Plasmepsin-like Aspartyl Proteases in Babesia

. 2021 Sep 26 ; 10 (10) : . [epub] 20210926

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34684190

Grantová podpora
20-05736S Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000759 European Regional Development Fund
120/2021/P Jihočeská Univerzita v Českých Budějovicích

Apicomplexan genomes encode multiple pepsin-family aspartyl proteases (APs) that phylogenetically cluster to six independent clades (A to F). Such diversification has been powered by the function-driven evolution of the ancestral apicomplexan AP gene and is associated with the adaptation of various apicomplexan species to different strategies of host infection and transmission through various invertebrate vectors. To estimate the potential roles of Babesia APs, we performed qRT-PCR-based expressional profiling of Babesia microti APs (BmASP2, 3, 5, 6), which revealed the dynamically changing mRNA levels and indicated the specific roles of individual BmASP isoenzymes throughout the life cycle of this parasite. To expand on the current knowledge on piroplasmid APs, we searched the EuPathDB and NCBI GenBank databases to identify and phylogenetically analyse the complete sets of APs encoded by the genomes of selected Babesia and Theileria species. Our results clearly determine the potential roles of identified APs by their phylogenetic relation to their homologues of known function-Plasmodium falciparum plasmepsins (PfPM I-X) and Toxoplasma gondii aspartyl proteases (TgASP1-7). Due to the analogies with plasmodial plasmepsins, piroplasmid APs represent valuable enzymatic targets that are druggable by small molecule inhibitors-candidate molecules for the yet-missing specific therapy for babesiosis.

Zobrazit více v PubMed

Jalovecka M., Sojka D., Ascencio M., Schnittger L. Babesia life cycle–when phylogeny meets biology. Trends Parasitol. 2019;35:356–368. doi: 10.1016/j.pt.2019.01.007. PubMed DOI

Vannier E., Krause P.J. Hunter’s Tropical Medicine and Emerging Infectious Diseases. Elsevier; Amsterdam, The Netherlands: 2020. Babesiosis; pp. 799–802.

Schnittger L., Rodriguez A.E., Florin-Christensen M., Morrison D.A. Babesia: A world emerging. Infect. Genet. Evol. 2012;12:1788–1809. doi: 10.1016/j.meegid.2012.07.004. PubMed DOI

Florin-Christensen M., Suarez C.E., Rodriguez A.E., Flores D.A., Schnittger L. Vaccines against bovine babesiosis: Where we are now and possible roads ahead. Parasitology. 2014;141:1563–1592. doi: 10.1017/S0031182014000961. PubMed DOI

Rubel F., Brugger K., Pfeffer M., Chitimia-Dobler L., Didyk Y.M., Leverenz S., Dautel H., Kahl O. Geographical distribution of Dermacentor marginatus and Dermacentor reticulatus in Europe. Ticks Tick-Borne Dis. 2016;7:224–233. doi: 10.1016/j.ttbdis.2015.10.015. PubMed DOI

Vannier E., Krause P.J. Human babesiosis. N. Engl. J. Med. 2012;366:2397–2407. doi: 10.1056/NEJMra1202018. PubMed DOI

Lobo C.A., Cursino-Santos J.R., Alhassan A., Rodrigues M. Babesia: An emerging infectious threat in transfusion medicine. PLoS Pathog. 2013;9:e1003387. doi: 10.1371/journal.ppat.1003387. PubMed DOI PMC

Lempereur L., Shiels B., Heyman P., Moreau E., Saegerman C., Losson B., Malandrin L. A retrospective serological survey on human babesiosis in Belgium. Clin. Microbiol. Infect. 2015;21:96.e91–96.e97. doi: 10.1016/j.cmi.2014.07.004. PubMed DOI

Arsuaga M., González L.M., Padial E.S., Dinkessa A.W., Sevilla E., Trigo E., Puente S., Gray J., Montero E. Misdiagnosis of babesiosis as malaria, Equatorial Guinea, 2014. Emerg. Infect. Dis. 2018;24:1588–1589. doi: 10.3201/eid2408.180180. PubMed DOI PMC

Rathinasamy V., Poole W.A., Bastos R.G., Suarez C.E., Cooke B.M. Babesiosis vaccines: Lessons learned, challenges ahead, and future glimpses. Trends Parasitol. 2019;35:622–635. doi: 10.1016/j.pt.2019.06.002. PubMed DOI

