Interaction potential of the multitargeted receptor tyrosine kinase inhibitor dovitinib with drug transporters and drug metabolising enzymes assessed in vitro
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
25521244
PubMed Central
PMC4279137
DOI
10.3390/pharmaceutics6040632
PII: pharmaceutics6040632
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Dovitinib (TKI-258) is under development for the treatment of diverse cancer entities. No published information on its pharmacokinetic drug interaction potential is available. Thus, we assessed its interaction with important drug metabolising enzymes and drug transporters and its efficacy in multidrug resistant cells in vitro. P-glycoprotein (P-gp, MDR1, ABCB1) inhibition was evaluated by calcein assay, inhibition of breast cancer resistance protein (BCRP, ABCG2) by pheophorbide A efflux, and inhibition of organic anion transporting polypeptides (OATPs) by 8-fluorescein-cAMP uptake. Inhibition of cytochrome P450 3A4, 2C19, and 2D6 was assessed by using commercial kits. Induction of transporters and enzymes was quantified by real-time RT-PCR. Possible aryl hydrocarbon receptor (AhR) activating properties were assessed by a reporter gene assay. Substrate characteristics were evaluated by growth inhibition assays in cells over-expressing P-gp or BCRP. Dovitinib weakly inhibited CYP2C19, CYP3A4, P-gp and OATPs. The strongest inhibition was observed for BCRP (IC50 = 10.3 ± 4.5 μM). Among the genes investigated, dovitinib only induced mRNA expression of CYP1A1, CYP1A2, ABCC3 (coding for multidrug resistance-associated protein 3), and ABCG2 and suppressed mRNA expression of some transporters and drug metabolising enzymes. AhR reporter gene assay demonstrated that dovitinib is an activator of this nuclear receptor. Dovitinib retained its efficacy in cell lines over-expressing P-gp or BCRP. Our analysis indicates that dovitinib will most likely retain its efficacy in tumours over-expressing P-gp or BCRP and gives first evidence that dovitinib might act as a perpetrator drug in pharmacokinetic drug-drug interactions.
Zobrazit více v PubMed
Kim K.B., Saro J., Moschos S.S., Hwu P., Tarhini A.A., Hwu W., Jones G., Wang Y., Rupani H., Kirkwood J.W. A phase I dose finding and biomarker study of TKI258 (dovitinib lactate) in patients with advanced melanoma. J. Clin. Oncol. 2008;26:9026.
André F., Bachelot T., Campone M., Dalenc F., Perez-Garcia J.M., PHurvitz S.A., Turner N., Rugo H., Smith J.W., Deudon S., et al. Targeting FGFR with Dovitinib (TKI258): Preclinical and Clinical Data in Breast Cancer. Clin. Cancer Res. 2013;19:3693–3702. doi: 10.1158/1078-0432.CCR-13-0190. PubMed DOI
Angevin E., Lopez-Martin J.A., Lin C.C., Gschwend J.E., Harzstark A., Castellano D., Soria J.C., Sen P., Chang J., Shi M., et al. Phase I study of dovitinib (TKI258); an oral FGFR; VEGFR; and PDGFR inhibitor; in advanced or metastatic renal cell carcinoma. Clin. Cancer Res. 2013;19:1257–1268. doi: 10.1158/1078-0432.CCR-12-2885. PubMed DOI
Kang Y.K., Yoo C., Ryoo B.Y., Lee J.J., Tan E., Park I., Park J.H., Choi Y.J., Jo J., Ryu J.S., et al. Phase II study of dovitinib in patients with metastatic and/or unresectable gastrointestinal stromal tumours after failure of imatinib and sunitinib. Br. J. Cancer. 2013;109:2309–2315. PubMed PMC
Konecny G.E., Kolarova T., O’Brien N.A., Winterhoff B., Yang G., Qi J., Qi Z., Venkatesan N., Ayala R., Luo T., et al. Activity of the fibroblast growth factor receptor inhibitors dovitinib (TKI258) and NVP-BGJ398 in human endometrial cancer cells. Mol. Cancer Ther. 2013;12:632–642. doi: 10.1158/1535-7163.MCT-12-0999. PubMed DOI
