Babesia, Theileria, Plasmodium and Hemoglobin
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
No.CZ.02.1.01/0.0/0.0/16_019/0000759
ERDF/ESF Centre for research of pathogenicity and virulence of parasites
21-11299S
Czech Science Foundation
22-18424M
Czech Science Foundation
PubMed
36014069
PubMed Central
PMC9414693
DOI
10.3390/microorganisms10081651
PII: microorganisms10081651
Knihovny.cz E-zdroje
- Klíčová slova
- Babesia, Plasmodium, Theileria, babesiosis, hemoglobin, malaria, piroplasmida, piroplasmosis,
- Publikační typ
- časopisecké články MeSH
The Propagation of Plasmodium spp. and Babesia/Theileria spp. vertebrate blood stages relies on the mediated acquisition of nutrients available within the host's red blood cell (RBC). The cellular processes of uptake, trafficking and metabolic processing of host RBC proteins are thus crucial for the intraerythrocytic development of these parasites. In contrast to malarial Plasmodia, the molecular mechanisms of uptake and processing of the major RBC cytoplasmic protein hemoglobin remain widely unexplored in intraerythrocytic Babesia/Theileria species. In the paper, we thus provide an updated comparison of the intraerythrocytic stage feeding mechanisms of these two distantly related groups of parasitic Apicomplexa. As the associated metabolic pathways including proteolytic degradation and networks facilitating heme homeostasis represent attractive targets for diverse antimalarials, and alterations in these pathways underpin several mechanisms of malaria drug resistance, our ambition is to highlight some fundamental differences resulting in different implications for parasite management with the potential for novel interventions against Babesia/Theileria infections.
Zobrazit více v PubMed
Florin-Christensen M., Schnittger L. Piroplasmids and ticks: A long-lasting intimate relationship. Front. Biosci. 2009;14:3064–3073. doi: 10.2741/3435. PubMed DOI
Jalovecka M., Sojka D., Ascencio M., Schnittger L. Babesia life cycle–when phylogeny meets biology. Trends Parasitol. 2019;35:356–368. doi: 10.1016/j.pt.2019.01.007. PubMed DOI
Sevilla E., González L.M., Luque D., Gray J., Montero E. Kinetics of the invasion and egress processes of Babesia divergens, observed by time-lapse video microscopy. Sci. Rep. 2018;35:14116. doi: 10.1038/s41598-018-32349-7. PubMed DOI PMC
Yabsley M.J., Shock B.C. Natural history of zoonotic Babesia: Role of wildlife reservoirs. Int. J. Parasitol. Parasites Wildl. 2013;2:18–31. doi: 10.1016/j.ijppaw.2012.11.003. PubMed DOI PMC
Bock R., Jackson L., de Vos A., Jorgensen W. Babesiosis of cattle. Parasitology. 2004;129((Suppl. S1)):S247–S269. doi: 10.1017/S0031182004005190. PubMed DOI
Solano-Gallego L., Sainz Á., Roura X., Estrada-Peña A., Miró G. A review of canine babesiosis: The European perspective. Parasites Vectors. 2016;9:336. doi: 10.1186/s13071-016-1596-0. PubMed DOI PMC
Djokic V., Primus S., Akoolo L., Chakraborti M., Parveen N. Age-related differential stimulation of immune response by Babesia microti and Borrelia burgdorferi during acute phase of infection affects disease severity. Front. Immunol. 2018;9:2891. doi: 10.3389/fimmu.2018.02891. PubMed DOI PMC
Vannier E., Krause P.J. Human babesiosis. N. Engl. J. Med. 2012;366:2397–2407. doi: 10.1056/NEJMra1202018. PubMed DOI
Zintl A., Mulcahy G., Skerrett H.E., Taylor S.M., Gray J.S. Babesia divergens, a bovine blood parasite of veterinary and zoonotic importance. Clin. Microbio. Rev. 2003;16:622–636. doi: 10.1128/CMR.16.4.622-636.2003. PubMed DOI PMC
