Elution kinetics of vancomycin and gentamicin from carriers and their effects on mesenchymal stem cell proliferation: an in vitro study
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
28865450
PubMed Central
PMC5581458
DOI
10.1186/s12891-017-1737-4
PII: 10.1186/s12891-017-1737-4
Knihovny.cz E-zdroje
- Klíčová slova
- Local antibiotic carriers, Musculoskeletal infections, Stem cells,
- MeSH
- antibakteriální látky aplikace a dávkování farmakokinetika MeSH
- gentamiciny aplikace a dávkování farmakokinetika MeSH
- kinetika MeSH
- kohortové studie MeSH
- koně MeSH
- kostní cementy farmakokinetika MeSH
- lidé MeSH
- mezenchymální kmenové buňky účinky léků metabolismus MeSH
- nosiče léků aplikace a dávkování farmakokinetika MeSH
- proliferace buněk účinky léků fyziologie MeSH
- vankomycin aplikace a dávkování farmakokinetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- gentamiciny MeSH
- kostní cementy MeSH
- nosiče léků MeSH
- vankomycin MeSH
BACKGROUND: Musculoskeletal infections remain a major complication in orthopedic surgery. The local delivery of antibiotics provides the high levels required to treat an infection without systemic toxicity. However, the local toxicity of antibiotic carriers to the mesenchymal stem cells, as a result of both the peak concentrations and the type of carrier, may be significant. METHODS: To address this concern, the elution kinetics of vancomycin and gentamicin from several commercially available antibiotic carriers and several carriers impregnated by a surgeon (10 ml of each sterile carrier were manually mixed with a 500 mg vancomycin and an 80 mg gentamicin solution, and the duration of impregnation was 30 min) were assessed. Moreover, the effects of these antibiotic carriers on stem cell proliferation were investigated. The following two types of stem cells were used: bone marrow and dental pulp stem cells. RESULTS: The high eluted initial concentrations from antibiotic impregnated cancellous allogeneic bone grafts (which may be increased with the addition of fibrin glue) did not adversely affect stem cell proliferation. Moreover, an increased dental pulp stem cell proliferation rate in the presence of antibiotics was identified. In contrast to allogeneic bone grafts, a significant amount of antibiotics remained in the cement. Despite the favorable elution kinetics, the calcium carriers, bovine collagen carrier and freeze-dried bone exhibited decreased stem cell proliferation activity even in lower antibiotic concentrations compared with an allogeneic graft. CONCLUSIONS: This study demonstrated the benefits of antibiotic impregnated cancellous allogeneic bone grafts versus other carriers.
Zobrazit více v PubMed
Engesæter L, Lie SA, Espehaug B, et al. Antibiotic prophylaxis in total hip arthroplasty: effects of antibiotic prophylaxis systemically and in bone cement on the revision rate of 22,170 primary hip replacements followed 0–14 years in the Norwegian arthroplasty register. Acta Orthop. 2003;74:644–651. doi: 10.1080/00016470310018135. PubMed DOI
Boo G-JA, Grijpma DW, Moriarty TF, et al. Antimicrobial delivery systems for local infection prophylaxis in orthopedic- and trauma surgery. Biomaterials. 2015;52:113–125. doi: 10.1016/j.biomaterials.2015.02.020. PubMed DOI
Neut D. Biomaterial-associated infection of gentamicin-loaded PMMA beads in orthopaedic revision surgery. J Antimicrob Chemother. 2001;47:885–891. doi: 10.1093/jac/47.6.885. PubMed DOI
Winkler H. In vitro release of vancomycin and tobramycin from impregnated human and bovine bone grafts. J Antimicrob Chemother. 2000;46:423–428. doi: 10.1093/jac/46.3.423. PubMed DOI
Anagnostakos K, Kelm J. Enhancement of antibiotic elution from acrylic bone cement. J Biomed Mater Res B Appl Biomater. 2009;90-B:467–475. doi: 10.1002/jbm.b.31281. PubMed DOI
Anagnostakos K, Schröder K. Antibiotic-impregnated bone grafts in orthopaedic and trauma surgery: A systematic review of the literature. Int J Biomater. 2012;2012:538061. doi:10.1155/2012/538061. PubMed PMC
Kleplová T, Soukup T, Řeháček V, et al. Human dental pulp stem cells-isolation and long term cultivation. Acta Med Austriaca. 2007;50:195–201. PubMed
Suchanek J, Soukup T, Visek B, et al. Dental pulp stem cells and their characterization. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2009;153:31–35. doi: 10.5507/bp.2009.005. PubMed DOI
Prochazka E, Soukup T, Hroch M, et al. Methotrexate released in vitro from bone cement inhibits human stem cell proliferation in S/G2 phase. Int Orthop. 2009;34:137–142. doi: 10.1007/s00264-008-0717-6. PubMed DOI PMC
Reyes M, Lund T, Lenvik T, et al. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood. 2001;98:2615–2625. doi: 10.1182/blood.V98.9.2615. PubMed DOI
Lewis G, Janna S. The in vitro elution of gentamicin sulfate from a commercially available gentamicin-loaded acrylic bone cement, versabond (TM) AB. J Biomed Mater Res. 2004;71-B:77–83. doi: 10.1002/jbm.b.30069. PubMed DOI
Powles JW, Spencer RF, Lovering AM. Gentamicin release from old cement during revision hip arthroplasty. J Bone Joint Surg. 1998;80-A:607–610. doi: 10.1302/0301-620X.80B4.8555. PubMed DOI
Friess W. Collagen – biomaterial for drug delivery. Eur J Pharm Biopharm. 1998;45:113–136. doi: 10.1016/S0939-6411(98)00017-4. PubMed DOI
Coraça-Huber D, Hausdorfer J, Fille M, et al. Calcium carbonate powder containing gentamicin for mixing with bone grafts. Orthopedics. 2014;37:e669–e672. doi: 10.3928/01477447-20140728-50. PubMed DOI
Stallmann HP, Faber C, Bronckers ALJJ, et al. In vitro gentamicin release from commercially available calcium-phosphate bone substitutes influence of carrier type on duration of the release profile. BMC Musculoskelet Disord. 2006;7:18. doi: 10.1186/1471-2474-7-18. PubMed DOI PMC
Winkler H, Stoiber A, Kaudela K, et al. One stage uncemented revision of infected total hip replacement using cancellous allograft bone impregnated with antibiotics. J Bone Joint Surg. 2008;90-B:1580–1584. doi: 10.1302/0301-620X.90B12.20742. PubMed DOI
Cornu O, Banse X, Docquier PL, et al. Effect of freeze-drying and gamma irradiation on the mechanical properties of human cancellous bone. J Orthop Res. 2000;18:426–431. doi: 10.1002/jor.1100180314. PubMed DOI
Lewis CS, Supronowicz PR, Zhukauskas RM, et al. Local antibiotic delivery with demineralized bone matrix. Cell Tissue Bank. 2011;13:119–127. doi: 10.1007/s10561-010-9236-y. PubMed DOI
Rathbone CR, Cross JD, Brown KV, et al. Effect of various concentrations of antibiotics on osteogenic cell viability and activity. J Orthop Res. 2011;29:1070–1074. doi: 10.1002/jor.21343. PubMed DOI
Kuehn K-D, Ege W, Gopp U. Acrylic bone cements: composition and properties. Orthop Clin North Am. 2005;36:17–28. doi: 10.1016/j.ocl.2004.06.010. PubMed DOI
Meyer J, Piller G, Spiegel CA, et al. Vacuum-mixing significantly changes antibiotic elution characteristics of commercially available antibiotic-impregnated bone cements. J Bone Joint Surg. 2011;93-A:2049–2056. doi: 10.2106/JBJS.J.01777. PubMed DOI
Bormann N, Schwabe P, Smith MD, et al. Analysis of parameters influencing the release of antibiotics mixed with bone grafting material using a reliable mixing procedure. Bone. 2014;59:162–172. doi: 10.1016/j.bone.2013.11.005. PubMed DOI
Dual Infection of an Open Fracture Caused by Mycobacterium setense and Clostridium celerecrescens