Tai W.T., Cheng A.L., Shiau C.W., Liu C.Y., Ko C.H., Lin M.W., Chen P.J., Chen K.F. Dovitinib induces apoptosis and overcomes sorafenib resistance in hepatocellular carcinoma through SHP-1-mediated inhibition of STAT3. Mol. Cancer Ther. 2012;11:452–463. doi: 10.1158/1535-7163.MCT-11-0412. PubMed DOI
Yoo C., Ryu M.H., Na Y.S., Ryoo B.Y., Park S.R., Kang Y.K. Analysis of serum protein biomarkers, circulating tumor DNA, and dovitinib activity in patients with tyrosine kinase inhibitor-refractory gastrointestinal stromal tumors. Ann. Oncol. 2014;25:2272–7227. PubMed
Galsky M.D., Posner M., Holcombe R.F., Lee K.M., Misiukiewicz K., Tsao C.K., Godbold J., Soto R., Gimpel-Tetra K., Lowe N., et al. Phase Ib study of dovitinib in combination with gemcitabine plus cisplatin or gemcitabine plus carboplatin in patients with advanced solid tumors. Cancer Chemother. Pharmacol. 2014;74:465–471. PubMed PMC
Escudier B., Grünwald V., Ravaud A., Ou Y.C., Castellano D., Lin C.C., Gschwend J.E., Harzstark A., Beall S., Pirotta N., et al. Phase II results of Dovitinib (TKI258) in patients with metastatic renal cell cancer. Clin. Cancer Res. 2014;20:3012–3022. doi: 10.1158/1078-0432.CCR-13-3006. PubMed DOI
Motzer R.J., Porta C., Vogelzang N.J., Sternberg C.N., Szczylik C., Zolnierek J., Kollmannsberger C., Rha S.Y., Bjarnason G.A., Melichar B., et al. Dovitinib versus sorafenib for third-line targeted treatment of patients with metastatic renal cell carcinoma: An open-label, randomised phase 3 trial. Lancet Oncol. 2014;15:286–296. PubMed PMC
Gottesman M.M., Fojo T., Bates S.E. Multidrug resistance in cancer: Role of ATP-dependent transporters. Nat. Rev. Cancer. 2002;2:48–58. doi: 10.1038/nrc706. PubMed DOI
Wang X., Kay A., Anak O., Angevin E., Escudier B., Zhou W., Feng Y., Dugan M., Schran H. Population pharmacokinetic/pharmacodynamic modeling to assist dosing schedule selection for dovitinib. J. Clin. Pharmacol. 2013;53:14–20. doi: 10.1177/0091270011433330. PubMed DOI
Weiss J., Theile D., Spalwisz A., Burhenne J., Riedel K.D., Haefeli W.E. Influence of sildenafil and tadalafil on the enzyme- and transporter-inducing effects of bosentan and ambrisentan in LS180 cells. Biochem. Pharmacol. 2013;85:265–273. doi: 10.1016/j.bcp.2012.11.020. PubMed DOI
Harmsen S., Koster A.S., Beijnen J.H., Schellens J.H., Meijerman I. Comparison of two immortalized human cell lines to study nuclear receptor-mediated CYP3A4 induction. Drug Metab. Dispos. 2008;36:1166–1171. doi: 10.1124/dmd.107.017335. PubMed DOI
Gupta A., Mugundu G.M., Desai P.B., Thummel K.E., Unadkat J.D. Intestinal human colon adenocarcinoma cell line LS180 is an excellent model to study pregnane X receptor; but not constitutive androstane receptor; mediated CYP3A4 and multidrug resistance transporter 1 induction: Studies with anti-human immunodeficiency virus protease inhibitors. Drug Metab. Dispos. 2008;36:1172–1180. doi: 10.1124/dmd.107.018689. PubMed DOI
Weiss J., Herzog M., Haefeli W.E. Differential modulation of the expression of important drug metabolising enzymes and transporters by endothelin-1 receptor antagonists ambrisentan and bosentan in vitro. Eur. J. Pharmacol. 2011;660:298–304. PubMed
Brandin H., Viitanen E., Myrberg O., Arvidsson A.K. Effects of herbal medicinal products and food supplements on induction of CYP1A2; CYP3A4 and MDR1 in the human colon carcinoma cell line LS180. Phytother. Res. 2007;21:239–244. doi: 10.1002/ptr.2057. PubMed DOI