Lemieux J.E., Tran A.D., Freimark L., Schaffner S.F., Goethert H., Andersen K.G., Bazner S., Li A., McGrath G., Sloan L. A global map of genetic diversity in Babesia microti reveals strong population structure and identifies variants associated with clinical relapse. Nat. Microbiol. 2016;1:1–7. doi: 10.1038/nmicrobiol.2016.79. PubMed DOI PMC

Simon M.S., Westblade L.F., Dziedziech A., Visone J.E., Furman R.R., Jenkins S.G., Schuetz A.N., Kirkman L.A. Clinical and molecular evidence of atovaquone and azithromycin resistance in relapsed Babesia microti infection associated with rituximab and chronic lymphocytic leukemia. Clin. Infect. Dis. 2017;65:1222–1225. doi: 10.1093/cid/cix477. PubMed DOI PMC

McKerrow J.H., Caffrey C., Kelly B., Loke P.n., Sajid M. Proteases in parasitic diseases. Annu. Rev. Pathol. Mech. Dis. 2006;1:497–536. doi: 10.1146/annurev.pathol.1.110304.100151. PubMed DOI

Rawlings N.D., Bateman A. How to use the MEROPS database and website to help understand peptidase specificity. Protein Sci. 2021;30:83–92. doi: 10.1002/pro.3948. PubMed DOI PMC

Barrett A.J., Rawlings N.D., Salvesen G., Woessner J.F. Handbook of Proteolytic Enzymes. 3rd ed. Elsevier; Abingdon, UK: 2012. Handbook of proteolytic enzymes introduction.

Sojka D., Hartmann D., Bartošová-Sojková P., Dvořák J. Parasite cathepsin D-like peptidases and their relevance as therapeutic targets. Trends Parasitol. 2016;32:708–723. doi: 10.1016/j.pt.2016.05.015. PubMed DOI

Shea M., Jäkle U., Liu Q., Berry C., Joiner K.A., Soldati-Favre D. A family of aspartic proteases and a novel, dynamic and cell-cycle-dependent protease localization in the secretory pathway of Toxoplasma Gondii. Traffic. 2007;8:1018–1034. doi: 10.1111/j.1600-0854.2007.00589.x. PubMed DOI

Coombs G.H., Goldberg D.E., Klemba M., Berry C., Kay J., Mottram J.C. Aspartic proteases of Plasmodium falciparum and other parasitic protozoa as drug targets. Trends Parasitol. 2001;17:532–537. doi: 10.1016/S1471-4922(01)02037-2. PubMed DOI

Burrows J.N., Soldati-Favre D. Targeting plasmepsins—an achilles’ heel of the malaria parasite. Cell Host Microbe. 2020;27:496–498. doi: 10.1016/j.chom.2020.03.015. PubMed DOI

Jalovecka M., Urbanova V., Sojka D., Malandrin L., Sima R., Kopacek P., Hajdusek O. Establishment of Babesia microti laboratory model and its experimental application; Proceedings of the 9. Tick and Tick-borne Pathogen Conference and 1st Asia Pacific Rickettsia Conference; Cairns, Australia. 20 August 2017; p. 140.

Pino P., Caldelari R., Mukherjee B., Vahokoski J., Klages N., Maco B., Collins C.R., Blackman M.J., Kursula I., Heussler V. A multistage antimalarial targets the plasmepsins IX and X essential for invasion and egress. Science. 2017;358:522–528. doi: 10.1126/science.aaf8675. PubMed DOI PMC

Dogga S.K., Mukherjee B., Jacot D., Kockmann T., Molino L., Hammoudi P.-M., Hartkoorn R.C., Hehl A.B., Soldati-Favre D. A druggable secretory protein maturase of Toxoplasma essential for invasion and egress. Elife. 2017;6:e27480. doi: 10.7554/eLife.27480. PubMed DOI PMC

Li F., Bounkeua V., Pettersen K., Vinetz J.M. Plasmodium falciparum ookinete expression of plasmepsin VII and plasmepsin X. Malar. J. 2016;15:1–10. doi: 10.1186/s12936-016-1161-5. PubMed DOI PMC

Ecker A., Bushell E.S., Tewari R., Sinden R.E. Reverse genetics screen identifies six proteins important for malaria development in the mosquito. Mol. Microbiol. 2008;70:209–220. doi: 10.1111/j.1365-2958.2008.06407.x. PubMed DOI PMC