Gonzalez J., Echaide I., Pabón A., Gabriel Piñeros J.J., Blair S., Tobón-Castaño A. Babesiosis prevalence in malaria-endemic regions of Colombia. J. Vector Borne Dis. 2018;55:222–229. PubMed
Bloch E.M., Kasubi M., Levin A., Mrango Z., Weaver J., Munoz B., West S.K. Babesia microti and Malaria Infection in Africa: A Pilot Serosurvey in Kilosa District, Tanzania. Am. J. Trop. Med. Hyg. 2018;99:51–56. doi: 10.4269/ajtmh.18-0012. PubMed DOI PMC
Florin-Christensen M., Suarez C.E., Rodriguez A.E., Flores D.A., Schnittger L. Vaccines against bovine babesiosis: Where we are now and possible roads ahead. Parasitology. 2014;141:1563–1592. doi: 10.1017/S0031182014000961. PubMed DOI
Batiha G.E., Beshbishy A.M., Tayebwa D.S., Adeyemi O.S., Yokoyama N., Igarashi I. Evaluation of the inhibitory effect of ivermectin on the growth of Babesia and Theileria parasites in vitro and in vivo. Trop. Med. Health. 2019;47:42. doi: 10.1186/s41182-019-0171-8. PubMed DOI PMC
Renard I., Ben Mamoun C. Treatment of human babesiosis: Then and now. Pathogens. 2021;10:1120. doi: 10.3390/pathogens10091120. PubMed DOI PMC
Counihan N.A., Modak J.K., de Koning-Ward T.F. How malaria parasites acquire nutrients from their host. Front. Cell Dev. Biol. 2021;9:649184. doi: 10.3389/fcell.2021.649184. PubMed DOI PMC
Rocamora F., Winzeler E.A. Genomic approaches to drug resistance in malaria. Annu. Rev. Microbiol. 2020;74:761–786. doi: 10.1146/annurev-micro-012220-064343. PubMed DOI
Krugliak M., Zhang J., Ginsburg H. Intraerythrocytic Plasmodium falciparum utilizes only a fraction of the amino acids derived from the digestion of host cell cytosol for the biosynthesis of its proteins. Mol. Biochem. Parasitol. 2002;119:249–256. doi: 10.1016/S0166-6851(01)00427-3. PubMed DOI
Esposito A., Choimet J.B., Skepper J.N., Mauritz J.M., Lew V.L., Kaminski C.F., Tiffert T. Quantitative imaging of human red blood cells infected with Plasmodium falciparum. Biophys. J. 2010;99:953–960. doi: 10.1016/j.bpj.2010.04.065. PubMed DOI PMC
Hanssen E., Knoechel C., Dearnley M., Dixon M.W., Le Gros M., Larabell C., Tilley L. Soft X-ray microscopy analysis of cell volume and hemoglobin content in erythrocytes infected with asexual and sexual stages of Plasmodium falciparum. J. Struct. Biol. 2012;177:224–232. doi: 10.1016/j.jsb.2011.09.003. PubMed DOI PMC
Goldberg D.E., Zimmerberg J. Hardly Vacuous: The parasitophorous vacuolar membrane of malaria parasites. Trends Parasitol. 2020;36:138–146. doi: 10.1016/j.pt.2019.11.006. PubMed DOI PMC
Elliott D.A., McIntosh M.T., Hosgood H.D., III, Chen S., Zhang G., Baevova P., Joiner K.A. Four distinct pathways of hemoglobin uptake in the malaria parasite Plasmodium falciparum. Proc. Natl. Acad. Sci USA. 2008;105:2463–2468. doi: 10.1073/pnas.0711067105. PubMed DOI PMC
Bakar N.A., Klonis N., Hanssen E., Chan C., Tilley L. Digestive-vacuole genesis and endocytic processes in the early intraerythrocytic stages of Plasmodium falciparum. J. Cell Sci. 2010;123:441–450. doi: 10.1242/jcs.061499. PubMed DOI
Lazarus M.D., Schneider T.G., Taraschi T.F. A new model for hemoglobin ingestion and transport by the human malaria parasite Plasmodium falciparum. J. Cell Sci. 2008;121:1937–1949. doi: 10.1242/jcs.023150. PubMed DOI PMC
