Allogeneic Bone Impregnated with Biodegradable Depot Delivery Systems for the Local Treatment of Joint Replacement Infections: An In Vitro Study
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SVV 260 547
MEYS CZ
Cooperatio Program (research areas SURG and PharmSci)
MEYS CZ
164122/2022
GAUK
UHHK, 00179906
MHCZ - DRO
PubMed
36235024
PubMed Central
PMC9571001
DOI
10.3390/molecules27196487
PII: molecules27196487
Knihovny.cz E-zdroje
- Klíčová slova
- PLGA, biocompatibility, bone graft, cell culture, drug delivery, hydrogel, local antibiotic, water-in-oil emulsion,
- MeSH
- antibakteriální látky farmakologie terapeutické užití MeSH
- artroplastiky kloubů * MeSH
- emulze MeSH
- gentamiciny MeSH
- lidé MeSH
- prášky, zásypy, pudry MeSH
- systémy cílené aplikace léků MeSH
- transplantace hematopoetických kmenových buněk * MeSH
- vankomycin MeSH
- voda MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- emulze MeSH
- gentamiciny MeSH
- prášky, zásypy, pudry MeSH
- vankomycin MeSH
- voda MeSH
Although progress is evident in the effective treatment of joint replacement-related infections, it still remains a serious issue in orthopedics. As an example, the local application of antibiotics-impregnated bone grafts supplies the high drug levels without systemic side effects. However, antibiotics in the powder or solution form could be a risk for local toxicity and do not allow sustained drug release. The present study evaluated the use of an antibiotic gel, a water-in-oil emulsion, and a PLGA microparticulate solid dispersion as depot delivery systems impregnating bone grafts for the treatment of joint replacement-related infections. The results of rheological and bioadhesive tests revealed the suitability of these formulations for the impregnation of bone grafts. Moreover, no negative effect on proliferation and viability of bone marrow mesenchymal stem cells was detected. An ex vivo dissolution test of vancomycin hydrochloride and gentamicin sulphate from the impregnated bone grafts showed a reduced burst and prolonged drug release. The PLGA-based formulation proved to be particularly promising, as one-day burst release drugs was only 15% followed with sustained antibiotics release with zero-order kinetics. The results of this study will be the basis for the development of a new product in the Tissue Section of the University Hospital for the treatment of bone defects and infections of joint replacements.
Zobrazit více v PubMed
Basile G., Gallina M., Passeri A., Gaudio R.M., Castelnuovo N., Ferrante P., Calori G.M. Prosthetic joint infections and legal disputes: A threat to the future of prosthetic orthopedics. J. Orthop. Traumatol. 2021;22:44. doi: 10.1186/s10195-021-00607-6. PubMed DOI PMC
Kapadia B.H., Berg R.A., Daley J.A., Fritz J., Bhave A., Mont M.A. Periprosthetic joint infection. Lancet. 2016;387:386–394. doi: 10.1016/S0140-6736(14)61798-0. PubMed DOI
Diefenbeck M., Mückley T., Hofmann G.O. Prophylaxis and treatment of implant-related infections by local application of antibiotics. Injury. 2006;37((Suppl. 2)):S95–S104. doi: 10.1016/j.injury.2006.04.015. PubMed DOI