Jalovecka M., Hajdusek O., Sojka D., Kopacek P., Malandrin L. The complexity of piroplasms life cycles. Front. Cell. Infect. Microbiol. 2018;8:248. doi: 10.3389/fcimb.2018.00248. PubMed DOI PMC

Boddey J.A., Carvalho T.G., Hodder A.N., Sargeant T.J., Sleebs B.E., Marapana D., Lopaticki S., Nebl T., Cowman A.F. Role of plasmepsin V in export of diverse protein families from the Plasmodium falciparum exportome. Traffic. 2013;14:532–550. doi: 10.1111/tra.12053. PubMed DOI

Russo I., Babbitt S., Muralidharan V., Butler T., Oksman A., Goldberg D.E. Plasmepsin V licenses Plasmodium proteins for export into the host erythrocyte. Nature. 2010;463:632–636. doi: 10.1038/nature08726. PubMed DOI PMC

Coffey M.J., Dagley L.F., Seizova S., Kapp E.A., Infusini G., Roos D.S., Boddey J.A., Webb A.I., Tonkin C.J. Aspartyl protease 5 matures dense granule proteins that reside at the host-parasite interface. Toxoplasma Gondii. MBio. 2018;9:e01718–e01796. doi: 10.1128/mBio.01796-18. PubMed DOI PMC

Silva J.C., Cornillot E., McCracken C., Usmani-Brown S., Dwivedi A., Ifeonu O.O., Crabtree J., Gotia H.T., Virji A.Z., Reynes C., et al. Genome-wide diversity and gene expression profiling of Babesia microti isolates identify polymorphic genes that mediate host-pathogen interactions. Sci. Rep. 2016;6:35284. doi: 10.1038/srep35284. PubMed DOI PMC

Thekkiniath J., Kilian N., Lawres L., Gewirtz M.A., Graham M.M., Liu X., Ledizet M., Mamoun C.B. Evidence for vesicle-mediated antigen export by the human pathogen Babesia Microti. Life Sci. Alliance. 2019;2:e201900382. doi: 10.26508/lsa.201900382. PubMed DOI PMC

Rudzinska M.A., Trager W., Lewengrub S.J., Gubert E. An electron microscopic study of Babesia microti invading erythrocytes. Cell Tissue Res. 1976;169:323–334. doi: 10.1007/BF00219605. PubMed DOI

Jennison C., Lucantoni L., O’Neill M.T., McConville R., Erickson S.M., Cowman A.F., Sleebs B.E., Avery V.M., Boddey J.A. Inhibition of plasmepsin V activity blocks Plasmodium falciparum gametocytogenesis and transmission to mosquitoes. Cell Rep. 2019;29:3796–3806.e3794. doi: 10.1016/j.celrep.2019.11.073. PubMed DOI

Liu J., Gluzman I.Y., Drew M.E., Goldberg D.E. The role of Plasmodium falciparum food vacuole plasmepsins. J. Biol. Chem. 2005;280:1432–1437. doi: 10.1074/jbc.M409740200. PubMed DOI

Votýpka J., Modrý D., Oborník M., Šlapeta J., Lukeš J. Apicomplexa. Handb. Protists. 2017;2:567–624.

Rinehart M.T., Park H.S., Walzer K.A., Chi J.-T.A., Wax A. Hemoglobin consumption by P. falciparum in individual erythrocytes imaged via quantitative phase spectroscopy. Sci. Rep. 2016;6:1–9. doi: 10.1038/srep24461. PubMed DOI PMC

Ponsuwanna P., Kochakarn T., Bunditvorapoom D., Kümpornsin K., Otto T.D., Ridenour C., Chotivanich K., Wilairat P., White N.J., Miotto O. Comparative genome-wide analysis and evolutionary history of haemoglobin-processing and haem detoxification enzymes in malarial parasites. Malar. J. 2016;15:1–14. doi: 10.1186/s12936-016-1097-9. PubMed DOI PMC

Nasamu A.S., Polino A.J., Istvan E.S., Goldberg D.E. Malaria parasite plasmepsins: More than just plain old degradative pepsins. J. Biol. Chem. 2020;295:8425–8441. doi: 10.1074/jbc.REV120.009309. PubMed DOI PMC

Rosenthal P.J., Meshnick S.R. Hemoglobin catabolism and iron utilization by malaria parasites. Mol. Biochem. Parasitol. 1996;83:131–139. doi: 10.1016/S0166-6851(96)02763-6. PubMed DOI