Yamasaki D., Nakamura T., Okamura N., Kokudai M., Inui N., Takeuchi K., Watanabe H., Hirai M., Okumura K., Sakaeda T. Effects of acid and lactone forms of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors on the induction of MDR1 expression and function in LS180 cells. Eur. J. Pharm. Sci. 2009;37:126–132. doi: 10.1016/j.ejps.2009.01.009. PubMed DOI
Li W., Harper P.A., Tang B.K., Okey A.B. Regulation of cytochrome P450 enzymes by aryl hydrocarbon receptor in human cells: CYP1A2 expression in the LS180 colon carcinoma cell line after treatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin or 3-methylcholanthrene. Biochem. Pharmacol. 1998;56:599–612. doi: 10.1016/S0006-2952(98)00208-1. PubMed DOI
Harper P.A., Prokipcak R.D., Bush L.E., Golas C.L., Okey A.B. Detection and characterization of the Ah receptor for 2,3,7,8-tetrachlorodibenzo-p-dioxin in the human colon adenocarcinoma cell line LS180. Arch. Biochem. Biophys. 1991;290:27–36. doi: 10.1016/0003-9861(91)90587-9. PubMed DOI
Schinkel A.H., Wagenaar E., van Deemter L., Mol C.A., Borst P. Absence of the mdr1a P-glycoprotein in mice affects tissue distribution and pharmacokinetics of dexamethasone, digoxin, and cyclosporin A. J. Clin. Investig. 1995;96:1698–1705. doi: 10.1172/JCI118214. PubMed DOI PMC
Pavek P., Merino G., Wagenaar E., Bolscher E., Novotna M., Jonker J.W., Schinkel A.H. Human breast cancer resistance protein: Interactions with steroid drugs, hormones, the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo(4,5-b)pyridine, and transport of cimetidine. J. Pharmacol. Exp. Ther. 2005;312:144–152. doi: 10.1124/jpet.104.073916. PubMed DOI
Schinkel A.H., Wagenaar E., Mol C.A., van Deemter L. P-Glycoprotein in the blood-brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. J. Clin. Investig. 1996;97:2517–2524. doi: 10.1172/JCI118699. PubMed DOI PMC
König J., Cui Y., Nies A.T., Keppler D. Localization and genomic organization of a new hepatocellular organic anion transporting polypeptide. J. Biol. Chem. 2000;275:23161–23168. doi: 10.1074/jbc.M001448200. PubMed DOI
Köni J., Cui Y., Nies A.T., Keppler D. A novel human organic anion transporting polypeptide localized to the basolateral hepatocyte membrane. Am. J. Physiol. Gastrointest. Liver Physiol. 2000;278:G156–G164. PubMed
Novotna A., Pavek P., Dvorak Z. Novel stably transfected gene reporter human hepatoma cell line for assessment of aryl hydrocarbon receptor transcriptional activity: Construction and characterization. Environ. Sci. Technol. 2011;45:10133–10139. doi: 10.1021/es2029334. PubMed DOI
Holló Z., Homolya L., Hegedüs T., Sarkadi B. Transport properties of the multidrug resistance-associated protein (MRP) in human tumour cells. FEBS Lett. 1996;383:99–104. doi: 10.1016/0014-5793(96)00237-2. PubMed DOI
Weiss J., Dormann S.M., Martin-Facklam M., Kerpen C.J., Ketabi-Kiyanvash N., Haefeli W.E. Inhibition of P-glycoprotein by newer antidepressants. J. Pharmacol. Exp. Ther. 2003;305:197–204. doi: 10.1124/jpet.102.046532. PubMed DOI
Weiss J., Haefeli W.E. Evaluation of inhibitory potencies for compounds inhibiting P-glycoprotein but without maximum effects: f2 values. Drug Metab. Dispos. 2006;34:203–207. doi: 10.1124/dmd.105.007377. PubMed DOI
Weiss J., Rose J., Storch C.H., Ketabi-Kiyanvash N., Sauer A., Haefeli W.E., Efferth T. Modulation of human BCRP (ABCG2) activity by anti-HIV drugs. J. Antimicrob. Chemother. 2007;59:238–245. doi: 10.1093/jac/dkl474. PubMed DOI