Anagnostakos K., Schröder K. Antibiotic-impregnated bone grafts in orthopaedic and trauma surgery: A systematic review of the literature. Int. J. Biomater. 2012;2012:538061. doi: 10.1155/2012/538061. PubMed DOI PMC
Peeters A., Putzeys G., Thorrez L. Current Insights in the Application of Bone Grafts for Local Antibiotic Delivery in Bone Reconstruction Surgery. J. Bone Jt. Infect. 2019;4:245–253. doi: 10.7150/jbji.38373. PubMed DOI PMC
Winkler H., Kaudela K., Stoiber A., Menschik F. Bone grafts impregnated with antibiotics as a tool for treating infected implants in orthopedic surgery-one stage revision results. Cell Tissue Bank. 2006;7:319–323. doi: 10.1007/s10561-006-9010-3. PubMed DOI
Bidossi A.M., Logoluso N., De Vecchi E. In Vitro Evaluation of Gentamicin or Vancomycin Containing Bone Graft Substitute in the Prevention of Orthopedic Implant-Related Infections. Int. J. Mol. Sci. 2020;21:9250. doi: 10.3390/ijms21239250. PubMed DOI PMC
Winkler H., Janata O., Berger C., Wein W., Georgopoulos A. In vitro release of vancomycin and tobramycin from impregnated human and bovine bone grafts. J. Antimicrob. Chemother. 2000;46:423–428. doi: 10.1093/jac/46.3.423. PubMed DOI
Klapkova E., Nescakova M., Melichercik P., Jahoda D., Dunovska K., Cepova J., Prusa R. Vancomycin and its crystalline degradation products released from bone grafts and different types of bone cement. Folia Microbiol. (Praha) 2020;65:475–482. doi: 10.1007/s12223-019-00752-w. PubMed DOI
Frazer R.Q., Byron R.T., Osborne P.B., West K.P. PMMA: An essential material in medicine and dentistry. J. Long Term Eff. Med. Implants. 2005;15:629–639. doi: 10.1615/JLongTermEffMedImplants.v15.i6.60. PubMed DOI
El-Husseiny M., Patel S., MacFarlane R.J., Haddad F.S. Biodegradable antibiotic delivery systems. J. Bone Joint Surg. Br. 2011;93:151–157. doi: 10.1302/0301-620X.93B2.24933. PubMed DOI
Duminis T., Shahid S., Hill R.G. Apatite Glass-Ceramics: A Review. Front. Mater. 2017;3:1–15. doi: 10.3389/fmats.2016.00059. DOI
Garvin K., Feschuk C. Polylactide-polyglycolide antibiotic implants. Clin. Orthop. Relat. Res. 2005;437:105–110. doi: 10.1097/01.blo.0000175720.99118.fe. PubMed DOI
Kanellakopoulou K., Giamarellos-Bourboulis E.J. Carrier Systems for the Local Delivery of Antibiotics in Bone Infections. Drugs. 2000;59:1223–1232. doi: 10.2165/00003495-200059060-00003. PubMed DOI
Kucera T., Ryskova L., Soukup T., Malakova J., Cermakova E., Mericka P., Suchanek J., Sponer P. Elution kinetics of vancomycin and gentamicin from carriers and their effects on mesenchymal stem cell proliferation: An in vitro study. BMC Musculoskelet. Disord. 2017;18:381. doi: 10.1186/s12891-017-1737-4. PubMed DOI PMC
Colucci G., Santamaria-Echart A., Silva S.C., Fernandes I.P.M., Sipoli C.C., Barreiro M.F. Development of Water-in-Oil Emulsions as Delivery Vehicles and Testing with a Natural Antimicrobial Extract. Molecules. 2020;25:2105. doi: 10.3390/molecules25092105. PubMed DOI PMC
McClements D.J., Jafari S.M. Improving emulsion formation, stability and performance using mixed emulsifiers: A review. Adv. Colloid Interface Sci. 2018;251:55–79. doi: 10.1016/j.cis.2017.12.001. PubMed DOI
Zhu Q., Pan Y., Jia X., Li J., Zhang M., Yin L. Review on the Stability Mechanism and Application of Water-in-Oil Emulsions Encapsulating Various Additives. Compr. Rev. Food Sci. Food Saf. 2019;18:1660–1675. doi: 10.1111/1541-4337.12482. PubMed DOI
Bjerregaard S., Pedersen H., Vedstesen H., Vermehren C., Söderberg I., Frokjaer S. Parenteral water/oil emulsions containing hydrophilic compounds with enhanced in vivo retention: Formulation, rheological characterisation and study of in vivo fate using whole body gamma-scintigraphy. Int. J. Pharm. 2001;215:13–27. doi: 10.1016/S0378-5173(00)00656-6. PubMed DOI
Penn-Barwell J.G., Murray C.K., Wenke J.C. Local antibiotic delivery by a bioabsorbable gel is superior to PMMA bead depot in reducing infection in an open fracture model. J. Orthop. Trauma. 2014;28:370–375. doi: 10.1097/BOT.0b013e3182a7739e. PubMed DOI
Khiste R., Bhapkar N., Kulkarni N. A Review on Applications of Hydroxy Propyl Methyl Cellulose and Natural polymers for the development of modified release drug delivery systems. Res. J. Pharm. Technol. 2021;14:1163–1170. doi: 10.5958/0974-360X.2021.00208.0. DOI
Mašková E., Kubová K., Raimi-Abraham B.T., Vllasaliu D., Vohlídalová E., Turánek J., Mašek J. Hypromellose-A traditional pharmaceutical excipient with modern applications in oral and oromucosal drug delivery. J. Control. Release. 2020;324:695–727. doi: 10.1016/j.jconrel.2020.05.045. PubMed DOI
Vallejo Diaz A., Deimling C., Morgenstern M., D’Este M., Puetzler J., Zeiter S., Arens D., Metsemakers W.J., Richards R.G., Eglin D., et al. Local Application of a Gentamicin-Loaded Hydrogel Early After Injury Is Superior to Perioperative Systemic Prophylaxis in a Rabbit Open Fracture Model. J. Orthop. Trauma. 2020;34:231–237. doi: 10.1097/BOT.0000000000001707. PubMed DOI
Aguilera-Correa J.J., Garcia-Casas A., Mediero A., Romera D., Mulero F., Cuevas-López I., Jiménez-Morales A., Esteban J. A New Antibiotic-Loaded Sol-Gel Can Prevent Bacterial Prosthetic Joint Infection: From in vitro Studies to an in vivo Model. Front. Microbiol. 2019;10:2935. doi: 10.3389/fmicb.2019.02935. PubMed DOI PMC
Ren T., Chen J., Qi P., Xiao P., Wang P. Goserelin/PLGA solid dispersion used to prepare long-acting microspheres with reduced initial release and reduced fluctuation of drug serum concentration in vivo. Int. J. Pharm. 2022;615:121474. doi: 10.1016/j.ijpharm.2022.121474. PubMed DOI
Martins C., Sousa F., Araújo F., Sarmento B. Functionalizing PLGA and PLGA Derivatives for Drug Delivery and Tissue Regeneration Applications. Adv. Healthc. Mater. 2018;7:1701035. doi: 10.1002/adhm.201701035. PubMed DOI
Snejdrova E., Dittrich M., Drastik M. Plasticized branched aliphatic oligoesters as potential mucoadhesive drug carriers. Int. J. Pharm. 2013;458:282–286. doi: 10.1016/j.ijpharm.2013.10.030. PubMed DOI
Jin S., Xia X., Huang J., Yuan C., Zuo Y., Li Y., Li J. Recent advances in PLGA-based biomaterials for bone tissue regeneration. Acta Biomater. 2021;127:56–79. doi: 10.1016/j.actbio.2021.03.067. PubMed DOI
Han F.Y., Thurecht K.J., Whittaker A.K., Smith M.T. Bioerodable PLGA-Based Microparticles for Producing Sustained-Release Drug Formulations and Strategies for Improving Drug Loading. Front. Pharmacol. 2016;7:1–11. doi: 10.3389/fphar.2016.00185. PubMed DOI PMC
Snejdrova E., Loskot J., Martiska J., Soukup T., Prokes L., Frolov V., Kucera T. Rifampicin-loaded PLGA nanoparticles for local treatment of musculoskeletal infections: Formulation and characterization. J. Drug Deliv. Sci. Technol. 2022;73:103435. doi: 10.1016/j.jddst.2022.103435. DOI
Snejdrova E., Martiška J., Loskot J., Paraskevopoulos G., Kováčik A., Regdon Jr G., Budai-Szűcs M., Palát K., Konečná K. PLGA-based film forming systems for superficial fungal infections treatment. Eur. J. Pharm. Sci. 2021;163:105855. doi: 10.1016/j.ejps.2021.105855. PubMed DOI
Bayer I.S. Recent Advances in Mucoadhesive Interface Materials, Mucoadhesion Characterization, and Technologies. Adv. Mater. Interfaces. 2022;9:2200211. doi: 10.1002/admi.202200211. DOI
Nair A.K., Gautieri A., Chang S.W., Buehler M.J. Molecular mechanics of mineralized collagen fibrils in bone. Nat. Commun. 2013;4:1724–1732. doi: 10.1038/ncomms2720. PubMed DOI PMC
Szűcs M., Sandri G., Bonferoni M.C., Caramella C.M., Vaghi P., Szabó-Révész P., Erős I. Mucoadhesive behaviour of emulsions containing polymeric emulsifier. Eur. J. Pharm. Sci. 2008;34:226–235. doi: 10.1016/j.ejps.2008.03.005. PubMed DOI
Baus R.A., Zahir-Jouzdani F., Dünnhaupt S., Atyabi F., Bernkop-Schnürch A. Mucoadhesive hydrogels for buccal drug delivery: In vitro-in vivo correlation study. Eur. J. Pharm. Biopharm. 2019;142:498–505. doi: 10.1016/j.ejpb.2019.07.019. PubMed DOI
Prochazka E., Soukup T., Hroch M., Fuksa L., Brcakova E., Cermanova J., Kolouchova G., Urban K., Mokry J., Micuda S. Methotrexate released in vitro from bone cement inhibits human stem cell proliferation in S/G2 phase. Int. Orthop. 2010;34:137–142. doi: 10.1007/s00264-008-0717-6. PubMed DOI PMC
Boltnarova B., Kubackova J., Skoda J., Stefela A., Smekalova M., Svacinova P., Pavkova I., Dittrich M., Scherman D., Zbytovska J., et al. PLGA-based Nanospheres as a Potent Macrophage-Specific Drug Delivery System. Nanomaterials. 2021;11:749. doi: 10.3390/nano11030749. PubMed DOI PMC
Safety and Efficacy of Hydroxypropyl Methyl Cellulose for All Animal Species. [(accessed on 2 August 2022)]. Available online: https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2020.6214. DOI
Siepmann J., Peppas N.A. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC) Adv. Drug Deliv. Rev. 2001;48:139–157. doi: 10.1016/S0169-409X(01)00112-0. PubMed DOI
Bode C., Kranz H., Fivez A., Siepmann F., Siepmann J. Often neglected: PLGA/PLA swelling orchestrates drug release: HME implants. J. Control. Release. 2019;306:97–107. doi: 10.1016/j.jconrel.2019.05.039. PubMed DOI
Yeh C.-C., Chen C.-N., Li Y.-T., Chang C.-W., Cheng M.-Y., Chang H.-I. The Effect of Polymer Molecular Weight and UV Radiation on Physical Properties and Bioactivities of PCL Films. Cell. Polym. 2011;30:261–276. doi: 10.1177/026248931103000503. DOI
Snejdrova E., Podzimek S., Martiska J., Holas O., Dittrich M. Branched PLGA derivatives with tailored drug delivery properties. Acta Pharm. 2020;70:63–75. doi: 10.2478/acph-2020-0011. PubMed DOI
Reyes M., Lund T., Lenvik T., Aguiar D., Koodie L., Verfaillie C.M. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood. 2001;98:2615–2625. doi: 10.1182/blood.V98.9.2615. PubMed DOI