Lew V.L., Tiffert T., Ginsburg H. Excess hemoglobin digestion and the osmotic stability of Plasmodium falciparum–infected red blood cells. Blood. 2003;101:4189–4194. doi: 10.1182/blood-2002-08-2654. PubMed DOI

Chugh M., Sundararaman V., Kumar S., Reddy V.S., Siddiqui W.A., Stuart K.D., Malhotra P. Protein complex directs hemoglobin-to-hemozoin formation in Plasmodium falciparum. Proc. Natl. Acad. Sci. USA. 2013;110:5392–5397. doi: 10.1073/pnas.1218412110. PubMed DOI PMC

Park H., Hong S.-H., Kim K., Cho S.-H., Lee W.-J., Kim Y., Lee S.-E., Park Y. Characterizations of individual mouse red blood cells parasitized by Babesia microti using 3-D holographic microscopy. Sci. Rep. 2015;5:1–11. doi: 10.1038/srep10827. PubMed DOI PMC

Lempereur L., Beck R., Fonseca I., Marques C., Duarte A., Santos M., Zúquete S., Gomes J., Walder G., Domingos A. Guidelines for the detection of Babesia and Theileria parasites. Vector-Borne Zoonotic Dis. 2017;17:51–65. doi: 10.1089/vbz.2016.1955. PubMed DOI

Cursino-Santos J.R., Singh M., Senaldi E., Manwani D., Yazdanbakhsh K., Lobo C.A. Altered parasite life-cycle processes characterize Babesia divergens infection in human sickle cell anemia. Haematologica. 2019;104:2189. doi: 10.3324/haematol.2018.214304. PubMed DOI PMC

Fawcett D.W., Conrad P.A., Grootenhuis J.G., Morzaria S.P. Ultrastructure of the intra-erythrocytic stage of Theileria species from cattle and waterbuck. Tissue Cell. 1987;19:643–655. doi: 10.1016/0040-8166(87)90071-1. PubMed DOI

Guimarães A.M., Lima J.D., Ribeiro M.F. Ultrastructure of Babesia equi trophozoites isolated in Minas Gerais, Brazil. Pesqui. Vet. Bras. 2003;23:101–104. doi: 10.1590/S0100-736X2003000300002. DOI

Rudzinska M.A. Ultrastructure of intraerythrocytic Babesia microti with emphasis on the feeding mechanism. J. Protozool. 1976;23:224–233. doi: 10.1111/j.1550-7408.1976.tb03759.x. PubMed DOI

Conesa J.J., Sevilla E., Terrón M.C., González L.M., Gray J., Pérez-Berná A.J., Carrascosa J.L., Pereiro E., Chichón F.J., Luque D., et al. Four-dimensional characterizationof the Babesia divergens asexual life cycle, from the trophozoite to the multiparasite stage. MSphere. 2020;5:e00928-20. doi: 10.1128/mSphere.00928-20. PubMed DOI PMC

Okubo K., Yokoyama N., Govind Y., Alhassan A., Igarashi I. Babesia bovis: Effects of cysteine protease inhibitors on in vitro growth. Exp. Parasitol. 2007;117:214–217. doi: 10.1016/j.exppara.2007.04.009. PubMed DOI

Carletti T., Barreto C., Mesplet M., Mira A., Weir W., Shiels B., Oliva A.G., Schnittger L., Florin-Christensen M. Characterization of a papain-like cysteine protease essential for the survival of Babesia ovis merozoites. Ticks Tick-Borne Dis. 2016;7:85–93. doi: 10.1016/j.ttbdis.2015.09.002. PubMed DOI

Jean L., Long M., Young J., Péry P., Tomley F. Aspartyl proteinase genes from apicomplexan parasites: Evidence for evolution of the gene structure. Trends Parasitol. 2001;17:491–498. doi: 10.1016/S1471-4922(01)02030-X. PubMed DOI

Mastan B.S., Narwal S.K., Dey S., Kumar K.A., Mishra S. Plasmodium berghei plasmepsin VIII is essential for sporozoite gliding motility. Int. J. Parasitol. 2017;47:239–245. doi: 10.1016/j.ijpara.2016.11.009. PubMed DOI

Banerjee R., Liu J., Beatty W., Pelosof L., Klemba M., Goldberg D.E. Four plasmepsins are active in the Plasmodium falciparum food vacuole, including a protease with an active-site histidine. Proc. Natl. Acad. Sci. USA. 2002;99:990–995. doi: 10.1073/pnas.022630099. PubMed DOI PMC

