A Genome-Wide Association Study on the Seedless Phenotype in Banana (Musa spp.) Reveals the Potential of a Selected Panel to Detect Candidate Genes in a Vegetatively Propagated Crop

. 2016 ; 11 (5) : e0154448. [epub] 20160504

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27144345

Banana (Musa sp.) is a vegetatively propagated, low fertility, potentially hybrid and polyploid crop. These qualities make the breeding and targeted genetic improvement of this crop a difficult and long process. The Genome-Wide Association Study (GWAS) approach is becoming widely used in crop plants and has proven efficient to detecting candidate genes for traits of interest, especially in cereals. GWAS has not been applied yet to a vegetatively propagated crop. However, successful GWAS in banana would considerably help unravel the genomic basis of traits of interest and therefore speed up this crop improvement. We present here a dedicated panel of 105 accessions of banana, freely available upon request, and their corresponding GBS data. A set of 5,544 highly reliable markers revealed high levels of admixture in most accessions, except for a subset of 33 individuals from Papua. A GWAS on the seedless phenotype was then successfully applied to the panel. By applying the Mixed Linear Model corrected for both kinship and structure as implemented in TASSEL, we detected 13 candidate genomic regions in which we found a number of genes potentially linked with the seedless phenotype (i.e. parthenocarpy combined with female sterility). An additional GWAS performed on the unstructured Papuan subset composed of 33 accessions confirmed six of these regions as candidate. Out of both sets of analyses, one strong candidate gene for female sterility, a putative orthologous gene to Histidine Kinase CKI1, was identified. The results presented here confirmed the feasibility and potential of GWAS when applied to small sets of banana accessions, at least for traits underpinned by a few loci. As phenotyping in banana is extremely space and time-consuming, this latest finding is of particular importance in the context of banana improvement.

Zobrazit více v PubMed

Available: http://faostat3.fao.org/home/E. In: FAOstat.

De Langhe E, Langhe ED, Vrydaghs L, Maret P de, Perrier X, Denham T. Why Bananas Matter: An introduction to the history of banana domestication. Ethnobot Res Appl. 2009;7: 165–177. 10.17348/era.7.0.165-177 DOI

Perrier X, De Langhe E, Donohue M, Lentfer C, Vrydaghs L, Bakry F, et al. Multidisciplinary perspectives on banana (Musa spp.) domestication. Proc Natl Acad Sci. 2011; 10.1073/pnas.1102001108 PubMed DOI PMC

Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, et al. Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet. 2010;42: 961–967. 10.1038/ng.695 PubMed DOI

Pasam RK, Sharma R, Malosetti M, van Eeuwijk FA, Haseneyer G, Kilian B, et al. Genome-wide association studies for agronomical traits in a world wide spring barley collection. BMC Plant Biol. 2012;12: 16 10.1186/1471-2229-12-16 PubMed DOI PMC

Morris GP, Rhodes DH, Brenton Z, Ramu P, Thayil VM, Deshpande S, et al. Dissecting genome-wide association signals for loss-of-function phenotypes in sorghum flavonoid pigmentation traits. G3 Bethesda Md. 2013;3: 2085–2094. 10.1534/g3.113.008417 PubMed DOI PMC

Zila CT, Samayoa LF, Santiago R, Butrón A, Holland JB. A genome-wide association study reveals genes associated with fusarium ear rot resistance in a maize core diversity panel. G3 Bethesda Md. 2013;3: 2095–2104. 10.1534/g3.113.007328 PubMed DOI PMC

Courtois B, Audebert A, Dardou A, Roques S, Ghneim-Herrera T, Droc G, et al. Genome-wide association mapping of root traits in a japonica rice panel. PloS One. 2013;8: e78037 10.1371/journal.pone.0078037 PubMed DOI PMC

Tian F, Bradbury PJ, Brown PJ, Hung H, Sun Q, Flint-Garcia S, et al. Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet. 2011;43: 159–162. 10.1038/ng.746 PubMed DOI

Simmonds NW. The evolution of the bananas. London (GBR): Longmans; 1962.