Peters T., Lindenmaier H., Haefeli W.E., Weiss J. Interaction of the mitotic kinesin Eg5 inhibitor monastrol with P-glycoprotein. Naunyn Schmiedebergs Arch. Pharmacol. 2006;372:291–299. doi: 10.1007/s00210-005-0022-5. PubMed DOI
Albermann N., Schmitz-Winnenthal F.H., Z’graggen K., Volk C., Hoffmann M.M., Haefeli W.E., Weiss J. Expression of the drug transporters MDR1/ABCB1; MRP1/ABCC1; MRP2/ABCC2; BCRP/ABCG2; and PXR in peripheral blood mononuclear cells and their relationship with the expression in intestine and liver. Biochem. Pharmacol. 2005;70:949–958. doi: 10.1016/j.bcp.2005.06.018. PubMed DOI
König S.J., Herzog M., Theile D., Zembruski N., Haefeli W.E., Weiss J. Impact of drug transporters for the cellular resistance towards saquinavir and darunavir. J. Antimicrob. Chemother. 2010;65:2319–2328. doi: 10.1093/jac/dkq324. PubMed DOI
Dvorak Z., Vrzal R., Henklova P., Jancova P., Anzenbacherova E., Maurel P., Svecova L., Pavek P., Ehrmann J., Havlik R., et al. JNK inhibitor SP600125 is a partial agonist of human aryl hydrocarbon receptor and induces CYP1A1 and CYP1A2 genes in primary human hepatocytes. Biochem. Pharmacol. 2008;5:580–588. doi: 10.1016/j.bcp.2007.09.013. PubMed DOI
Ayed-Boussema I., Pascussi J.M., Maurel P., Bacha H., Hassen W. Zearalenone activates pregnane X receptor; constitutive androstane receptor and aryl hydrocarbon receptor and corresponding phase I target genes mRNA in primary cultures of human hepatocytes. Environ. Toxicol. Pharmacol. 2011;31:79–87. doi: 10.1016/j.etap.2010.09.008. PubMed DOI
Vandesompele J., de Preter K., Pattyn F., Poppe B., van Roy N., de Paepe A., Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3 doi: 10.1186/gb-2002-3-7-research0034. PubMed DOI PMC
Weiss J., Sauer A., Divac N., Herzog M., Schwedhelm E., Böger R.H., Haefeli W.E., Benndorf R.A. Interaction of angiotensin receptor type 1 blockers with ATP-binding cassette transporters. Biopharm. Drug Dispos. 2010;31:150–161. doi: 10.1002/bdd.699. PubMed DOI
Mandery K., Glaeser H., Fromm M.F. Interaction of innovative small molecule drugs used for cancer therapy with drug transporters. Br. J. Pharmacol. 2012;165:345–362. doi: 10.1111/j.1476-5381.2011.01618.x. PubMed DOI PMC
Sarker D., Molife R., Evans T.R., Hardie M., Marriott C., Butzberger-Zimmerli P., Morrison R., Fox J.A., Heise C., Louie S., et al. A phase I pharmacokinetic and pharmacodynamic study of TKI258; an oral; multitargeted receptor tyrosine kinase inhibitor in patients with advanced solid tumors. Clin. Cancer Res. 2008;14:2075–2081. doi: 10.1158/1078-0432.CCR-07-1466. PubMed DOI
Kim K.B., Chesney J., Robinson D., Gardner H., Shi M.M., Kirkwood J.M. Phase I/II and pharmacodynamic study of dovitinib (TKI258); an inhibitor of fibroblast growth factor receptors and VEGF receptors; in patients with advanced melanoma. Clin. Cancer Res. 2011;17:7451–7461. doi: 10.1158/1078-0432.CCR-11-1747. PubMed DOI
Xiao Z., Ding N., Xiao G., Wang S., Wu Y., Tang L. Reversal of multidrug resistance by gefitinib via RAF1/ERK pathway in pancreatic cancer cell line. Anat. Rec. 2012;295:2122–2128. doi: 10.1002/ar.22552. PubMed DOI
Garcia R., Franklin R.A., McCubrey J.A. EGF induces cell motility and multi-drug resistance gene expression in breast cancer cells. Cell Cycle. 2006;5:2820–2826. doi: 10.4161/cc.5.23.3535. PubMed DOI