Favuzza P., de Lera Ruiz M., Thompson J.K., Triglia T., Ngo A., Steel R.W., Vavrek M., Christensen J., Healer J., Boyce C. Dual plasmepsin-targeting antimalarial agents disrupt multiple stages of the malaria parasite life cycle. Cell Host Microbe. 2020;27:642–658.e612. doi: 10.1016/j.chom.2020.02.005. PubMed DOI PMC

Sojka D., Šnebergerová P., Robbertse L. Protease inhibition—an established strategy to combat infectious diseases. Int. J. Mol. Sci. 2021;22:5762. doi: 10.3390/ijms22115762. PubMed DOI PMC

Meissner M., Ferguson D.J., Frischknecht F. Invasion factors of apicomplexan parasites: Essential or redundant? Curr. Opin. Microbiol. 2013;16:438–444. doi: 10.1016/j.mib.2013.05.002. PubMed DOI

Frénal K., Dubremetz J.-F., Lebrun M., Soldati-Favre D. Gliding motility powers invasion and egress in Apicomplexa. Nat. Rev. Microbiol. 2017;15:645–660. doi: 10.1038/nrmicro.2017.86. PubMed DOI

Chauvin A., Moreau E., Bonnet S., Plantard O., Malandrin L. Babesia and its hosts: Adaptation to long-lasting interactions as a way to achieve efficient transmission. Vet. Res. 2009;40:1–18. doi: 10.1051/vetres/2009020. PubMed DOI PMC

Lobo C.-A. Babesia divergens and Plasmodium falciparum use common receptors, glycophorins A and B, to invade the human red blood cell. Infect. Immun. 2005;73:649–651. doi: 10.1128/IAI.73.1.649-651.2005. PubMed DOI PMC

Malpede B.M., Tolia N.H. Malaria adhesins: Structure and function. Cell. Microbiol. 2014;16:621–631. doi: 10.1111/cmi.12276. PubMed DOI PMC

Beeson J.G., Drew D.R., Boyle M.J., Feng G., Fowkes F.J., Richards J.S. Merozoite surface proteins in red blood cell invasion, immunity and vaccines against malaria. FEMS Microbiol. Rev. 2016;40:343–372. doi: 10.1093/femsre/fuw001. PubMed DOI PMC

Mosqueda J., McElwain T.F., Palmer G.H. Babesia bovis merozoite surface antigen 2 proteins are expressed on the merozoite and sporozoite surface, and specific antibodies inhibit attachment and invasion of erythrocytes. Infect. Immun. 2002;70:6448–6455. doi: 10.1128/IAI.70.11.6448-6455.2002. PubMed DOI PMC

Woods K., Perry C., Brühlmann F., Olias P. Theileria’s strategies and effector mechanisms for host cell transformation: From invasion to immortalization. Front. Cell Dev. Biol. 2021;9:972. doi: 10.3389/fcell.2021.662805. PubMed DOI PMC

Lobo C.A., Rodriguez M., Cursino-Santos J.R. Babesia and red cell invasion. Curr. Opin. Hematol. 2012;19:170–175. doi: 10.1097/MOH.0b013e328352245a. PubMed DOI

Besteiro S., Dubremetz J.F., Lebrun M. The moving junction of apicomplexan parasites: A key structure for invasion. Cell. Microbiol. 2011;13:797–805. doi: 10.1111/j.1462-5822.2011.01597.x. PubMed DOI

Montero E., Rodriguez M., Oksov Y., Lobo C.A. Babesia divergens apical membrane antigen 1 and its interaction with the human red blood cell. Infect. Immun. 2009;77:4783–4793. doi: 10.1128/IAI.00969-08. PubMed DOI PMC

Moitra P., Zheng H., Anantharaman V., Banerjee R., Takeda K., Kozakai Y., Lepore T., Krause P.J., Aravind L., Kumar S. Expression, purification, and biological characterization of Babesia microti apical membrane antigen 1. Infect. Immun. 2015;83:3890–3901. doi: 10.1128/IAI.00168-15. PubMed DOI PMC

Gaffar F.R., Yatsuda A.P., Franssen F.F., de Vries E. Erythrocyte invasion by Babesia bovis merozoites is inhibited by polyclonal antisera directed against peptides derived from a homologue of Plasmodium falciparum apical membrane antigen 1. Infect. Immun. 2004;72:2947–2955. doi: 10.1128/IAI.72.5.2947-2955.2004. PubMed DOI PMC