Milani K.J., Schneider T.G., Taraschi T.F. Defining the morphology and mechanism of the hemoglobin transport pathway in Plasmodium falciparum-infected erythrocytes. Eukaryot. Cell. 2015;14:415–426. doi: 10.1128/EC.00267-14. PubMed DOI PMC
Wendt C., Rachid R., de Souza W., Miranda K. Electron tomography characterization of hemoglobin uptake in Plasmodium chabaudi reveals a stage-dependent mechanism for food vacuole morphogenesis. J. Struct. Biol. 2016;194:171–179. doi: 10.1016/j.jsb.2016.02.014. PubMed DOI
Grüring C., Heiber A., Kruse F., Ungefehr J., Gilberger T.W., Spielmann T. Development and host cell modifications of Plasmodium falciparum blood stages in four dimensions. Nat. Commun. 2011;2:165. doi: 10.1038/ncomms1169. PubMed DOI
Spielmann T., Gras S., Sabitzki R., Meissner M. Endocytosis in Plasmodium and Toxoplasma parasites. Trends Parasitol. 2020;36:520–532. doi: 10.1016/j.pt.2020.03.010. PubMed DOI
Tonkin C.J., Pearce J.A., McFadden G.I., Cowman A.F. Protein targeting to destinations of the secretory pathway in the malaria parasite Plasmodium falciparum. Curr. Opin. Microbiol. 2006;9:381–387. doi: 10.1016/j.mib.2006.06.015. PubMed DOI
Wunderlich J., Rohrbach P., Dalton J.P. The malaria digestive vacuole. Front. Biosci. 2012;4:1424–1448. PubMed
Dluzewski A.R., Ling I.T., Hopkins J.M., Grainger M., Margos G., Mitchell G.H., Holder A.A., Bannister L.H. Formation of the food vacuole in Plasmodium falciparum: A potential role for the 19 kDa fragment of merozoite surface protein 1 (MSP1(19)) PLoS ONE. 2008;3:e3085. doi: 10.1371/journal.pone.0003085. PubMed DOI PMC
Fulton J.D., Flewett T.H. The relation of Plasmodium berghei and Plasmodium knowlesi to their respective red-cell hosts. Trans. R. Soc. Trop. Med. Hyg. 1956;50:150–156. doi: 10.1016/0035-9203(56)90076-1. PubMed DOI
Birnbaum J., Flemming S., Reichard N., Soares A.B., Mesén-Ramírez P., Jonscher E., Bergmann B., Spielmann T. A genetic system to study Plasmodium falciparum protein function. Nat. Methods. 2017;14:450–456. doi: 10.1038/nmeth.4223. PubMed DOI
Jonscher E., Flemming S., Schmitt M., Sabitzki R., Reichard N., Birnbaum J., Bergmann B., Höhn K., Spielmann T. PfVPS45 is required for host cell cytosol uptake by malaria blood stage parasites. Cell Host Microbe. 2019;25:166–173.e5. doi: 10.1016/j.chom.2018.11.010. PubMed DOI
McGovern O.L., Rivera-Cuevas Y., Carruthers V.B. Emerging mechanisms of endocytosis in Toxoplasma gondii. Life. 2021;11:84. doi: 10.3390/life11020084. PubMed DOI PMC
Quevillon E., Spielmann T., Brahimi K., Chattopadhyay D., Yeramian E., Langsley G. The Plasmodium falciparum family of Rab GTPases. Gene. 2003;306:13–25. doi: 10.1016/S0378-1119(03)00381-0. PubMed DOI
Jackson A.J., Clucas C., Mamczur N.J., Ferguson D.J., Meissner M. Toxoplasma gondii Syntaxin 6 is required for vesicular transport between endosomal-like compartments and the Golgi complex. Traffic. 2013;14:1166–1181. PubMed PMC
Xie S.C., Dogovski C., Hanssen E., Chiu F., Yang T., Crespo M.P., Stafford C., Batinovic S., Teguh S., Charman S., et al. Haemoglobin degradation underpins the sensitivity of early ring stage Plasmodium falciparum to artemisinins. J. Cell Sci. 2016;129:406–416. doi: 10.1242/jcs.178830. PubMed DOI PMC
Birnbaum J., Scharf S., Schmidt S., Jonscher E., Hoeijmakers W., Flemming S., Toenhake C.G., Schmitt M., Sabitzki R., Bergmann B., et al. A Kelch13-defined endocytosis pathway mediates artemisinin resistance in malaria parasites. Science. 2020;367:51–59. doi: 10.1126/science.aax4735. PubMed DOI
Ariey F., Witkowski B., Amaratunga C., Beghain J., Langlois A.C., Khim N., Kim S., Duru V., Bouchier C., Ma L., et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature. 2014;505:50–55. doi: 10.1038/nature12876. PubMed DOI PMC
Rudzinska M.A. Ultrastructure of intraerythrocytic Babesia microti with emphasis on the feeding mechanism. J. Protozool. 1976;23:224–233. doi: 10.1111/j.1550-7408.1976.tb03759.x. PubMed DOI
Rudzinska M.A., Trager W., Lewengrub S.J., Gubert E. An electron microscopic study of Babesia microti invading erythrocytes. Cell Tissue Res. 1976;169:323–334. doi: 10.1007/BF00219605. PubMed DOI
Jalovecka M., Hajdusek O., Sojka D., Kopacek P., Malandrin L. The complexity of piroplasms life cycles. Front. Cell. Infect. Microbiol. 2018;8:248. doi: 10.3389/fcimb.2018.00248. PubMed DOI PMC
Frerichs W.M., Holbrook A.A. Feeding mechanisms of Babesia equi. J. Protozool. 1974;21:707–709. doi: 10.1111/j.1550-7408.1974.tb03734.x. PubMed DOI
Higuchi S., Kawamura S., Hanamatsu K., Yasuda Y. Electron microscopy of Theileria sergenti in bovine erythrocytes. Jpn. J. Vet. Sci. 1984;46:745–748. doi: 10.1292/jvms1939.46.745. PubMed DOI
Fawcett D.W., Conrad P.A., Grootenhuis J.G., Morzaria S.P. Ultrastructure of the intra-erythrocytic stage of Theileria species from cattle and waterbuck. Tissue Cell. 1987;19:643–655. doi: 10.1016/0040-8166(87)90071-1. PubMed DOI
Langreth S.G. Feeding mechanisms in extracellular Babesia microti and Plasmodium lophurae. J. Protozool. 1976;23:215–223. doi: 10.1111/j.1550-7408.1976.tb03758.x. PubMed DOI
Thekkiniath J., Kilian N., Lawres L., Gewirtz M.A., Graham M.M., Liu X., Ledizet M., Ben Mamoun C. Evidence for vesicle-mediated antigen export by the human pathogen Babesia microti. Life Sci. Alliance. 2019;2:e201900382. doi: 10.26508/lsa.201900382. PubMed DOI PMC
Sun T., Tenenbaum M.J., Greenspan J., Teichberg S., Wang R.T., Degnan T., Kaplan M.H. Morphologic and clinical observations in human infection with Babesia microti. J. Infect. Dis. 1983;148:239–248. doi: 10.1093/infdis/148.2.239. PubMed DOI
Taylor J.H., Guthrie A.J., Leisewitz A. The effect of endogenously produced carbon monoxide on the oxygen status of dogs infected with Babesia canis. J. S. Afr. Vet. Assoc. 1991;62:153–155. doi: 10.4102/jsava.v62i4.1774. PubMed DOI
Goldberg D.E. Hemoglobin degradation. Curr. Top. Microbiol. Immunol. 2005;295:275–291. PubMed
Saliba K.J., Allen R.J., Zissis S., Bray P.G., Ward S.A., Kirk K. Acidification of the malaria parasite’s digestive vacuole by a H+-ATPase and a H+-pyrophosphatase. J. Biol. Chem. 2003;278:5605–5612. doi: 10.1074/jbc.M208648200. PubMed DOI
Sullivan D.J., Jr., Gluzman I.Y., Goldberg D.E. Plasmodium hemozoin formation mediated by histidine-rich proteins. Science. 1996;271:219–222. doi: 10.1126/science.271.5246.219. PubMed DOI
Teixeira C., Gomes J.R., Gomes P. Falcipains, Plasmodium falciparum cysteine proteases as key drug targets against malaria. Curr. Med. Chem. 2011;18:1555–1572. doi: 10.2174/092986711795328328. PubMed DOI
Gluzman I.Y., Francis S.E., Oksman A., Smith C.E., Duffin K.L., Goldberg D.E. Order and specificity of the Plasmodium falciparum hemoglobin degradation pathway. J. Clin. Investig. 1994;93:1602–1608. doi: 10.1172/JCI117140. PubMed DOI PMC
Šnebergerová P., Bartošová-Sojková P., Jalovecká M., Sojka D. Plasmepsin-like aspartyl proteases in Babesia. Pathogens. 2021;10:1241. doi: 10.3390/pathogens10101241. PubMed DOI PMC