McCubrey J.A., Steelman L.S., Abrams S.L., Lee J.T., Chang F., Bertrand F.E., Navolanic P.M., Terrian D.M., Franklin R.A., D’Assoro A.B., et al. Roles of the RAF/MEK/ERK and PI3K/PTEN/AKT pathways in malignant transformation and drug resistance. Adv. Enzyme Regul. 2006;46:249–279. doi: 10.1016/j.advenzreg.2006.01.004. PubMed DOI
Yang H.Y., Zhao L., Yang Z., Zhao Q., Qiang L., Ha J., Li Z.Y., You Q.D., Guo Q.L. Oroxylin A reverses multi-drug resistance of human hepatoma BEL7402/5-FU cells via downregulation of P-glycoprotein expression by inhibiting NF-κB signaling pathway. Mol. Carcinog. 2012;51:185–195. doi: 10.1002/mc.20789. PubMed DOI
Yueh M.F., Mellon P.L., Tukey R.H. Inhibition of human UGT2B7 gene expression in transgenic mice by the constitutive androstane receptor. Mol. Pharmacol. 2011;79:1053–1060. doi: 10.1124/mol.110.070649. PubMed DOI PMC
Harmsen S., Meijerman I., Maas-Bakker R.F., Beijnen J.H., Schellens J.H. PXR-mediated P-glycoprotein induction by small molecule tyrosine kinase inhibitors. Eur. J. Pharm. Sci. 2013;48:644–649. doi: 10.1016/j.ejps.2012.12.019. PubMed DOI
Ebert B., Seidel A., Lampen A. Identification of BCRP as transporter of benzo(a)pyrene conjugates metabolically formed in Caco-2 cells and its induction by Ah-receptor agonists. Carcinogenesis. 2005;26:1754–1763. doi: 10.1093/carcin/bgi139. PubMed DOI
Zhang L., Zhang Y.D., Strong J.M., Reynolds K.S., Huang S.M. A regulatory viewpoint on transporter-based drug interactions. Xenobiotica. 2008;38:709–724. doi: 10.1080/00498250802017715. PubMed DOI
Pfrunder A., Gutmann H., Beglinger C., Drewe J. Gene expression of CYP3A4; ABC-transporters (MDR1 and MRP1-MRP5) and hPXR in three different human colon carcinoma cell lines. J. Pharm. Pharmacol. 2003;55:59–66. doi: 10.1111/j.2042-7158.2003.tb02434.x. PubMed DOI
Kliewer S.A., Goodwin B., Willson T.M. The nuclear pregnane X receptor: A key regulator of xenobiotic metabolism. Endocr. Rev. 2002;23:687–702. doi: 10.1210/er.2001-0038. PubMed DOI
Urquhart B.L., Tirona R.G., Kim R.B. Nuclear receptors and the regulation of drug-metabolizing enzymes and drug transporters: Implications for interindividual variability in response to drugs. J. Clin. Pharmacol. 2007;47:566–578. doi: 10.1177/0091270007299930. PubMed DOI
Jigorel E., Le Vee M., Boursier-Neyret C., Parmentier Y., Fardel O. Differential regulation of sinusoidal and canalicular hepatic drug transporter expression by xenobiotics activating drug-sensing receptors in primary human hepatocytes. Drug Metab. Dispos. 2006;34:1756–1763. doi: 10.1124/dmd.106.010033. PubMed DOI
Teng S., Jekerle V., Piquette-Miller M. Induction of ABCC3 (MRP3) by pregnane X receptor activators. Drug Metab. Dispos. 2003;31:1296–1299. doi: 10.1124/dmd.31.11.1296. PubMed DOI
Kast H.R., Goodwin B., Tarr P.T., Jones S.A., Anisfeld A.M., Stoltz C.M., Tontonoz P., Kliewer S., Willson T.M., Edwards P.A. Regulation of multidrug resistance-associated protein 2 (ABCC2) by the nuclear receptors pregnane X receptor; farnesoid X-activated receptor; and constitutive androstane receptor. J. Biol. Chem. 2002;277:2908–2915. doi: 10.1074/jbc.M109326200. PubMed DOI
Geick A., Eichelbaum M., Burk O. Nuclear receptor response elements mediate induction of intestinal MDR1 by rifampin. J. Biol. Chem. 2001;276:14581–14587. doi: 10.1074/jbc.M010173200. PubMed DOI
Hariparsad N., Nallani S.C., Sane R.S., Buckley D.J., Buckley A.R., Desai P.B. Induction of CYP3A4 by efavirenz in primary human hepatocytes: Comparison with rifampin and phenobarbital. J. Clin. Pharmacol. 2004;44:1273–1281. doi: 10.1177/0091270004269142. PubMed DOI