Branched PLGA derivatives with tailored drug delivery properties
Jazyk angličtina Země Polsko Médium print
Typ dokumentu časopisecké články
PubMed
31677370
DOI
10.2478/acph-2020-0011
PII: acph-2020-0011
Knihovny.cz E-zdroje
- Klíčová slova
- PLGA, branching, light scattering, polymer synthesis, star polymer,
- MeSH
- chemie farmaceutická metody MeSH
- farmaceutická technologie metody MeSH
- hydrofobní a hydrofilní interakce MeSH
- kopolymer kyseliny glykolové a mléčné chemie MeSH
- nosiče léků chemie MeSH
- reologie MeSH
- systémy cílené aplikace léků * MeSH
- uvolňování léčiv MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kopolymer kyseliny glykolové a mléčné MeSH
- nosiče léků MeSH
Despite several shortcomings such as extreme hydrophobicity, low drug capacity, characteristic triphasic drug release pattern with a high burst effect, poly(lactic-co-glycolic acid derivatives are widely used in drug delivery. Most frequent attempts to improve their properties are blending with other polymers or synthesis of block copolymers. We introduce a new class of branched poly(lactic-co-glycolic acid) derivatives as promising biodegradable carriers for prolonged or targeted drug release systems, employed as thin adhesive films, solid dispersions, in situ forming implants or nanoparticles. A series of poly(lactic-co-glycolic acid) derivatives with lower molar mass and star or comb architecture were synthesized by a simple, catalyst free, direct melt polycondensation method not requiring purification of the obtained sterile product by precipitation. Branching monomers used were mannitol, pentaerythritol, dipentaerythritol, tripentaerythritol and polyacrylic acid. The products were characterized by molar mass averages, average branching ratio, rheological and thermal properties.
Charles University Faculty of Pharmacy 500 05 Hradec Kralove Czech Republic
Zobrazit více v PubMed
1. P. Gentile, V. Chiono, I. Carmagnola and P. V. Hatton, An overview of poly(lactic -co- glycolic) acid (PLGA)-based biomaterials for bone tissue engineering, Int. J. Mol. Sci. 15 (2014) 3640–3659; https://doi.org/10.3390/ijms15033640
2. D. J. Hines and D. L. Kaplan, Poly(lactic -co- glycolic) acid-controlled-release systems: experimental and modeling insights, Crit. Rev. Ther. Drug Carrier Syst . 30 (2013) 257–276; https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2013006475
3. H. K. Makadia and S. J. Siegel, Poly lactic -co- glycolic acid (PLGA) as biodegradable controlled drug delivery carrier, Polymers 3 (2011) 1377–1397; https://doi.org/10.3390/polym3031377
4. E. Swider, O. Koshkina, J. Tel, L. J. Cruz, I. J. M. de Vries and M. Srinivas, Customizing poly(lactic co- glycolic acid) particles for biomedical applications, Acta Biomater. 73 (2018) 38–51; https://doi.org/10.1016/j.actbio.2018.04.006
5. F. Danhier, E. Ansorena, J. M. Silva, R. Coco, A. Le Breton and V. Préat, PLGA-based nanoparticles: an overview of biomedical applications, J. Control. Release 161 (2012) 505–522; https://doi.org/10.1016/j.jconrel.2012.01.043
6. B. S. Nagoba, N. M. Suryawanshi, B. Wadher and S. Selkar, Acidic environment and wound healing: a review, Wounds 27 (2015) 5–11.
7. L. A. Dailey and T. Kissel, New poly(lactic -co- glycolic acid) derivatives: Modular polymers with tailored properties, Drug Discov. Today Technol. 2 (2005) 7–13; https://doi.org/10.1016/j.ddtec.2005.05.017
8. E. Snejdrova, M. Drastik, M. Dittrich, P. Kastner and J. Nguyenova, Mucoadhesive plasticized system of branched poly(lactic -co- glycolic acid) with aciclovir, Drug Dev. Ind. Pharm. 42 (2016) 1653–1659; https://doi.org/10.3109/03639045.2016.1160109
9. E. Snejdrova, M. Drastik and M. Dittrich, Plasticized branched aliphatic oligoesters as potential mucoadhesive drug carriers, Int. J. Pharm. 458 (2013) 282–286; https://doi.org/10.1016/j.ijpharm.2013.10.030
10. M. Ajioka, H. Suizu, C. Higuchi and T. Kashima, Aliphatic polyesters and their copolymers synthesized through direct condensation polymerization, Polym. Degrad. Stab. 59 (1998) 137–143; https://doi.org/10.1016/S0141-3910(97)00165-1
11. C. K. Williams, Synthesis of functionalized biodegradable polyesters, Chem. Soc. Rev. 36 (2007) 1573–1580; https://doi.org/10.1039/b614342n
12. A. Alla, K. Hakkou, F. Zamora, A. Martínez de Ilarduya, J. A. Galbis and S. Muñoz-Guerra, Poly(butylene terephthalate) Copolyesters Derived from l-Arabinitol and Xylitol, Macromolecules 39 (2006) 1410–1416; https://doi.org/10.1021/ma052398v
13. M. G. García-Martín, R. R. Pérez, E. B. Hernández and J. A. Galbis, Linear polyesters of the poly[alkylene (and co-arylene) dicarboxylate] type derived from carbohydrates, Macromolecules 39 (2006) 7941–7949; https://doi.org/10.1021/ma061325o
14. J. Hu, W. Gao, A. Kulshrestha and R. A. Gross, “Sweet polyesters”: lipase-catalyzed condensation-polymerizations of alditols, Macromolecules 39 (2006) 6789–6792; https://doi.org/10.1021/ma0612834
15. S. Podzimek, Truths and myths about the determination of molar mass distribution of synthetic and natural polymers by size exclusion chromatography, J. Appl. Polymer Sci. 131 (2014); http://doi.org/10.1002/app.40111
16. S. Podzimek, Importance of multi-angle light scattering in polyolefin characterization, Macromol . Symp . 330 (2013) 81–91; https://doi.org/10.1002/masy.201300014
17. B. H. Zimm and W. H. Stockmayer, The dimensions of chain molecules containing branches and rings, J. Chem. Phys. 17 (1949) 1301–1314; https://doi.org/10.1063/1.1747157
18. H. B. Zimm and W. R. Kilb, Dynamics of branched polymer molecules in dilute solution, J. Polymer Sci. 37 (1959) 19–42; https://doi.org/10.1002/pol.1959.1203713102
19. J. F. Douglas, J. Roovers and K. F. Freed, Characterization of branching architecture through “universal” ratios of polymer solution properties, Macromolecules 23 (1990) 4168–4180; https://doi.org/10.1021/ma00220a022
20. S. Podzimek, T. Vlcek and C. Johann, Characterization of branched polymers by size exclusion chromatography coupled with multiangle light scattering detector. I. Size exclusion chromatography elution behavior of branched polymers, J. Appl. Polymer Sci. 81 (2001) 1588–1594; https://doi.org/10.1002/app.1589
21. D. S. Jones, Y. Tian, O. Abu-Diak and G. P. Andrews, Pharmaceutical applications of dynamic mechanical thermal analysis, Adv. Drug Deliv. Rev. 64 (2012) 440–448; https://doi.org/10.1016/j.addr.2011.12.002
22. Y. Shi, X. Cao, S. Luo, X. Wang, R. W. Graff, D. Hu, R. Guo and H. Gao, Investigate the glass transition temperature of hyperbranched copolymers with segmented monomer sequence, Macromolecules 49 (2016) 4416–4422; https://doi.org/10.1021/acs.macromol.6b01144
23. Y. Huang and W. G. Dai, Fundamental aspects of solid dispersion technology for poorly soluble drugs, Acta Pharm. Sin. B 4 (2014) 18–25; https://doi.org/10.1016/j.apsb.2013.11.001
24. E. Snejdrova and M. Dittrich, Pharmaceutically Used Plasticizers , in Recent Advances in Plasticizers (Ed. M. Luqman), IntechOpen, Rijeka 2012, pp. 69–90.
PLGA Based Nanospheres as a Potent Macrophage-Specific Drug Delivery System