Nasamu A.S., Polino A.J., Istvan E.S., Goldberg D.E. Malaria parasite plasmepsins: More than just plain old degradative pepsins. J. Biol. Chem. 2020;295:8425–8441. doi: 10.1074/jbc.REV120.009309. PubMed DOI PMC
Dahl E.L., Rosenthal P.J. Biosynthesis, localization, and processing of falcipain cysteine proteases of Plasmodium falciparum. Mol. Biochem. Parasitol. 2005;139:205–212. doi: 10.1016/j.molbiopara.2004.11.009. PubMed DOI
Marco M., Coterón J.M. Falcipain inhibition as a promising antimalarial target. Curr. Top. Med. Chem. 2012;12:408–444. doi: 10.2174/156802612799362913. PubMed DOI
Becker K., Tilley L., Vennerstrom J.L., Roberts D., Rogerson S., Ginsburg H. Oxidative stress in malaria parasite-infected erythrocytes: Host-parasite interactions. Int. J. Parasitol. 2004;34:163–189. doi: 10.1016/j.ijpara.2003.09.011. PubMed DOI
Chugh M., Sundararaman V., Kumar S., Reddy V.S., Siddiqui W.A., Stuart K.D., Malhotra P. Protein complex directs hemoglobin-to-hemozoin formation in Plasmodium falciparum. Proc. Natl. Acad. Sci. USA. 2013;110:5392–5397. doi: 10.1073/pnas.1218412110. PubMed DOI PMC
De Villiers K.A., Egan T.J. Heme detoxification in the malaria parasite: A target for antimalarial drug development. Acc. Chem. Res. 2021;54:2649–2659. doi: 10.1021/acs.accounts.1c00154. PubMed DOI PMC
Fitch C.D., Cai G.Z., Chen Y.F., Shoemaker J.D. Involvement of lipids in ferriprotoporphyrin IX polymerization in malaria. Biochim. Biophys. Acta. 1999;1454:31–37. doi: 10.1016/S0925-4439(99)00017-4. PubMed DOI
Jani D., Nagarkatti R., Beatty W., Angel R., Slebodnick C., Andersen J., Kumar S., Rathore D. HDP—A novel heme detoxification protein from the malaria parasite. PLoS Pathog. 2008;4:e1000053. doi: 10.1371/journal.ppat.1000053. PubMed DOI PMC
Burda P.C., Crosskey T., Lauk K., Zurborg A., Söhnchen C., Liffner B., Wilcke L., Pietsch E., Strauss J., Jeffries C.M., et al. Structure-based identification and functional characterization of a lipocalin in the malaria parasite Plasmodium falciparum. Cell Rep. 2020;31:107817. doi: 10.1016/j.celrep.2020.107817. PubMed DOI
Matz J.M., Drepper B., Blum T.B., van Genderen E., Burrell A., Martin P., Stach T., Collinson L.M., Abrahams J.P., Matuschewski K., et al. A lipocalin mediates unidirectional heme biomineralization in malaria parasites. Proc. Natl. Acad. Sci. USA. 2020;117:16546–16556. doi: 10.1073/pnas.2001153117. PubMed DOI PMC
Sigala P.A., Goldberg D.E. The peculiarities and paradoxes of Plasmodium heme metabolism. Annu. Rev. Microbiol. 2014;68:259–278. doi: 10.1146/annurev-micro-091313-103537. PubMed DOI
Ke H., Sigala P.A., Miura K., Morrisey J.M., Mather M.W., Crowley J.R., Henderson J.P., Goldberg D.E., Long C.A., Vaidya A.B. The heme biosynthesis pathway is essential for Plasmodium falciparum development in mosquito stage but not in blood stages. J. Biol. Chem. 2014;289:34827–34837. doi: 10.1074/jbc.M114.615831. PubMed DOI PMC
Nagaraj V.A., Sundaram B., Varadarajan N.M., Subramani P.A., Kalappa D.M., Ghosh S.K., Padmanaban G. Malaria parasite-synthesized heme is essential in the mosquito and liver stages and complements host heme in the blood stages of infection. PLoS Pathog. 2013;9:e1003522. doi: 10.1371/journal.ppat.1003522. PubMed DOI PMC
Goldberg D.E., Sigala P.A. Plasmodium heme biosynthesis: To be or not to be essential? PLoS Pathog. 2017;13:e1006511. doi: 10.1371/journal.ppat.1006511. PubMed DOI PMC
