Dual Infection of an Open Fracture Caused by Mycobacterium setense and Clostridium celerecrescens
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu kazuistiky, časopisecké články
Grantová podpora
NU20-09-00114
Czech Health Research Council
PubMed
36140033
PubMed Central
PMC9495126
DOI
10.3390/antibiotics11091254
PII: antibiotics11091254
Knihovny.cz E-zdroje
- Klíčová slova
- fracture-related infection, nontuberculous mycobacteria, post-traumatic osteomyelitis, rapidly growing mycobacteria,
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
Infections caused by Mycobacterium setense or Clostridium celerecrescens are extremely rare. In this report, for the first time a dual infection with these two pathogens is described. An 18-year-old female suffered multiple injuries, including an open comminuted fracture of the right humeral diaphysis after falling from a fifth-floor balcony in January 2019. Five months after the accident, a fistula appeared in the scar, reaching the bone tissue. M. setense and C. celerecrescens were cultured from sinus swabs and subsequently from perioperative samples. The patient was initially treated with a combination of intravenous antibiotics (ATBs): imipenem, amikacin, and ciprofloxacin. One month after the fracture fixation with a titanium nail, C. celerecrescens was again detected; therefore, metronidazole was added to the therapy. A triple combination of oral (PO) ATBs (trimethoprim-sulfamethoxazole, moxifloxacin, and metronidazole) followed, 8 weeks after the initial intravenous therapy. C. celerecrescens was cultured again two times, most recently in November 2019, when surgical debridement was supplemented by the topical administration of cancellous bone impregnated with vancomycin. Signs of bone healing were found at follow-ups and ATB treatment was finished in March 2020 after a total of 9 months of therapy. To this day, there have been no signs of reinfection. This case thus illustrates the need for a combination of systemic and individualized local therapy in the treatment of complicated cases of dual infections with rare pathogens.
Zobrazit více v PubMed
McNally M., Corrigan R., Sliepen J., Dudareva M., Rentenaar R., IJpma F., Atkins B.L., Wouthuyzen-Bakker M., Govaert G. What Factors Affect Outcome in the Treatment of Fracture-Related Infection? Antibiotics. 2022;11:946. doi: 10.3390/antibiotics11070946. PubMed DOI PMC
Depypere M., Morgenstern M., Kuehl R., Senneville E., Moriarty T.F., Obremskey W.T., Zimmerli W., Trampuz A., Lagrou K., Metsemakers W.J. Pathogenesis and management of fracture-related infection. Clin. Microbiol. Infect. 2020;26:572–578. doi: 10.1016/j.cmi.2019.08.006. PubMed DOI
Kuehl R., Tschudin-Sutter S., Morgenstern M., Dangel M., Egli A., Nowakowski A., Suhm N., Theilacker C., Widmer A.F. Time-dependent differences in management and microbiology of orthopaedic internal fixation-associated infections: An observational prospective study with 229 patients. Clin. Microbiol. Infect. 2019;25:76–81. doi: 10.1016/j.cmi.2018.03.040. PubMed DOI
Depypere M., Sliepen J., Onsea J., Debaveye Y., Govaert G., IJpma F., Zimmerli W., Metsemakers W.J. The Microbiological Etiology of Fracture-Related Infection. Front. Cell. Infect. Microbiol. 2022;12:934485. doi: 10.3389/fcimb.2022.934485. PubMed DOI PMC
Lamy B., Marchandin H., Hamitouche K., Laurent F. Mycobacterium setense sp. nov., a Mycobacterium fortuitum-group organism isolated from a patient with soft tissue infection and osteitis. Int. J. Syst. Evol. Microbiol. 2008;58:486–490. doi: 10.1099/ijs.0.65222-0. PubMed DOI
Mormeneo Bayo S., Ferrer Cerón I., Martín Juste P., Lallana Dupla J., Millán Lou M.I., García-Lechuz Moya J.M. A review of difficult-to-treat post-traumatic osteomyelitis: Role of Clostridium celerecrescens. Rev. Esp. Cir. Ortop. Traumatol. (Engl. Ed.) 2020;64:281–285. doi: 10.1016/j.recote.2019.12.002. (In English, Spanish) PubMed DOI
Pavlik I., Ulmann V., Weston R.T. Clinical relevance and environmental prevalence of Mycobacterium fortuitum group members. Comment on Mugetti et al. gene sequencing and phylogenetic analysis: Powerful tools for an improved diagnosis of fish mycobacteriosis caused by Mycobacterium fortuitum group members. Microorganisms. 2021;9:2345. doi: 10.3390/microorganisms9112345. PubMed DOI PMC
Toro A., Adekambi T., Cheynet F., Fournier P.E., Drancourt M. Mycobacterium setense infection in humans. Emerg. Infect. Dis. 2008;14:1330–1332. doi: 10.3201/eid1408.080179. PubMed DOI PMC
Kušar D., Zajc U., Jenčič V., Ocepek M., Higgins J., Žolnir-Dovč M., Pate M. Mycobacteria in aquarium fish: Results of a 3-year survey indicate caution required in handling pet-shop fish. J. Fish Dis. 2017;40:773–784. doi: 10.1111/jfd.12558. PubMed DOI
Mugetti D., Tomasoni M., Pastorino P., Esposito G., Menconi V., Dondo A., Prearo M. Gene Sequencing and Phylogenetic Analysis: Powerful Tools for an Improved Diagnosis of Fish Mycobacteriosis Caused by Mycobacterium fortuitum Group Members. Microorganisms. 2021;10:797. doi: 10.3390/microorganisms9040797. PubMed DOI PMC
Apostolopoulos N., Prenger-Berninghoff E., Wildermuth B., Moser I., Hillemann D., Nobach D., Herden C., Ewers C., Thom N. Mycobacterium setense isolated from a cat with atypical mycobacterial panniculitis. Tierarztl. Prax. Ausg. K Kleintiere Heimtiere. 2021;49:390–396. doi: 10.1055/a-1528-1763. (In English) PubMed DOI
Shojaei H., Heidarieh P., Hashemi A., Feizabadi M.M., Daei Naser A. Species identification of neglected nontuberculous mycobacteria in a developing country. Jpn. J. Infect. Dis. 2011;64:265–271. doi: 10.7883/yoken.64.265. PubMed DOI
Hatakeyama S., Ohama Y., Okazaki M., Nukui Y., Moriya K. Antimicrobial susceptibility testing of rapidly growing mycobacteria isolated in Japan. BMC Infect. Dis. 2017;7:197. doi: 10.1186/s12879-017-2298-8. PubMed DOI PMC
Bouam A., Levasseur A., Drancourt M. Draft Genome Sequence of Mycobacterium setense CSUR47. Genome Announc. 2018;18:e01415–e01417. doi: 10.1128/genomeA.01415-17. PubMed DOI PMC
Azadi D., Shojaei H., Pourchangiz M., Dibaj R., Davarpanah M., Naser A.D. Species diversity and molecular characterization of nontuberculous mycobacteria in hospital water system of a developing country, Iran. Microb. Pathog. 2016;100:62–69. doi: 10.1016/j.micpath.2016.09.004. PubMed DOI
Keikha M. Case report of isolation of Mycobacterium setense from a hospital water supply. Environ. Dis. 2018;3:52–54. doi: 10.4103/ed.ed_8_18. DOI
Davarpanah M., Azadi D., Shojaei H. Prevalence and molecular characterization of non-tuberculous mycobacteria in hospital soil and dust of a developing country, Iran. Microbiology. 2019;165:1306–1314. doi: 10.1099/mic.0.000857. PubMed DOI
Siavashifar M., Rezaei F., Motallebirad T., Azadi D., Absalan A., Naserramezani Z., Golshani M., Jafarinia M., Ghaffari K. Species diversity and molecular analysis of opportunistic Mycobacterium, Nocardia and Rhodococcus isolated from the hospital environment in a developing country, a potential resources for nosocomial infection. Genes Environ. 2021;28:43. doi: 10.1186/s41021-021-00173-7. PubMed DOI PMC
Pang H., Li G., Wan L., Jiang Y., Liu H., Zhao X., Zhao Z., Wan K. In vitro drug susceptibility of 40 international reference rapidly growing mycobacteria to 20 antimicrobial agents. Int. J. Clin. Exp. Med. 2015;15:15423–15431. PubMed PMC
Varghese B., Al-Hajoj S. A global update on rare non-tuberculous mycobacteria in humans: Epidemiology and emergence. Int. J. Tuberc. Lung Dis. 2020;24:214–223. doi: 10.5588/ijtld.19.0194. PubMed DOI
Palop M.L., Valles S., Pinaga F., Flors A. Isolation and characterization of an anaerobic, cellulolytic bacterium, Clostridium celerecrescens sp. nov. Int. J. Syst. Evol. Microbiol. 1989;39:68–71. doi: 10.1099/00207713-39-1-68. DOI
Glazunova O.O., Raoult D., Roux V. First identification of Clostridium celerecrescens in liquid drained from an abscess. J. Clin. Microbiol. 2005;43:3007–3008. doi: 10.1128/JCM.43.6.3007-3008.2005. PubMed DOI PMC
Mischnik A., Zimmermann S., Bekeredjian-Ding I., Egermann M. Relapse of posttraumatic osteomyelitis due to Clostridium celerecrescens. Infection. 2011;39:491–494. doi: 10.1007/s15010-011-0125-5. PubMed DOI
Griffith D.E., Aksamit T., Brown-Elliott B.A., Catanzaro A., Daley C., Gordin F., Holland S.M., Horsburgh R., Huitt G., Iademarco M.F., et al. An official ATS/IDSA statement: Diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am. J. Respir. Crit. Care Med. 2007;175:367–416. doi: 10.1164/rccm.200604-571ST. PubMed DOI
Wi Y.M. Treatment of extrapulmonary nontuberculous mycobacterial diseases. Infect. Chemother. 2019;51:245–255. doi: 10.3947/ic.2019.51.3.245. PubMed DOI PMC
Kucera T., Ryskova L., Soukup T., Malakova J., Cermakova E., Mericka P., Suchanek J., Sponer P. Elution kinetics of vancomycin and gentamicin from carriers and their effects on mesenchymal stem cell proliferation: An in vitro study. BMC Musculoskelet. Disord. 2017;2:381. doi: 10.1186/s12891-017-1737-4. PubMed DOI PMC
Adekambi T., Colson P., Drancourt M. rpoB-based identification of nonpigmented and late-pigmenting rapidly growing mycobacteria. J. Clin. Microbiol. 2003;41:5699–5708. doi: 10.1128/JCM.41.12.5699-5708.2003. PubMed DOI PMC
Chakravorty S., Helb D., Burday M., Connell N., Alland D. A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. J. Microbiol. Methods. 2007;69:330–339. doi: 10.1016/j.mimet.2007.02.005. PubMed DOI PMC
CLSI . Susceptibility Testing of Mycobacteria, Nocardia spp, and Other Aerobic Actinomyces. 3rd ed. Volume M24 Clinical and Laboratory Standards Institute; Wayne, PA, USA: 2018.