Ozga JA, Huizen R van, Reinecke DM. Hormone and Seed-Specific Regulation of Pea Fruit Growth. Plant Physiol. 2002;128: 1379–1389. 10.1104/pp.010800 PubMed DOI PMC

Talon M, Zacarias L, Primo-Millo E. Hormonal changes associated with fruit set and development in mandarins differing in their parthenocarpic ability. Physiol Plant. 1990;79: 400–406. 10.1111/j.1399-3054.1990.tb06759.x DOI

Fos M, Nuez F, García-Martínez JL. The gene pat-2, which induces natural parthenocarpy, alters the gibberellin content in unpollinated tomato ovaries. Plant Physiol. 2000;122: 471–480. PubMed PMC

Ding J, Chen B, Xia X, Mao W, Shi K, Zhou Y, et al. Cytokinin-induced parthenocarpic fruit development in tomato is partly dependent on enhanced gibberellin and auxin biosynthesis. PloS One. 2013;8: e70080 10.1371/journal.pone.0070080 PubMed DOI PMC

Menezes CB de, Maluf WR, Azevedo SM de, Faria MV, Nascimento IR, Nogueira DW, et al. Inheritance of parthenocarpy in summer squash (Cucurbita pepo L.). Genet Mol Res GMR. 2005;4: 39–46. PubMed

Kim IS, Okubo H, Fujieda K. Endogenous levels of IAA in relation to parthenocarpy in cucumber (Cucumis sativus L.). Sci Hortic. 1992;52: 1–8. 10.1016/0304-4238(92)90002-T DOI

Tiwari A, Vivian-Smith A, Voorrips RE, Habets MEJ, Xue LB, Offringa R, et al. Parthenocarpic potential in Capsicum annuum L. is enhanced by carpelloid structures and controlled by a single recessive gene. BMC Plant Biol. 2011;11: 143 10.1186/1471-2229-11-143 PubMed DOI PMC

Miyatake K, Saito T, Negoro S, Yamaguchi H, Nunome T, Ohyama A, et al. Development of selective markers linked to a major QTL for parthenocarpy in eggplant (Solanum melongena L.). TAG Theor Appl Genet Theor Angew Genet. 2012;124: 1403–1413. 10.1007/s00122-012-1796-8 PubMed DOI

Beraldi D, Picarella ME, Soressi GP, Mazzucato A. Fine mapping of the parthenocarpic fruit (pat) mutation in tomato. TAG Theor Appl Genet Theor Angew Genet. 2004;108: 209–216. 10.1007/s00122-003-1442-6 PubMed DOI

Pascual L, Blanca JM, Cañizares J, Nuez F. Transcriptomic analysis of tomato carpel development reveals alterations in ethylene and gibberellin synthesis during pat3/pat4 parthenocarpic fruit set. BMC Plant Biol. 2009;9: 67 10.1186/1471-2229-9-67 PubMed DOI PMC

Gorguet B, Eggink PM, Ocaña J, Tiwari A, Schipper D, Finkers R, et al. Mapping and characterization of novel parthenocarpy QTLs in tomato. Theor Appl Genet. 2008;116: 755–767. 10.1007/s00122-007-0708-9 PubMed DOI PMC

Simmonds NW. The Development of the Banana Fruit. J Exp Bot. 1953;4: 87–105. 10.1093/jxb/4.1.87 DOI

Adeleke MTV, Pillay M, Okoli BE. Relationships between Meiotic Irregularities and Fertility in Diploid and Triploid Musa L. Cytologia (Tokyo). 2004;69: 387–393. 10.1508/cytologia.69.387 DOI

Simmonds NW. The Development of the Banana Fruit. J Exp Bot. 1953;4: 87–105. 10.1093/jxb/4.1.87 DOI

Dodds KS, Simmonds NW. Sterility and parthenocarpy in diploid hybrids of musa. Heredity. 1948;2: 101–117. 10.1038/hdy.1948.6 PubMed DOI

Sardos J, Perrier X, Dolezel J, Hribova E, Christelova P, Kilian A, et al. DArT whole genome profiling provides insights on the evolution and taxonomy of edible Banana (Musa spp.). Submitted. PubMed PMC

Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, et al. A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species. PLoS ONE. 2011;6: e19379 10.1371/journal.pone.0019379 PubMed DOI PMC

Meirmans PG, Van Tienderen PH. genotype and genodive: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes. 2004;4: 792–794. 10.1111/j.1471-8286.2004.00770.x DOI

Douhovnikoff V, Dodd RS. Intra-clonal variation and a similarity threshold for identification of clones: application to Salix exigua using AFLP molecular markers. Theor Appl Genet. 2003;106: 1307–1315. 10.1007/s00122-003-1200-9 PubMed DOI

Perrier X, Flori A, Bonnot F. Data analysis methods In: Hamon P., Seguin M., Perrier X., Glaszmann J. C. Ed., Genetic diversity of cultivated tropical plants. Enfield, Science Publishers; Montpellier; 2003. pp. 43–76.