Perner J., Gasser R.B., Oliveira P.L., Kopáček P. Haem Biology in Metazoan Parasites—‘The Bright Side of Haem’. Trends Parasitol. 2019;35:213–225. doi: 10.1016/j.pt.2019.01.001. PubMed DOI
Cornillot E., Hadj-Kaddour K., Dassouli A., Noel B., Ranwez V., Vacherie B., Augagneur Y., Brès V., Duclos A., Randazzo S., et al. Sequencing of the smallest apicomplexan genome from the human pathogen Babesia microti. Nucleic Acids Res. 2012;40:9102–9114. doi: 10.1093/nar/gks700. PubMed DOI PMC
Florin-Christensen M., Wieser S.N., Suarez C.E., Schnittger L. In silico Survey and characterization of Babesia microti functional and non-functional proteases. Pathogens. 2021;10:1457. doi: 10.3390/pathogens10111457. PubMed DOI PMC
Dhawan S., Dua M., Chishti A.H., Hanspal M. Ankyrin peptide blocks falcipain-2-mediated malaria parasite release from red blood cells. J. Biol. Chem. 2003;278:30180–30186. doi: 10.1074/jbc.M305132200. PubMed DOI
Mesplet M., Echaide I., Dominguez M., Mosqueda J.J., Suarez C.E., Schnittger L., Florin-Christensen M. Bovipain-2, the falcipain-2 ortholog, is expressed in intraerythrocytic stages of the tick-transmitted hemoparasite Babesia bovis. Parasites Vectors. 2010;3:113. doi: 10.1186/1756-3305-3-113. PubMed DOI PMC
Martins T.M., do Rosário V.E., Domingos A. Identification of papain-like cysteine proteases from the bovine piroplasm Babesia bigemina and evolutionary relationship of piroplasms C1 family of cysteine proteases. Exp. Parasitol. 2011;127:184–194. doi: 10.1016/j.exppara.2010.07.012. PubMed DOI
Martins T.M., do Rosário V.E., Domingos A. Expression and characterization of the Babesia bigemina cysteine protease BbiCPL1. Acta Trop. 2012;121:1–5. doi: 10.1016/j.actatropica.2011.09.008. PubMed DOI
Okubo K., Yokoyama N., Govind Y., Alhassan A., Igarashi I. Babesia bovis: Effects of cysteine protease inhibitors on in vitro growth. Exp. Parasitol. 2007;117:214–217. doi: 10.1016/j.exppara.2007.04.009. PubMed DOI
Carletti T., Barreto C., Mesplet M., Mira A., Weir W., Shiels B., Oliva A.G., Schnittger L., Florin-Christensen M. Characterization of a papain-like cysteine protease essential for the survival of Babesia ovis merozoites. Ticks Tick-Borne Dis. 2016;7:85–93. doi: 10.1016/j.ttbdis.2015.09.002. PubMed DOI
Brayton K.A., Lau A.O., Herndon D.R., Hannick L., Kappmeyer L.S., Berens S.J., Bidwell S.L., Brown W.C., Crabtree J., Fadrosh D., et al. Genome sequence of Babesia bovis and comparative analysis of apicomplexan hemoprotozoa. PLoS Pathog. 2007;3:1401–1413. doi: 10.1371/journal.ppat.0030148. PubMed DOI PMC
Kloehn J., Harding C.R., Soldati-Favre D. Supply and demand-heme synthesis, salvage and utilization by Apicomplexa. FEBS J. 2021;288:382–404. doi: 10.1111/febs.15445. PubMed DOI
Puri A., Bajpai S., Meredith S., Aravind L., Krause P.J., Kumar S. Pathogen Genomics, Genetic Variability, Immunodominant Antigens, and Pathogenesis. Front. Microbiol. 2021;12:697669. doi: 10.3389/fmicb.2021.697669. PubMed DOI PMC
Weiss L.M. Babesiosis in humans: A treatment review. Expert Opin. Pharmacother. 2002;3:1109–1115. doi: 10.1517/14656566.3.8.1109. PubMed DOI
Alves E., Maluf F.V., Bueno V.B., Guido R.V., Oliva G., Singh M., Scarpelli P., Costa F., Sartorello R., Catalani L.H., et al. Biliverdin targets enolase and eukaryotic initiation factor 2 (eIF2α) to reduce the growth of intraerythrocytic development of the malaria parasite Plasmodium falciparum. Sci. Rep. 2016;6:22093. doi: 10.1038/srep22093. PubMed DOI PMC