González L.M., Estrada K., Grande R., Jiménez-Jacinto V., Vega-Alvarado L., Sevilla E., Barrera J., Cuesta I., Zaballos Á., Bautista J.M., et al. Comparative and functional genomics of the protozoan parasite Babesia divergens highlighting the invasion and egress processes. PLoS Negl. Trop. Dis. 2019;13:e0007680. doi: 10.1371/journal.pntd.0007680. PubMed DOI PMC

Buguliskis J.S., Brossier F., Shuman J., Sibley L.D. Rhomboid 4 (ROM4) affects the processing of surface adhesins and facilitates host cell invasion by Toxoplasma gondii. PLoS Pathog. 2010;6:e1000858. doi: 10.1371/journal.ppat.1000858. PubMed DOI PMC

Shaw M.K. Cell invasion by Theileria sporozoites. Trends Parasitol. 2003;19:2–6. doi: 10.1016/S1471-4922(02)00015-6. PubMed DOI

Shaw M.K. Theileria. Springer; Boston, MA, USA: 2002. Theileria development and host cell invasion; pp. 1–22.

Thomas J.A., Tan M.S., Bisson C., Borg A., Umrekar T.R., Hackett F., Hale V.L., Vizcay-Barrena G., Fleck R.A., Snijders A.P. A protease cascade regulates release of the human malaria parasite Plasmodium falciparum from host red blood cells. Nat. Microbiol. 2018;3:447–455. doi: 10.1038/s41564-018-0111-0. PubMed DOI PMC

Collins C.R., Hackett F., Atid J., Tan M.S.Y., Blackman M.J. The Plasmodium falciparum pseudoprotease SERA5 regulates the kinetics and efficiency of malaria parasite egress from host erythrocytes. PLoS Pathog. 2017;13:e1006453. doi: 10.1371/journal.ppat.1006453. PubMed DOI PMC

Withers-Martinez C., Strath M., Hackett F., Haire L.F., Howell S.A., Walker P.A., Christodoulou E., Dodson G.G., Blackman M.J. The malaria parasite egress protease SUB1 is a calcium-dependent redox switch subtilisin. Nat. Commun. 2014;5:1–11. doi: 10.1038/ncomms4726. PubMed DOI PMC

Das S., Hertrich N., Perrin A.J., Withers-Martinez C., Collins C.R., Jones M.L., Watermeyer J.M., Fobes E.T., Martin S.R., Saibil H.R. Processing of Plasmodium falciparum merozoite surface protein MSP1 activates a spectrin-binding function enabling parasite egress from RBCs. Cell Host Microbe. 2015;18:433–444. doi: 10.1016/j.chom.2015.09.007. PubMed DOI PMC

Koussis K., Withers-Martinez C., Yeoh S., Child M., Hackett F., Knuepfer E., Juliano L., Woehlbier U., Bujard H., Blackman M.J. A multifunctional serine protease primes the malaria parasite for red blood cell invasion. EMBO J. 2009;28:725–735. doi: 10.1038/emboj.2009.22. PubMed DOI PMC

Montero E., Gonzalez L.M., Rodriguez M., Oksov Y., Blackman M.J., Lobo C.A. A conserved subtilisin protease identified in Babesia divergens merozoites. J. Biol. Chem. 2006;281:35717–35726. doi: 10.1074/jbc.M604344200. PubMed DOI

Lempereur L., Larcombe S.D., Durrani Z., Karagenc T., Bilgic H.B., Bakirci S., Hacilarlioglu S., Kinnaird J., Thompson J., Weir W., et al. Identification of candidate transmission-blocking antigen genes in Theileria annulata and related vector-borne apicomplexan parasites. BMC Genom. 2017;18:438. doi: 10.1186/s12864-017-3788-1. PubMed DOI PMC

Kariu T., Ishino T., Yano K., Chinzei Y., Yuda M. CelTOS, a novel malarial protein that mediates transmission to mosquito and vertebrate hosts. Mol. Microbiol. 2006;59:1369–1379. doi: 10.1111/j.1365-2958.2005.05024.x. PubMed DOI

Jimah J.R., Salinas N.D., Sala-Rabanal M., Jones N.G., Sibley L.D., Nichols C.G., Schlesinger P.H., Tolia N.H. Malaria parasite CelTOS targets the inner leaflet of cell membranes for pore-dependent disruption. Elife. 2016;5:e20621. doi: 10.7554/eLife.20621. PubMed DOI PMC