Perrier X, Jacquemoud-Collet, JP. DARwin software. CIRAD. 2006. Available: http://darwin.cirad.fr/

Korte A, Farlow A. The advantages and limitations of trait analysis with GWAS: a review. Plant Methods. 2013;9: 29 10.1186/1746-4811-9-29 PubMed DOI PMC

Glaubitz JC, Casstevens TM, Lu F, Harriman J, Elshire RJ, Sun Q, et al. TASSEL-GBS: A High Capacity Genotyping by Sequencing Analysis Pipeline. PLoS ONE. 2014;9: e90346 10.1371/journal.pone.0090346 PubMed DOI PMC

D’Hont A, Denoeud F, Aury J-M, Baurens F-C, Carreel F, Garsmeur O, et al. The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature. 2012; 10.1038/nature11241 PubMed DOI

Droc G, Lariviere D, Guignon V, Yahiaoui N, This D, Garsmeur O, et al. The Banana Genome Hub. Database. 2013;2013: bat035–bat035. 10.1093/database/bat035 PubMed DOI PMC

Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009;25: 1754–1760. 10.1093/bioinformatics/btp324 PubMed DOI PMC

Weir BS, Cockerham CC. Estimating F-Statistics for the Analysis of Population Structure. Evolution. 1984;38: 1358–1370. 10.2307/2408641 PubMed DOI

Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F. GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Lab Génome Popul Interact CNRS UMR. 1996;5000: 1996–2004.

Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155: 945–959. PubMed PMC

Falush D, Stephens M, Pritchard JK. Inference of Population Structure Using Multilocus Genotype Data: Linked Loci and Correlated Allele Frequencies. Genetics. 2003;164: 1567–1587. PubMed PMC

Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4: 406–425. PubMed

Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21: 263–265. 10.1093/bioinformatics/bth457 PubMed DOI

Sun L, Craiu RV, Paterson AD, Bull SB. Stratified false discovery control for large-scale hypothesis testing with application to genome-wide association studies. Genet Epidemiol. 2006;30: 519–530. 10.1002/gepi.20164 PubMed DOI

Rouard M, Guignon V, Aluome C, Laporte M- A, Droc G, Walde C, et al. GreenPhylDB v2.0: comparative and functional genomics in plants. Nucleic Acids Res. 2011;39: D1095–1102. 10.1093/nar/gkq811 PubMed DOI PMC

Cenci A, Guignon V, Roux N, Rouard M. Genomic analysis of NAC transcription factors in banana (Musa acuminata) and definition of NAC orthologous groups for monocots and dicots. Plant Mol Biol. 2014; 10.1007/s11103-013-0169-2 PubMed DOI PMC

Katoh K, Kuma K, Toh H, Miyata T. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucl Acids Res. 2005;33: 511–518. 10.1093/nar/gki198 PubMed DOI PMC

Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol. 2007;56: 564–577. 10.1080/10635150701472164 PubMed DOI

Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol. 2003;52: 696–704. PubMed

Anisimova M, Gascuel O. Approximate likelihood-ratio test for branches: A fast, accurate, and powerful alternative. Syst Biol. 2006;55: 539–552. 10.1080/10635150600755453 PubMed DOI

Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT, Maldonado MC, et al. Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell. 2005;17: 616–627. 10.1105/tpc.104.026690 PubMed DOI PMC

Deng Y, Dong H, Mu J, Ren B, Zheng B, Ji Z, et al. Arabidopsis histidine kinase CKI1 acts upstream of histidine phosphotransfer proteins to regulate female gametophyte development and vegetative growth. Plant Cell. 2010;22: 1232–1248. 10.1105/tpc.108.065128 PubMed DOI PMC

DeYoung BJ, Bickle KL, Schrage KJ, Muskett P, Patel K, Clark SE. The CLAVATA1-related BAM1, BAM2 and BAM3 receptor kinase-like proteins are required for meristem function in Arabidopsis. Plant J Cell Mol Biol. 2006;45: 1–16. 10.1111/j.1365-313X.2005.02592.x PubMed DOI

Xiao H, Tang J, Li Y, Wang W, Li X, Jin L, et al. STAMENLESS 1, encoding a single C2H2 zinc finger protein, regulates floral organ identity in rice. Plant J. 2009;59: 789–801. 10.1111/j.1365-313X.2009.03913.x PubMed DOI

Carreel F, Fauré S, De León DG, Lagoda P, Perrier X, Bakry F, et al. Evaluation de la diversité génétique chez les bananiers diploïdes (Musa sp). Genet Sel Evol. 1994;26: 125s–136s.

Shepherd K. Cytogenetics of the genus Musa. IPGRI; 1999.

Balloux F, Lehmann L, de Meeûs T. The population genetics of clonal and partially clonal diploids. Genetics. 2003;164: 1635–1644. PubMed PMC

Dodds K. Genetical and cytological studies of Musa. V. Certain edible diploids. J Genet. PubMed

Hippolyte I, Jenny C, Gardes L, Bakry F, Rivallan R, Pomies V, et al. Foundation characteristics of edible Musa triploids revealed from allelic distribution of SSR markers. Ann Bot. 2012; 10.1093/aob/mcs010 PubMed DOI PMC

Browning SR, Browning BL. Rapid and Accurate Haplotype Phasing and Missing-Data Inference for Whole-Genome Association Studies By Use of Localized Haplotype Clustering. Am J Hum Genet. 2007;81: 1084–1097. 10.1086/521987 PubMed DOI PMC

Fu Y-B. Genetic diversity analysis of highly incomplete SNP genotype data with imputations: an empirical assessment. G3 Bethesda Md. 2014;4: 891–900. 10.1534/g3.114.010942 PubMed DOI PMC

Aranzana MJ, Kim S, Zhao K, Bakker E, Horton M, Jakob K, et al. Genome-Wide Association Mapping in Arabidopsis Identifies Previously Known Flowering Time and Pathogen Resistance Genes. PLoS Genet. 2005;1: e60 10.1371/journal.pgen.0010060 PubMed DOI PMC

Khalifah RA. Gibberellin-like Substances from the Developing Banana Fruit. Plant Physiol. 1966;41: 771–773. PubMed PMC

Talon M, Zacarias L, Primo-Millo E. Gibberellins and parthenocarpic ability in developing ovaries of seedless mandarins. Plant Physiol. 1992;99: 1575–1581. PubMed PMC

de Jong M, Wolters-Arts M, García-Martínez JL, Mariani C, Vriezen WH. The Solanum lycopersicum AUXIN RESPONSE FACTOR 7 (SlARF7) mediates cross-talk between auxin and gibberellin signalling during tomato fruit set and development. J Exp Bot. 2011;62: 617–626. 10.1093/jxb/erq293 PubMed DOI PMC

Sundberg E, Østergaard L. Distinct and Dynamic Auxin Activities During Reproductive Development. Cold Spring Harb Perspect Biol. 2009;1: a001628 10.1101/cshperspect.a001628 PubMed DOI PMC

Pischke MS, Jones LG, Otsuga D, Fernandez DE, Drews GN, Sussman MR. An Arabidopsis histidine kinase is essential for megagametogenesis. Proc Natl Acad Sci U S A. 2002;99: 15800–15805. 10.1073/pnas.232580499 PubMed DOI PMC

Hejátko J, Pernisová M, Eneva T, Palme K, Brzobohatý B. The putative sensor histidine kinase CKI1 is involved in female gametophyte development in Arabidopsis. Mol Genet Genomics MGG. 2003;269: 443–453. 10.1007/s00438-003-0858-7 PubMed DOI

Dita MA, Waalwijk C, Paiva LV, Jr.M.T S, Kema GHJ. A greenhouse bioassay for the Fusarium oxysporum f. sp. cubense x Grand naine” (Musa, AAA, Cavendish subgroup) interaction. 2011; Available: https://cgspace.cgiar.org/handle/10568/42421

Available: http://www.musanet.org/ [Internet].

Brachi B, Morris GP, Borevitz JO. Genome-wide association studies in plants: the missing heritability is in the field. Genome Biol. 2011;12: 232 10.1186/gb-2011-12-10-232 PubMed DOI PMC

Sokal R, Michener C. A statistical method for evaluating systematic relationships. iniv. kansas sci. bull., 38: 1409–1438. Prim Product Ecol Factors Lake Maggiore. 1958;127.

Dereeper A, Nicolas S, Le Cunff L, Bacilieri R, Doligez A, Peros J- P, et al. SNiPlay: a web-based tool for detection, management and analysis of SNPs. Application to grapevine diversity projects. BMC Bioinformatics. 2011;12: 134 10.1186/1471-2105-12-134 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace