, quantitative trait locus, receptor-like kinase, resistance gene expression, subtropical race 4, tropical race 4,
- Publikační typ
- časopisecké články MeSH
Fusarium wilt of banana is a devastating disease that has decimated banana production worldwide. Host resistance to Fusarium oxysporum f. sp. Cubense (Foc), the causal agent of this disease, is genetically dissected in this study using two Musa acuminata ssp. Malaccensis segregating populations, segregating for Foc Tropical (TR4) and Subtropical (STR4) race 4 resistance. Marker loci and trait association using 11 SNP-based PCR markers allowed the candidate region to be delimited to a 12.9 cM genetic interval corresponding to a 959 kb region on chromosome 3 of 'DH-Pahang' reference assembly v4. Within this region, there was a cluster of pattern recognition receptors, namely leucine-rich repeat ectodomain containing receptor-like protein kinases, cysteine-rich cell-wall-associated protein kinases, and leaf rust 10 disease-resistance locus receptor-like proteins, positioned in an interspersed arrangement. Their transcript levels were rapidly upregulated in the resistant progenies but not in the susceptible F2 progenies at the onset of infection. This suggests that one or several of these genes may control resistance at this locus. To confirm the segregation of single-gene resistance, we generated an inter-cross between the resistant parent 'Ma850' and a susceptible line 'Ma848', to show that the STR4 resistance co-segregated with marker '28820' at this locus. Finally, an informative SNP marker 29730 allowed the locus-specific resistance to be assessed in a collection of diploid and polyploid banana plants. Of the 60 lines screened, 22 lines were predicted to carry resistance at this locus, including lines known to be TR4-resistant, such as 'Pahang', 'SH-3362', 'SH-3217', 'Ma-ITC0250', and 'DH-Pahang/CIRAD 930'. Additional screening in the International Institute for Tropical Agriculture's collection suggests that the dominant allele is common among the elite 'Matooke' NARITA hybrids, as well as in other triploid or tetraploid hybrids derived from East African highland bananas. Fine mapping and candidate gene identification will allow characterization of molecular mechanisms underlying the TR4 resistance. The markers developed in this study can now aid the marker-assisted selection of TR4 resistance in breeding programs around the world.
CIRAD UMR AGAP Institut F 34398 Montpellier France
Department of Biology Duke University Durham NC 27708 0338 USA
Department of Plant Pathology Stellenbosch University Stellenbosch 7600 South Africa
International Institute of Tropical Agriculture Arusha P O Box 447 Tanzania
International Institute of Tropical Agriculture Ibadan PMB 5320 Nigeria
International Institute of Tropical Agriculture Kampala P O Box 7878 Uganda
School of Agriculture and Food Science The University of Queensland Brisbane QLD 4067 Australia
School of Biological Sciences The University of Western Australia Perth WA 6009 Australia
School of Life Science Jiaying University Meizhou 514015 China
Sustainable Soils and Crops Rothamsted Research Harpenden Hertfordshire AL5 2JQ UK
UMR AGAP Institut Université de Montpellier CIRAD INRAE Institut Agro F 34398 Montpellier France
Zobrazit více v PubMed
Perrier X., De Langhe E., Donohue M., Lentfer C., Vrydaghs L., Bakry F., Carreel F., Hippolyte I., Horry J.P., Jenny C., et al. Multidisciplinary perspectives on banana (Musa spp.) domestication. Proc. Natl. Acad. Sci. USA. 2011;108:11311–11318. doi: 10.1073/pnas.1102001108. PubMed DOI PMC
Němečková A., Christelová P., Čížková J., Nyine M., Van den Houwe I., Svačina R., Uwimana B., Swennen R., Doležel J., Hřibová E. Molecular and cytogenetic study of East African highland banana. Front. Plant Sci. 2018;9:1371. doi: 10.3389/fpls.2018.01371. PubMed DOI PMC
Simmonds N.W. The Evolution of the Bananas. Longman; London, England: 1962. The evolution of the bananas.
Simmonds N.W., Shepherd K. The taxonomy and origins of the cultivated bananas. Bot. J. Linn. Soc. 1955;55:302–312. doi: 10.1111/j.1095-8339.1955.tb00015.x. DOI
Sheperd K. Cytogenetics of the genus Musa. International Network for the Improvement of Banana and Plantain; Montpellier, France: 1999.
Dodds K. Genetical and cytological studies of Musa: V. Certain edible diploids. J. Genet. 1943;45:113–138. doi: 10.1007/BF02982931. DOI
Rekha A., Hiremath S. Chromosome Studies and Karyotype Analysis of Some Triploid Banana (Musa Species) Cultivars of AAA Genomic Group. [(accessed on 26 April 2023)];J. Hortic. Sci. 2008 3:30–34. Available online: https://jhs.iihr.res.in/index.php/jhs/article/view/590.
Ploetz R.C. Panama disease: An old nemesis rears its ugly head part 2. The Cavendish era and beyond. [(accessed on 6 June 2023)];Pl. Health Prog. 2005 23:1–18. doi: 10.1094/APSnetFeature-2005-1005. Available online: https://www.apsnet.org/edcenter/apsnetfeatures/Documents/2005/PanamaDisease2.pdf. DOI
Ploetz R.C. Fusarium wilt of banana. Phytopathology. 2015;105:1512–1521. doi: 10.1094/PHYTO-04-15-0101-RVW. PubMed DOI
Kistler H.C., Alabouvette C., Baayen R.P., Bentley S., Brayford D., Coddington A., Correll J., Daboussi M.J., Elias K., Fernandez D., et al. Systematic numbering of vegetative compatibility groups in the plant pathogenic fungus Fusarium oxysporum. Phytopathology. 1998;88:30–32. doi: 10.1094/PHYTO.1998.88.1.30. PubMed DOI
Moore N., Pegg K., Allen R., Irwin J. Vegetative compatibility and distribution of Fusarium oxysporum f. sp. cubense in Australia. Aust. J. Exp. Agric. 1993;33:797–802. doi: 10.1071/EA9930797. DOI
Ploetz R.C., Correll J.C. Vegetative compatibility among races of Fusarium oxysporum f. sp. cubense. Plant Dis. 1988;72:325–328. doi: 10.1094/PD-72-0325. DOI
Stover R.H. Fusarium wilt of Banana: Some history and current Status of the Disease. In: Ploetz R.C., editor. Fusarium Wilt of Banana. APS Press; St. Paul, MN, USA: 1990. pp. 1–7.
FAOSTAT. 2023. [(accessed on 6 June 2023)]. Available online: https://www.fao.org/faostat/
FAO Banana Market Review—Preliminary Results for 2022. Rome. [(accessed on 27 April 2023)]. Available online: https://www.fao.org/3/cc3421en/cc3421en.pdf.
Pegg K.G., Coates L.M., O’Neill W.T., Turner D.W. The epidemiology of Fusarium wilt of banana. Front. Plant Sci. 2019;10:1395. doi: 10.3389/fpls.2019.01395. PubMed DOI PMC
Thangavelu R., Loganathan M., Arthee R., Prabakaran M., Uma S. Fusarium wilt: A threat to banana cultivation and its management. CABI Reviews. 2020;15:1–24. doi: 10.1079/PAVSNNR202015004. DOI
Czislowski E., Fraser-Smith S., Zander M., O’Neill W.T., Meldrum R.A., Tran-Nguyen L.T.T., Batley J., Aitken E.A.B. Investigation of the diversity of effector genes in the banana pathogen, Fusarium oxysporum f. sp. cubense, reveals evidence of horizontal gene transfer. Mol. Plant Pathol. 2018;19:1155–1171. doi: 10.1111/mpp.12594. PubMed DOI PMC
Ordonez N., Seidl M.F., Waalwijk C., Drenth A., Kilian A., Thomma B.P.H.J., Ploetz R.C., Kema G.H.J. Worse comes to worst: Bananas and Panama disease—When plant and pathogen clones meet. PLoS Pathog. 2015;11:e1005197. doi: 10.1371/journal.ppat.1005197. PubMed DOI PMC
Dita M., Barquero M., Heck D., Mizubuti E.S.G., Staver C.P. Fusarium wilt of banana: Current knowledge on epidemiology and research needs toward sustainable disease management. Front. Plant Sci. 2018;9:1468. doi: 10.3389/fpls.2018.01468. PubMed DOI PMC
O’Neill W.T., Henderson J., Pattemore J.A., O’Dwyer C., Perry S., Beasley D.R., Tan Y.P., Smyth A.L., Goosem C.H., Thomson K.M., et al. Detection of Fusarium oxysporum f. sp. cubense tropical race 4 strain in northern Queensland. Australas. Plant Dis. Notes. 2016;11:33. doi: 10.1007/s13314-016-0218-1. DOI
Li C., Mostert G., Zuo C., Beukes I., Yang Q., Sheng O., Kuang R., Wei Y., Hu C., Rose L. Diversity and distribution of the banana wilt pathogen Fusarium oxysporum f. sp. cubense in China. Fungal Genom. Biol. 2013;3:2. doi: 10.4172/2165-8056.1000111. DOI
Hermanto C., Sutanto A., Jumjunidang, Edison H.S., Daniells J.W., O’Neill W.T., Sinohin V.G.O., Molina A.B., Taylor P. Incidence and distribution of Fusarium wilt disease of banana in Indonesia. Acta. Hortic. 2011;897:313–322. doi: 10.17660/ActaHortic.2011.897.43. DOI
Molina A.B., Fabregar E., Sinohin V.G., Yi G., Viljoen A. Recent occurrence of Fusarium oxysporum f. sp. cubense tropical race 4 in Asia. Acta Hortic. 2009;828:109–116. doi: 10.17660/ActaHortic.2009.828.10. DOI
Ploetz R.C. Fusarium wilt of banana is caused by several pathogens referred to as Fusarium oxysporum f. sp. cubense. Phytopathology. 2006;96:653–656. doi: 10.1094/PHYTO-96-0653. PubMed DOI
García-Bastidas F., Ordóñez N., Konkol J., Al-Qasim M., Naser Z., Abdelwali M., Salem N., Waalwijk C., Ploetz R.C., Kema G.H.J. First report of Fusarium oxysporum f. sp. cubense tropical race 4 associated with Panama disease of banana outside Southeast Asia. Plant Dis. 2014;98:694. doi: 10.1094/PDIS-09-13-0954-PDN. PubMed DOI
Maymon M., Sela N., Shpatz U., Galpaz N., Freeman S. The origin and current situation of Fusarium oxysporum f. sp. cubense tropical race 4 in Israel and the Middle East. Sci. Rep. 2020;10:1590. doi: 10.1038/s41598-020-58378-9. PubMed DOI PMC
Thangavelu R., Mostert D., Gopi M., Devi P.G., Padmanaban B., Molina A., Viljoen A. First detection of Fusarium oxysporum f. sp. cubense tropical race 4 (TR4) on Cavendish banana in India. Eur. J. Plant Pathol. 2019;154:777–786. doi: 10.1007/s10658-019-01701-6. DOI
Aguayo J., Cerf-Wendling I., Folscher A.B., Fourrier-Jeandel C., Ioos R., Mathews M.C., Mostert D., Renault C., Wilson V., Viljoen A. First report of Fusarium oxysporum f. sp. cubense tropical race 4 (TR4) causing banana wilt in the Island of Mayotte. Plant Dis. 2021;105:219. doi: 10.1094/PDIS-06-20-1196-PDN. PubMed DOI
Viljoen A., Mostert D., Chiconela T., Beukes I., Fraser C., Dwyer J., Murray H., Amisse J., Matabuana E.L., Tazan G., et al. Occurrence and spread of the banana fungus Fusarium oxysporum f. sp. cubense TR4 in Mozambique. S. Afr. J. Sci. 2020;116:1–11. doi: 10.17159/sajs.2020/8608. DOI
Acuña R., Rouard M., Leiva A.M., Marques C., Olortegui J.A., Ureta C., Cabrera-Pintado R.M., Rojas J.C., Lopez-Alvarez D., Cenci A., et al. First report of Fusarium oxysporum f. sp. cubense tropical race 4 causing Fusarium wilt in Cavendish bananas in Peru. Plant Dis. 2022;106:2268. doi: 10.1094/PDIS-09-21-1951-PDN. PubMed DOI
García-Bastidas F.A., Quintero-Vargas J.C., Ayala-Vasquez M., Schermer T., Seidl M.F., Santos-Paiva M., Noguera A.M., Aguilera-Galvez C., Wittenberg A., Hofstede R., et al. First report of Fusarium wilt tropical race 4 in Cavendish Bananas caused by Fusarium odoratissimum in Colombia. Plant Dis. 2020;104:994. doi: 10.1094/PDIS-09-19-1922-PDN. DOI
Chen A., Sun J., Matthews A., Armas-Egas L., Chen N., Hamill S., Mintoff S., Tran-Nguyen L.T.T., Batley J., Aitken E.A.B. Assessing variations in host resistance to Fusarium oxysporum f sp. cubense Race 4 in Musa species, with a focus on the subtropical race 4. Front. Microbiol. 2019;10:1062. doi: 10.3389/fmicb.2019.01062. PubMed DOI PMC
Warman N.M., Aitken E.A.B. The movement of Fusarium oxysporum f.sp. cubense (sub-tropical race 4) in susceptible cultivars of Banana. Front. Plant Sci. 2018;9:1748. doi: 10.3389/fpls.2018.01748. PubMed DOI PMC
Ploetz R.C. Management of Fusarium wilt of banana: A review with special reference to tropical race 4. Crop Prot. 2015;73:7–15. doi: 10.1016/j.cropro.2015.01.007. DOI
Salacinas M., Meijer H.J.G., Mamora S.H., Corcolon B., Mirzadi Gohari A., Ghimire B., Kema G.H.J. Efficacy of disinfectants against tropical race 4 causing Fusarium wilt in Cavendish bananas. Plant Dis. 2022;106:966–974. doi: 10.1094/PDIS-08-20-1814-RE. PubMed DOI
Hamill S.D., Moisander J.A., Smith M.K. Micropropagation of vegetatively propagated crops: Accelerating release of new cultivars and providing an important source of clean planting material. Acta Hortic. 2009;829:213–218. doi: 10.17660/ActaHortic.2009.829.30. DOI
Bubici G., Kaushal M., Prigigallo M.I., Gómez-Lama Cabanás C., Mercado-Blanco J. Biological control agents against Fusarium wilt of banana. Front. Microbiol. 2019;10:616. doi: 10.3389/fmicb.2019.00616. PubMed DOI PMC
Chaves N.P., Staver C., Dita M.A. Potential of Trichoderma asperellum for biocontrol of Fusarium wilt in banana. Acta Hortic. 2016;1114:261–266. doi: 10.17660/ActaHortic.2016.1114.35. DOI
García-Bastidas F.A., Van der Veen A.J., Nakasato-Tagami G., Meijer H.J., Arango-Isaza R.E., Kema G.H. An improved phenotyping protocol for Panama disease in banana. Front. Plant Sci. 2019;10:1006. doi: 10.3389/fpls.2019.01006. PubMed DOI PMC
Houbin C., Chunxiang X., Qirui F., Guibing H., Jianguo L., Zehuai W., Molina Jr A.B. Screening of banana clones for resistance to Fusarium wilt in China; Proceedings of the 3rd BAPNET Meeting: Advancing Banana and Plantain R&D in Asia and the Pacific; Guangzhou, China. 23–26 November 2004; pp. 165–174.
Hwang S.C., Ko W.H. Cavendish banana cultivars resistant to Fusarium wilt acquired through somaclonal variation in Taiwan. Plant Dis. 2004;88:580–588. doi: 10.1094/PDIS.2004.88.6.580. PubMed DOI
Mintoff S.J., Nguyen T.V., Kelly C., Cullen S., Hearnden M., Williams R., Daniells J.W., Tran-Nguyen L.T. Banana cultivar field screening for resistance to Fusarium oxysporum f. sp. cubense tropical race 4 in the Northern Territory. J. Fungi. 2021;7:627. doi: 10.3390/jof7080627. PubMed DOI PMC
Smith M., Langdon P., Pegg K., Daniells J. Growth, yield and Fusarium wilt resistance of six FHIA tetraploid bananas (Musa spp.) grown in the Australian subtropics. Sci. Hortic. 2014;170:176–181. doi: 10.1016/j.scienta.2014.02.029. DOI
Zuo C., Deng G., Li B., Huo H., Li C., Hu C., Kuang R., Yang Q., Dong T., Sheng O. Germplasm screening of Musa spp. for resistance to Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4) Eur. J. Plant Pathol. 2018;151:723–734. doi: 10.1007/s10658-017-1406-3. DOI
D’hont A., Denoeud F., Aury J.-M., Baurens F.-C., Carreel F., Garsmeur O., Noel B., Bocs S., Droc G., Rouard M. The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature. 2012;488:213–217. doi: 10.1038/nature11241. PubMed DOI
Colasuonno P., Marcotuli I., Gadaleta A., Soriano J.M. From genetic maps to QTL cloning: An overview for durum wheat. Plants. 2021;10:315. doi: 10.3390/plants10020315. PubMed DOI PMC
Remington D.L., Ungerer M.C., Purugganan M.D. Map-based cloning of quantitative trait loci: Progress and prospects. Genet. Res. 2001;78:213–218. doi: 10.1017/S0016672301005456. PubMed DOI
Hasan N., Choudhary S., Naaz N., Sharma N., Laskar R.A. Recent advancements in molecular marker-assisted selection and applications in plant breeding programmes. J. Genet. Eng. Biotechnol. 2021;19:128. doi: 10.1186/s43141-021-00231-1. PubMed DOI PMC
Heslop-Harrison J.S., Schwarzacher T. Domestication, genomics and the future for banana. Ann. Bot. 2007;100:1073–1084. doi: 10.1093/aob/mcm191. PubMed DOI PMC
Fauré S., Noyer J.L., Horry J.P., Bakry F., Lanaud C., Gońzalez de León D. A molecular marker-based linkage map of diploid bananas (Musa acuminata) Theor. Appl. Genet. 1993;87:517–526. doi: 10.1007/BF00215098. PubMed DOI
Kayat F., Bonar N., Waugh R., Rajinder S., Rahimah A.R., Rashid K.A., Othman R.Y. Development of a genetic linkage map for genes associated with resistance and susceptibility to Fusarium oxysporum f. sp. cubense from an F1 hybrid population of Musa acuminata ssp. malaccensis. Acta. Hortic. 2009;828:333–340. doi: 10.17660/ActaHortic.2009.828.34. DOI
Risterucci A.M., Hippolyte I., Perrier X., Xia L., Caig V., Evers M., Huttner E., Kilian A., Glaszmann J.C. Development and assessment of Diversity Arrays Technology for high-throughput DNA analyses in Musa. Theor. Appl. Genet. 2009;119:1093–1103. doi: 10.1007/s00122-009-1111-5. PubMed DOI
Ahmad F., Martawi N.M., Poerba Y.S., de Jong H., Schouten H., Kema G.H.J. Genetic mapping of Fusarium wilt resistance in a wild banana Musa acuminata ssp. malaccensis accession. Theor. Appl. Genet. 2020;133:3409–3418. doi: 10.1007/s00122-020-03677-y. PubMed DOI PMC
Hippolyte I., Bakry F., Seguin M., Gardes L., Rivallan R., Risterucci A.M., Jenny C., Perrier X., Carreel F., Argout X., et al. A saturated SSR/DArT linkage map of Musa acuminata addressing genome rearrangements among bananas. BMC Plant Biol. 2010;10:65. doi: 10.1186/1471-2229-10-65. PubMed DOI PMC
Uwimana B., Mwanje G., Batte M., Akech V., Shah T., Vuylsteke M., Swennen R. Continuous mapping identifies loci associated with weevil resistance [Cosmopolites sordidus (Germar)] in a triploid banana population. Front. Plant Sci. 2021;12:753241. doi: 10.3389/fpls.2021.753241. PubMed DOI PMC
Chen A., Sun J., Martin G., Gray L.-A., Hřibová E., Christelová P., Yahiaoui N., Rounsley S., Lyons R., Batley J., et al. Identification of a major QTL-controlling resistance to the subtropical race 4 of Fusarium oxysporum f. sp. cubense in Musa acuminata ssp. malaccensis. Pathogens. 2023;12:289. doi: 10.3390/pathogens12020289. PubMed DOI PMC
Fraser-Smith S., Czislowski E., Daly A., Meldrum R., Hamill S., Smith M., Aitken E.A.B. Single gene resistance to Fusarium oxysporum f. sp. cubense race 4 in the wild banana Musa acuminata subsp. malaccensis. Acta Hortic. 2016;1114:95–100. doi: 10.17660/ActaHortic.2016.1114.13. DOI
Christelová P., De Langhe E., Hřibová E., Čížková J., Sardos J., Hušáková M., Van den houwe I., Sutanto A., Kepler A.K., Swennen R., et al. Molecular and cytological characterization of the global Musa germplasm collection provides insights into the treasure of banana diversity. Biodivers. Conserv. 2017;26:801–824. doi: 10.1007/s10531-016-1273-9. DOI
Zhang L., Yuan T., Wang Y., Zhang D., Bai T., Xu S., Wang Y., Tang W., Zheng S.-J. Identification and evaluation of resistance to Fusarium oxysporum f. sp. cubense tropical race 4 in Musa acuminata Pahang. Euphytica. 2018;214:106. doi: 10.1007/s10681-018-2185-4. DOI
Moore N.Y., Pegg K., Smith L., Langdon P.W., Bentley S., Smith M.K. Banana Fusarium Wilt Management: Towards Sustainable Cultivation. INIBAP; Los Baños, Philippines: 2001. Fusarium wilt of banana in Australia; pp. 64–75.
Li W.M., Dita M., Wu W., Hu G.B., Xie J.H., Ge X.J. Resistance sources to Fusarium oxysporum f. sp. cubense tropical race 4 in banana wild relatives. Plant Pathol. 2015;64:1061–1067. doi: 10.1111/ppa.12340. DOI
Madalla N.A., Swennen R., Brown A.F., Massawe C., Shimwela M., Mbongo D., Kindimba G., Kubiriba J., Tumuhimbise R., Okurut A.W., et al. Yield stability of East African highland cooking banana ‘Matooke’ hybrids. J. Am. Soc. Hortic. Sci. 2022;147:334–348. doi: 10.21273/JASHS05246-22. DOI
Wang X., Yu R., Li J. Using genetic engineering techniques to develop banana cultivars with Fusarium wilt resistance and ideal plant architecture. Front. Plant Sci. 2021;11:617528. doi: 10.3389/fpls.2020.617528. PubMed DOI PMC
Martin G., Carreel F., Coriton O., Hervouet C., Cardi C., Derouault P., Roques D., Salmon F., Rouard M., Sardos J., et al. Evolution of the banana genome (Musa acuminata) is impacted by large chromosomal translocations. Mol. Biol. Evol. 2017;34:2140–2152. doi: 10.1093/molbev/msx164. PubMed DOI PMC
Rijzaani H., Bayer P.E., Rouard M., Doležel J., Batley J., Edwards D. The pangenome of banana highlights differences between genera and genomes. Plant Genome. 2022;15:e20100. doi: 10.1002/tpg2.20100. PubMed DOI
Rouard M., Droc G., Martin G., Sardos J., Hueber Y., Guignon V., Cenci A., Geigle B., Hibbins M.S., Yahiaoui N., et al. Three new genome assemblies support a rapid radiation in Musa acuminata (wild banana) Genome Biol. Evol. 2018;10:3129–3140. doi: 10.1093/gbe/evy227. PubMed DOI PMC
Rouard M., Sardos J., Sempéré G., Breton C., Guignon V., Van den Houwe I., Carpentier S.C., Roux N. A digital catalog of high-density markers for banana germplasm collections. Plants People Planet. 2022;4:61–67. doi: 10.1002/ppp3.10187. DOI
Sardos J., Rouard M., Hueber Y., Cenci A., Hyma K.E., van den Houwe I., Hribova E., Courtois B., Roux N. A genome-wide association study on the seedless phenotype in banana (Musa spp.) reveals the potential of a selected panel to detect candidate genes in a vegetatively propagated crop. PLoS ONE. 2016;11:e0154448. doi: 10.1371/journal.pone.0154448. PubMed DOI PMC
Martínez G., Olivares B.O., Rey J.C., Rojas J., Cardenas J., Muentes C., Dawson C. The advance of Fusarium wilt tropical race 4 in Musaceae of Latin America and the Caribbean: Current Situation. Pathogens. 2023;12:277. doi: 10.3390/pathogens12020277. PubMed DOI PMC
Feuillet C., Schachermayr G., Keller B. Molecular cloning of a new receptor-like kinase gene encoded at the Lr10 disease resistance locus of wheat. Plant J. 1997;11:45–52. doi: 10.1046/j.1365-313X.1997.11010045.x. PubMed DOI
Dardick C., Schwessinger B., Ronald P. Non-arginine-aspartate (non-RD) kinases are associated with innate immune receptors that recognize conserved microbial signatures. Curr. Opin. Plant Biol. 2012;15:358–366. doi: 10.1016/j.pbi.2012.05.002. PubMed DOI
Shiu S.-H., Bleecker A.B. Expansion of the Receptor-Like Kinase/Pelle Gene Family and Receptor-Like Proteins in Arabidopsis. Plant Physiol. 2003;132:530–543. doi: 10.1104/pp.103.021964. PubMed DOI PMC
Xia T., Yang Y., Zheng H., Han X., Jin H., Xiong Z., Qian W., Xia L., Ji X., Li G., et al. Efficient expression and function of a receptor-like kinase in wheat powdery mildew defence require an intron-located MYB binding site. Plant Biotechnol. J. 2021;19:897–909. doi: 10.1111/pbi.13512. PubMed DOI PMC
Zhou H., Li S., Deng Z., Wang X., Chen T., Zhang J., Chen S., Ling H., Zhang A., Wang D., et al. Molecular analysis of three new receptor-like kinase genes from hexaploid wheat and evidence for their participation in the wheat hypersensitive response to stripe rust fungus infection. Plant J. 2007;52:420–434. doi: 10.1111/j.1365-313X.2007.03246.x. PubMed DOI
Lim C.W., Yang S.H., Shin K.H., Lee S.C., Kim S.H. The AtLRK10L1.2, Arabidopsis ortholog of wheat LRK10, is involved in ABA-mediated signaling and drought resistance. Plant Cell Rep. 2015;34:447–455. doi: 10.1007/s00299-014-1724-2. PubMed DOI
Zipfel C. Plant pattern-recognition receptors. Trends Immunol. 2014;35:345–351. doi: 10.1016/j.it.2014.05.004. PubMed DOI
Hammond-Kosack K.E., Tang S., Harrison K., Jones J.D. The tomato Cf-9 disease resistance gene functions in tobacco and potato to confer responsiveness to the fungal avirulence gene product avr9. Plant Cell. 1998;10:1251–1266. doi: 10.1105/tpc.10.8.1251. PubMed DOI PMC
Ron M., Avni A. The receptor for the fungal elicitor ethylene-inducing xylanase is a member of a resistance-like gene family in tomato. Plant Cell. 2004;16:1604–1615. doi: 10.1105/tpc.022475. PubMed DOI PMC
Yin Z., Wang N., Pi L., Li L., Duan W., Wang X., Dou D. Nicotiana benthamiana LRR-RLP NbEIX2 mediates the perception of an EIX-like protein from Verticillium dahliae. J. Integr. Plant Biol. 2021;63:949–960. doi: 10.1111/jipb.13031. PubMed DOI
Saintenac C., Cambon F., Aouini L., Verstappen E., Ghaffary S.M.T., Poucet T., Marande W., Berges H., Xu S., Jaouannet M., et al. A wheat cysteine-rich receptor-like kinase confers broad-spectrum resistance against Septoria tritici blotch. Nat. Commun. 2021;12:433. doi: 10.1038/s41467-020-20685-0. PubMed DOI PMC
Gu J., Sun J., Liu N., Sun X., Liu C., Wu L., Liu G., Zeng F., Hou C., Han S., et al. A novel cysteine-rich receptor-like kinase gene, TaCRK2, contributes to leaf rust resistance in wheat. Mol. Plant Pathol. 2020;21:732–746. doi: 10.1111/mpp.12929. PubMed DOI PMC
Acharya B.R., Raina S., Maqbool S.B., Jagadeeswaran G., Mosher S.L., Appel H.M., Schultz J.C., Klessig D.F., Raina R. Overexpression of CRK13, an Arabidopsis cysteine-rich receptor-like kinase, results in enhanced resistance to Pseudomonas syringae. Plant J. 2007;50:488–499. doi: 10.1111/j.1365-313X.2007.03064.x. PubMed DOI
Tang D., Wang G., Zhou J.M. Receptor kinases in plant-pathogen interactions: More than pattern recognition. Plant Cell. 2017;29:618–637. doi: 10.1105/tpc.16.00891. PubMed DOI PMC
Gómez-Gómez L., Boller T. FLS2: An LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol. Cell. 2000;5:1003–1011. doi: 10.1016/S1097-2765(00)80265-8. PubMed DOI
Huffaker A., Pearce G., Ryan C.A. An endogenous peptide signal in Arabidopsis activates components of the innate immune response. Proc. Natl. Acad. Sci. USA. 2006;103:10098–10103. doi: 10.1073/pnas.0603727103. PubMed DOI PMC
Huffaker A., Ryan C.A. Endogenous peptide defense signals in Arabidopsis differentially amplify signaling for the innate immune response. Proc. Natl. Acad. Sci. USA. 2007;104:10732–10736. doi: 10.1073/pnas.0703343104. PubMed DOI PMC
Pruitt R.N., Schwessinger B., Joe A., Thomas N., Liu F., Albert M., Robinson M.R., Chan L.J., Luu D.D., Chen H., et al. The rice immune receptor XA21 recognizes a tyrosine-sulfated protein from a Gram-negative bacterium. Sci. Adv. 2015;1:e1500245. doi: 10.1126/sciadv.1500245. PubMed DOI PMC
van Dam S., Võsa U., van der Graaf A., Franke L., de Magalhães J.P. Gene co-expression analysis for functional classification and gene–disease predictions. Brief. Bioinform. 2017;19:575–592. doi: 10.1093/bib/bbw139. PubMed DOI PMC
van Westerhoven A.C., Meijer H.J.G., Seidl M.F., Kema G.H.J. Uncontained spread of Fusarium wilt of banana threatens African food security. PLoS Pathog. 2022;18:e1010769. doi: 10.1371/journal.ppat.1010769. PubMed DOI PMC
Pinheiro T.D.M., Rego E.C.S., Alves G.S.C., Fonseca F.C.A., Cotta M.G., Antonino J.D., Gomes T.G., Amorim E.P., Ferreira C.F., Costa M., et al. Transcriptome profiling of the resistance response of Musa acuminata subsp. burmannicoides, var. Calcutta 4 to Pseudocercospora musae. Int. J. Mol. Sci. 2022;23:13589. doi: 10.3390/ijms232113589. PubMed DOI PMC
Wilberforce T., Batte M., Nyine M., Tumuhimbise R., Alex B., Ssali R., Talengera D., Kubiriba J., Lorenzen J., Swennen R., et al. Performance of NARITA Banana Hybrds in the Preliminary Yield Trial for Three Cycles in Uganda. NARO; Agrigento, Italy: 2017. International Institute of Tropical Agriculture (IITA): Ibadan, Nigeria. DOI
Batte M., Nyine M., Uwimana B., Swennen R., Akech V., Brown A., Hovmalm H.P., Geleta M., Ortiz R. Significant progressive heterobeltiosis in banana crossbreeding. BMC Plant Biol. 2020;20:489. doi: 10.1186/s12870-020-02667-y. PubMed DOI PMC
Thangavelu R., Saraswathi M.S., Uma S., Loganathan M., Backiyarani S., Durai P., Raj E.E., Marimuthu N., Kannan G., Swennen R. Identification of sources resistant to a virulent Fusarium wilt strain (VCG 0124) infecting Cavendish bananas. Sci. Rep. 2021;11:3183. doi: 10.1038/s41598-021-82666-7. PubMed DOI PMC
Noordin N., Hassan A.A., Mahadevan A.N.M.F., Ahmad Z., Ariffin S. Lab-based screening using hydroponic system for the rapid detection of Fusarium wilt TR4 tolerance/resistance of banana. In: Jankowicz-Cieslak J., Ingelbrecht I.L., editors. Efficient Screening Techniques to Identify Mutants with TR4 Resistance in Banana: Protocols. Springer; Berlin/Heidelberg, Germany: 2022. pp. 79–95.
Wu Y., Huang B., Peng X., Zhang J. Development of an in vitro hydroponic system for studying the interaction between banana plantlet and Fusarium oxysporum f. sp. cubense. Plant Cell Tissue Organ Cult. 2021;146:107–114. doi: 10.1007/s11240-021-02050-1. DOI
Cong L.L., Sun Y., Wang Z., Kang J.M., Zhang T.J., Biligetu B., Yang Q.C. A rapid screening method for evaluating resistance of alfalfa (Medicago sativa L.) to Fusarium root rot. Can. J. Plant Pathol. 2018;40:61–69. doi: 10.1080/07060661.2017.1402822. DOI
Thatcher L.F., Kidd B.N., Singh K.B. The Model Legume Medicago Truncatula. John Wiley & Sons; Hoboken, NJ, USA: 2020. Tools and strategies for genetic and molecular dissection of Medicago truncatula resistance against Fusarium wilt disease; pp. 331–339.
Prasath D., Matthews A., O’Neill W.T., Aitken E.A.B., Chen A. Fusarium yellows of ginger (Zingiber officinale Roscoe) caused by Fusarium oxysporum f. sp. zingiberi is associated with cultivar-specific expression of defense-responsive genes. Pathogens. 2023;12:141. doi: 10.3390/pathogens12010141. PubMed DOI PMC
Ndayihanzamaso P., Mostert D., Matthews M.C., Mahuku G., Jomanga K., Mpanda H.J., Mduma H., Brown A., Uwimana B., Swennen R., et al. Evaluation of Mchare and Matooke bananas for resistance to Fusarium oxysporum f. sp. cubense race 1. Plants. 2020;9:1082. doi: 10.3390/plants9091082. PubMed DOI PMC
Viljoen A., Mahuku G., Ssali R., Kimunye J., Mostert D., Ndayihanzamaso P., Coyne D. Banana Diseases and Pests: Field Guide for Diagnostics and Data Collection. International Institute of Tropical Agriculture; Ibadan, Nigeria: 2017. [(accessed on 27 April 2023)]. Available online: https://hdl.handle.net/10568/78518.
Li R., Yu C., Li Y., Lam T.W., Yiu S.M., Kristiansen K., Wang J. SOAP2: An improved ultrafast tool for short read alignment. Bioinformatics. 2009;25:1966–1967. doi: 10.1093/bioinformatics/btp336. PubMed DOI
Lorenc M.T., Hayashi S., Stiller J., Lee H., Manoli S., Ruperao P., Visendi P., Berkman P.J., Lai K., Batley J. Discovery of single nucleotide polymorphisms in complex genomes using SGSautoSNP. Biology. 2012;1:370–382. doi: 10.3390/biology1020370. PubMed DOI PMC
Robinson J.T., Thorvaldsdóttir H., Winckler W., Guttman M., Lander E.S., Getz G., Mesirov J.P. Integrative genomics viewer. Nat. Biotechnol. 2011;29:24–26. doi: 10.1038/nbt.1754. PubMed DOI PMC
Untergasser A., Cutcutache I., Koressaar T., Ye J., Faircloth B.C., Remm M., Rozen S.G. Primer3--new capabilities and interfaces. Nucleic Acids Res. 2012;40:e115. doi: 10.1093/nar/gks596. PubMed DOI PMC
Healey A., Furtado A., Cooper T., Henry R.J. Protocol: A simple method for extracting next-generation sequencing quality genomic DNA from recalcitrant plant species. Plant Methods. 2014;10:21. doi: 10.1186/1746-4811-10-21. PubMed DOI PMC
Chen S., Zhou Y., Chen Y., Gu J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–i890. doi: 10.1093/bioinformatics/bty560. PubMed DOI PMC
Dobin A., Gingeras T.R. Mapping RNA-seq reads with STAR. Curr. Protoc. Bioinformatics. 2015;51:11.14.11–11.14.19. doi: 10.1002/0471250953.bi1114s51. PubMed DOI PMC
Liao Y., Smyth G.K., Shi W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2013;30:923–930. doi: 10.1093/bioinformatics/btt656. PubMed DOI
Anders S., Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11:R106. doi: 10.1186/gb-2010-11-10-r106. PubMed DOI PMC
Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Benjamini Y., Hochberg Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. B Stat. Methodol. 1995;57:289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x. DOI