Baldi D.L., Andrews K.T., Waller R.F., Roos D.S., Howard R.F., Crabb B.S., Cowman A.F. RAP1 controls rhoptry targeting of RAP2 in the malaria parasite Plasmodium Falciparum. EMBO J. 2000;19:2435–2443. doi: 10.1093/emboj/19.11.2435. PubMed DOI PMC

Low L.M., Azasi Y., Sherling E.S., Garten M., Zimmerberg J., Tsuboi T., Brzostowski J., Mu J., Blackman M.J., Miller L.H. Deletion of Plasmodium falciparum protein RON3 affects the functional translocation of exported proteins and glucose uptake. MBio. 2019;10:e01419–e01460. doi: 10.1128/mBio.01460-19. PubMed DOI PMC

Bargieri D.Y., Thiberge S., Tay C.L., Carey A.F., Rantz A., Hischen F., Lorthiois A., Straschil U., Singh P., Singh S. Plasmodium merozoite TRAP family protein is essential for vacuole membrane disruption and gamete egress from erythrocytes. Cell Host Microbe. 2016;20:618–630. doi: 10.1016/j.chom.2016.10.015. PubMed DOI PMC

Cai H., Wang Y., McCarthy D., Wen H., Borchelt D.R., Price D.L., Wong P.C. BACE1 is the major β-secretase for generation of Aβ peptides by neurons. Nat. Neurosci. 2001;4:233–234. doi: 10.1038/85064. PubMed DOI

Sleebs B.E., Lopaticki S., Marapana D.S., O’Neill M.T., Rajasekaran P., Gazdik M., Günther S., Whitehead L.W., Lowes K.N., Barfod L. Inhibition of Plasmepsin V activity demonstrates its essential role in protein export, PfEMP1 display, and survival of malaria parasites. PLoS Biol. 2014;12:e1001897. doi: 10.1371/journal.pbio.1001897. PubMed DOI PMC

Curt-Varesano A., Braun L., Ranquet C., Hakimi M.A., Bougdour A. The aspartyl protease TgASP5 mediates the export of the Toxoplasma GRA16 and GRA24 effectors into host cells. Cell. Microbiol. 2016;18:151–167. doi: 10.1111/cmi.12498. PubMed DOI

Hammoudi P.-M., Jacot D., Mueller C., Di Cristina M., Dogga S.K., Marq J.-B., Romano J., Tosetti N., Dubrot J., Emre Y., et al. Fundamental roles of the Golgi-associated Toxoplasma aspartyl protease, ASP5, at the host-parasite interface. PLoS Pathog. 2015;11:e1005211. doi: 10.1371/journal.ppat.1005211. PubMed DOI PMC

Asada M., Goto Y., Yahata K., Yokoyama N., Kawai S., Inoue N., Kaneko O., Kawazu S.-I. Gliding motility of Babesia bovis merozoites visualized by time-lapse video microscopy. PLoS ONE. 2012;7:e35227. doi: 10.1371/journal.pone.0035227. PubMed DOI PMC

Repnik U., Gangopadhyay P., Bietz S., Przyborski J.M., Griffiths G., Lingelbach K. The apicomplexan parasite Babesia divergens internalizes band 3, glycophorin A and spectrin during invasion of human red blood cells. Cell. Microbiol. 2015;17:1052–1068. doi: 10.1111/cmi.12422. PubMed DOI

Matz J.M., Beck J.R., Blackman M.J. The parasitophorous vacuole of the blood-stage malaria parasite. Nat. Rev. Microbiol. 2020;18:379–391. doi: 10.1038/s41579-019-0321-3. PubMed DOI

Egea P.F. Crossing the vacuolar rubicon: Structural insights into effector protein trafficking in apicomplexan parasites. Microorganisms. 2020;8:865. doi: 10.3390/microorganisms8060865. PubMed DOI PMC

Ho C.-M., Beck J.R., Lai M., Cui Y., Goldberg D.E., Egea P.F., Zhou Z.H. Malaria parasite translocon structure and mechanism of effector export. Nature. 2018;561:70–75. doi: 10.1038/s41586-018-0469-4. PubMed DOI PMC

Cygan A.M., Theisen T.C., Mendoza A.G., Marino N.D., Panas M.W., Boothroyd J.C. Coimmunoprecipitation with MYR1 identifies three additional proteins within the Toxoplasma gondii parasitophorous vacuole required for translocation of dense granule effectors into host cells. Msphere. 2020;5:e00819–e00858. doi: 10.1128/mSphere.00858-19. PubMed DOI PMC

Hakimi H., Templeton T.J., Sakaguchi M., Yamagishi J., Miyazaki S., Yahata K., Uchihashi T., Kawazu S.-I., Kaneko O., Asada M. Novel Babesia bovis exported proteins that modify properties of infected red blood cells. PLoS Pathog. 2020;16:e1008917. doi: 10.1371/journal.ppat.1008917. PubMed DOI PMC

Pellé K.G., Jiang R.H., Mantel P.Y., Xiao Y.P., Hjelmqvist D., Gallego-Lopez G.M., OTLau A., Kang B.H., Allred D.R., Marti M. Shared elements of host-targeting pathways among apicomplexan parasites of differing lifestyles. Cell. Microbiol. 2015;17:1618–1639. doi: 10.1111/cmi.12460. PubMed DOI

Suarez C.E., Alzan H.F., Silva M.G., Rathinasamy V., Poole W.A., Cooke B.M. Unravelling the cellular and molecular pathogenesis of bovine babesiosis: Is the sky the limit? Int. J. Parasitol. 2019;49:183–197. doi: 10.1016/j.ijpara.2018.11.002. PubMed DOI PMC

Jackson A.P., Otto T.D., Darby A., Ramaprasad A., Xia D., Echaide I.E., Farber M., Gahlot S., Gamble J., Gupta D. The evolutionary dynamics of variant antigen genes in Babesia reveal a history of genomic innovation underlying host–parasite interaction. Nucleic Acids Res. 2014;42:7113–7131. doi: 10.1093/nar/gku322. PubMed DOI PMC

Cornillot E., Hadj-Kaddour K., Dassouli A., Noel B., Ranwez V., Vacherie B., Augagneur Y., Brès V., Duclos A., Randazzo S. Sequencing of the smallest Apicomplexan genome from the human pathogen Babesia microti. Nucleic Acids Res. 2012;40:9102–9114. doi: 10.1093/nar/gks700. PubMed DOI PMC

Guo J., Hu J., Sun Y., Yu L., He J., He P., Nie Z., Li M., Zhan X., Zhao Y. A novel Babesia orientalis 135-kilodalton spherical body protein like: Identification of its secretion into cytoplasm of infected erythrocytes. Parasites Vectors. 2018;11:1–10. doi: 10.1186/s13071-018-2795-7. PubMed DOI PMC

Mastan B.S., Kumari A., Gupta D., Mishra S., Kumar K.A. Gene disruption reveals a dispensable role for plasmepsin VII in the Plasmodium berghei life cycle. Mol. Biochem. Parasitol. 2014;195:10–13. doi: 10.1016/j.molbiopara.2014.05.004. PubMed DOI

Polonais V., Shea M., Soldati-Favre D. Toxoplasma gondii aspartic protease 1 is not essential in tachyzoites. Exp. Parasitol. 2011;128:454–459. doi: 10.1016/j.exppara.2011.05.003. PubMed DOI

Francia M.E., Striepen B. Cell division in apicomplexan parasites. Nat. Rev. Microbiol. 2014;12:125–136. doi: 10.1038/nrmicro3184. PubMed DOI

Jalovecka M., Bonsergent C., Hajdusek O., Kopacek P., Malandrin L. Stimulation and quantification of Babesia divergens gametocytogenesis. Parasites Vectors. 2016;9:439. doi: 10.1186/s13071-016-1731-y. PubMed DOI PMC

Pfaffl M.W. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 2001;29:e45. doi: 10.1093/nar/29.9.e45. PubMed DOI PMC

Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., Buxton S., Cooper A., Markowitz S., Duran C. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–1649. doi: 10.1093/bioinformatics/bts199. PubMed DOI PMC

Trifinopoulos J., Nguyen L.-T., von Haeseler A., Minh B.Q. W-IQ-TREE: A fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016;44:W232–W235. doi: 10.1093/nar/gkw256. PubMed DOI PMC

Kalyaanamoorthy S., Minh B.Q., Wong T.K., Von Haeseler A., Jermiin L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods. 2017;14:587–589. doi: 10.1038/nmeth.4285. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Babesia, Theileria, Plasmodium and Hemoglobin

. 2022 Aug 15 ; 10 (8) : . [epub] 20220815

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace