Plasmepsin-like Aspartyl Proteases in Babesia
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-05736S
Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000759
European Regional Development Fund
120/2021/P
Jihočeská Univerzita v Českých Budějovicích
PubMed
34684190
PubMed Central
PMC8540915
DOI
10.3390/pathogens10101241
PII: pathogens10101241
Knihovny.cz E-zdroje
- Klíčová slova
- Babesia, apicomplexa, aspartyl protease, piroplasmida, plasmepsin,
- Publikační typ
- časopisecké články MeSH
Apicomplexan genomes encode multiple pepsin-family aspartyl proteases (APs) that phylogenetically cluster to six independent clades (A to F). Such diversification has been powered by the function-driven evolution of the ancestral apicomplexan AP gene and is associated with the adaptation of various apicomplexan species to different strategies of host infection and transmission through various invertebrate vectors. To estimate the potential roles of Babesia APs, we performed qRT-PCR-based expressional profiling of Babesia microti APs (BmASP2, 3, 5, 6), which revealed the dynamically changing mRNA levels and indicated the specific roles of individual BmASP isoenzymes throughout the life cycle of this parasite. To expand on the current knowledge on piroplasmid APs, we searched the EuPathDB and NCBI GenBank databases to identify and phylogenetically analyse the complete sets of APs encoded by the genomes of selected Babesia and Theileria species. Our results clearly determine the potential roles of identified APs by their phylogenetic relation to their homologues of known function-Plasmodium falciparum plasmepsins (PfPM I-X) and Toxoplasma gondii aspartyl proteases (TgASP1-7). Due to the analogies with plasmodial plasmepsins, piroplasmid APs represent valuable enzymatic targets that are druggable by small molecule inhibitors-candidate molecules for the yet-missing specific therapy for babesiosis.
Zobrazit více v PubMed
Jalovecka M., Sojka D., Ascencio M., Schnittger L. Babesia life cycle–when phylogeny meets biology. Trends Parasitol. 2019;35:356–368. doi: 10.1016/j.pt.2019.01.007. PubMed DOI
Vannier E., Krause P.J. Hunter’s Tropical Medicine and Emerging Infectious Diseases. Elsevier; Amsterdam, The Netherlands: 2020. Babesiosis; pp. 799–802.
Schnittger L., Rodriguez A.E., Florin-Christensen M., Morrison D.A. Babesia: A world emerging. Infect. Genet. Evol. 2012;12:1788–1809. doi: 10.1016/j.meegid.2012.07.004. PubMed DOI
Florin-Christensen M., Suarez C.E., Rodriguez A.E., Flores D.A., Schnittger L. Vaccines against bovine babesiosis: Where we are now and possible roads ahead. Parasitology. 2014;141:1563–1592. doi: 10.1017/S0031182014000961. PubMed DOI
Rubel F., Brugger K., Pfeffer M., Chitimia-Dobler L., Didyk Y.M., Leverenz S., Dautel H., Kahl O. Geographical distribution of Dermacentor marginatus and Dermacentor reticulatus in Europe. Ticks Tick-Borne Dis. 2016;7:224–233. doi: 10.1016/j.ttbdis.2015.10.015. PubMed DOI
Vannier E., Krause P.J. Human babesiosis. N. Engl. J. Med. 2012;366:2397–2407. doi: 10.1056/NEJMra1202018. PubMed DOI
Lobo C.A., Cursino-Santos J.R., Alhassan A., Rodrigues M. Babesia: An emerging infectious threat in transfusion medicine. PLoS Pathog. 2013;9:e1003387. doi: 10.1371/journal.ppat.1003387. PubMed DOI PMC
Lempereur L., Shiels B., Heyman P., Moreau E., Saegerman C., Losson B., Malandrin L. A retrospective serological survey on human babesiosis in Belgium. Clin. Microbiol. Infect. 2015;21:96.e91–96.e97. doi: 10.1016/j.cmi.2014.07.004. PubMed DOI
Arsuaga M., González L.M., Padial E.S., Dinkessa A.W., Sevilla E., Trigo E., Puente S., Gray J., Montero E. Misdiagnosis of babesiosis as malaria, Equatorial Guinea, 2014. Emerg. Infect. Dis. 2018;24:1588–1589. doi: 10.3201/eid2408.180180. PubMed DOI PMC
Rathinasamy V., Poole W.A., Bastos R.G., Suarez C.E., Cooke B.M. Babesiosis vaccines: Lessons learned, challenges ahead, and future glimpses. Trends Parasitol. 2019;35:622–635. doi: 10.1016/j.pt.2019.06.002. PubMed DOI
Lemieux J.E., Tran A.D., Freimark L., Schaffner S.F., Goethert H., Andersen K.G., Bazner S., Li A., McGrath G., Sloan L. A global map of genetic diversity in Babesia microti reveals strong population structure and identifies variants associated with clinical relapse. Nat. Microbiol. 2016;1:1–7. doi: 10.1038/nmicrobiol.2016.79. PubMed DOI PMC
Simon M.S., Westblade L.F., Dziedziech A., Visone J.E., Furman R.R., Jenkins S.G., Schuetz A.N., Kirkman L.A. Clinical and molecular evidence of atovaquone and azithromycin resistance in relapsed Babesia microti infection associated with rituximab and chronic lymphocytic leukemia. Clin. Infect. Dis. 2017;65:1222–1225. doi: 10.1093/cid/cix477. PubMed DOI PMC
McKerrow J.H., Caffrey C., Kelly B., Loke P.n., Sajid M. Proteases in parasitic diseases. Annu. Rev. Pathol. Mech. Dis. 2006;1:497–536. doi: 10.1146/annurev.pathol.1.110304.100151. PubMed DOI
Rawlings N.D., Bateman A. How to use the MEROPS database and website to help understand peptidase specificity. Protein Sci. 2021;30:83–92. doi: 10.1002/pro.3948. PubMed DOI PMC
Barrett A.J., Rawlings N.D., Salvesen G., Woessner J.F. Handbook of Proteolytic Enzymes. 3rd ed. Elsevier; Abingdon, UK: 2012. Handbook of proteolytic enzymes introduction.
Sojka D., Hartmann D., Bartošová-Sojková P., Dvořák J. Parasite cathepsin D-like peptidases and their relevance as therapeutic targets. Trends Parasitol. 2016;32:708–723. doi: 10.1016/j.pt.2016.05.015. PubMed DOI
Shea M., Jäkle U., Liu Q., Berry C., Joiner K.A., Soldati-Favre D. A family of aspartic proteases and a novel, dynamic and cell-cycle-dependent protease localization in the secretory pathway of Toxoplasma Gondii. Traffic. 2007;8:1018–1034. doi: 10.1111/j.1600-0854.2007.00589.x. PubMed DOI
Coombs G.H., Goldberg D.E., Klemba M., Berry C., Kay J., Mottram J.C. Aspartic proteases of Plasmodium falciparum and other parasitic protozoa as drug targets. Trends Parasitol. 2001;17:532–537. doi: 10.1016/S1471-4922(01)02037-2. PubMed DOI
Burrows J.N., Soldati-Favre D. Targeting plasmepsins—an achilles’ heel of the malaria parasite. Cell Host Microbe. 2020;27:496–498. doi: 10.1016/j.chom.2020.03.015. PubMed DOI
Jalovecka M., Urbanova V., Sojka D., Malandrin L., Sima R., Kopacek P., Hajdusek O. Establishment of Babesia microti laboratory model and its experimental application; Proceedings of the 9. Tick and Tick-borne Pathogen Conference and 1st Asia Pacific Rickettsia Conference; Cairns, Australia. 20 August 2017; p. 140.
Pino P., Caldelari R., Mukherjee B., Vahokoski J., Klages N., Maco B., Collins C.R., Blackman M.J., Kursula I., Heussler V. A multistage antimalarial targets the plasmepsins IX and X essential for invasion and egress. Science. 2017;358:522–528. doi: 10.1126/science.aaf8675. PubMed DOI PMC
Dogga S.K., Mukherjee B., Jacot D., Kockmann T., Molino L., Hammoudi P.-M., Hartkoorn R.C., Hehl A.B., Soldati-Favre D. A druggable secretory protein maturase of Toxoplasma essential for invasion and egress. Elife. 2017;6:e27480. doi: 10.7554/eLife.27480. PubMed DOI PMC
Li F., Bounkeua V., Pettersen K., Vinetz J.M. Plasmodium falciparum ookinete expression of plasmepsin VII and plasmepsin X. Malar. J. 2016;15:1–10. doi: 10.1186/s12936-016-1161-5. PubMed DOI PMC
Ecker A., Bushell E.S., Tewari R., Sinden R.E. Reverse genetics screen identifies six proteins important for malaria development in the mosquito. Mol. Microbiol. 2008;70:209–220. doi: 10.1111/j.1365-2958.2008.06407.x. PubMed DOI PMC
Jalovecka M., Hajdusek O., Sojka D., Kopacek P., Malandrin L. The complexity of piroplasms life cycles. Front. Cell. Infect. Microbiol. 2018;8:248. doi: 10.3389/fcimb.2018.00248. PubMed DOI PMC
Boddey J.A., Carvalho T.G., Hodder A.N., Sargeant T.J., Sleebs B.E., Marapana D., Lopaticki S., Nebl T., Cowman A.F. Role of plasmepsin V in export of diverse protein families from the Plasmodium falciparum exportome. Traffic. 2013;14:532–550. doi: 10.1111/tra.12053. PubMed DOI
Russo I., Babbitt S., Muralidharan V., Butler T., Oksman A., Goldberg D.E. Plasmepsin V licenses Plasmodium proteins for export into the host erythrocyte. Nature. 2010;463:632–636. doi: 10.1038/nature08726. PubMed DOI PMC
Coffey M.J., Dagley L.F., Seizova S., Kapp E.A., Infusini G., Roos D.S., Boddey J.A., Webb A.I., Tonkin C.J. Aspartyl protease 5 matures dense granule proteins that reside at the host-parasite interface. Toxoplasma Gondii. MBio. 2018;9:e01718–e01796. doi: 10.1128/mBio.01796-18. PubMed DOI PMC
Silva J.C., Cornillot E., McCracken C., Usmani-Brown S., Dwivedi A., Ifeonu O.O., Crabtree J., Gotia H.T., Virji A.Z., Reynes C., et al. Genome-wide diversity and gene expression profiling of Babesia microti isolates identify polymorphic genes that mediate host-pathogen interactions. Sci. Rep. 2016;6:35284. doi: 10.1038/srep35284. PubMed DOI PMC
Thekkiniath J., Kilian N., Lawres L., Gewirtz M.A., Graham M.M., Liu X., Ledizet M., Mamoun C.B. Evidence for vesicle-mediated antigen export by the human pathogen Babesia Microti. Life Sci. Alliance. 2019;2:e201900382. doi: 10.26508/lsa.201900382. PubMed DOI PMC
Rudzinska M.A., Trager W., Lewengrub S.J., Gubert E. An electron microscopic study of Babesia microti invading erythrocytes. Cell Tissue Res. 1976;169:323–334. doi: 10.1007/BF00219605. PubMed DOI
Jennison C., Lucantoni L., O’Neill M.T., McConville R., Erickson S.M., Cowman A.F., Sleebs B.E., Avery V.M., Boddey J.A. Inhibition of plasmepsin V activity blocks Plasmodium falciparum gametocytogenesis and transmission to mosquitoes. Cell Rep. 2019;29:3796–3806.e3794. doi: 10.1016/j.celrep.2019.11.073. PubMed DOI
Liu J., Gluzman I.Y., Drew M.E., Goldberg D.E. The role of Plasmodium falciparum food vacuole plasmepsins. J. Biol. Chem. 2005;280:1432–1437. doi: 10.1074/jbc.M409740200. PubMed DOI
Votýpka J., Modrý D., Oborník M., Šlapeta J., Lukeš J. Apicomplexa. Handb. Protists. 2017;2:567–624.
Rinehart M.T., Park H.S., Walzer K.A., Chi J.-T.A., Wax A. Hemoglobin consumption by P. falciparum in individual erythrocytes imaged via quantitative phase spectroscopy. Sci. Rep. 2016;6:1–9. doi: 10.1038/srep24461. PubMed DOI PMC
Ponsuwanna P., Kochakarn T., Bunditvorapoom D., Kümpornsin K., Otto T.D., Ridenour C., Chotivanich K., Wilairat P., White N.J., Miotto O. Comparative genome-wide analysis and evolutionary history of haemoglobin-processing and haem detoxification enzymes in malarial parasites. Malar. J. 2016;15:1–14. doi: 10.1186/s12936-016-1097-9. PubMed DOI PMC
Nasamu A.S., Polino A.J., Istvan E.S., Goldberg D.E. Malaria parasite plasmepsins: More than just plain old degradative pepsins. J. Biol. Chem. 2020;295:8425–8441. doi: 10.1074/jbc.REV120.009309. PubMed DOI PMC
Rosenthal P.J., Meshnick S.R. Hemoglobin catabolism and iron utilization by malaria parasites. Mol. Biochem. Parasitol. 1996;83:131–139. doi: 10.1016/S0166-6851(96)02763-6. PubMed DOI
Lew V.L., Tiffert T., Ginsburg H. Excess hemoglobin digestion and the osmotic stability of Plasmodium falciparum–infected red blood cells. Blood. 2003;101:4189–4194. doi: 10.1182/blood-2002-08-2654. PubMed DOI
Chugh M., Sundararaman V., Kumar S., Reddy V.S., Siddiqui W.A., Stuart K.D., Malhotra P. Protein complex directs hemoglobin-to-hemozoin formation in Plasmodium falciparum. Proc. Natl. Acad. Sci. USA. 2013;110:5392–5397. doi: 10.1073/pnas.1218412110. PubMed DOI PMC
Park H., Hong S.-H., Kim K., Cho S.-H., Lee W.-J., Kim Y., Lee S.-E., Park Y. Characterizations of individual mouse red blood cells parasitized by Babesia microti using 3-D holographic microscopy. Sci. Rep. 2015;5:1–11. doi: 10.1038/srep10827. PubMed DOI PMC
Lempereur L., Beck R., Fonseca I., Marques C., Duarte A., Santos M., Zúquete S., Gomes J., Walder G., Domingos A. Guidelines for the detection of Babesia and Theileria parasites. Vector-Borne Zoonotic Dis. 2017;17:51–65. doi: 10.1089/vbz.2016.1955. PubMed DOI
Cursino-Santos J.R., Singh M., Senaldi E., Manwani D., Yazdanbakhsh K., Lobo C.A. Altered parasite life-cycle processes characterize Babesia divergens infection in human sickle cell anemia. Haematologica. 2019;104:2189. doi: 10.3324/haematol.2018.214304. PubMed DOI PMC
Fawcett D.W., Conrad P.A., Grootenhuis J.G., Morzaria S.P. Ultrastructure of the intra-erythrocytic stage of Theileria species from cattle and waterbuck. Tissue Cell. 1987;19:643–655. doi: 10.1016/0040-8166(87)90071-1. PubMed DOI
Guimarães A.M., Lima J.D., Ribeiro M.F. Ultrastructure of Babesia equi trophozoites isolated in Minas Gerais, Brazil. Pesqui. Vet. Bras. 2003;23:101–104. doi: 10.1590/S0100-736X2003000300002. DOI
Rudzinska M.A. Ultrastructure of intraerythrocytic Babesia microti with emphasis on the feeding mechanism. J. Protozool. 1976;23:224–233. doi: 10.1111/j.1550-7408.1976.tb03759.x. PubMed DOI
Conesa J.J., Sevilla E., Terrón M.C., González L.M., Gray J., Pérez-Berná A.J., Carrascosa J.L., Pereiro E., Chichón F.J., Luque D., et al. Four-dimensional characterizationof the Babesia divergens asexual life cycle, from the trophozoite to the multiparasite stage. MSphere. 2020;5:e00928-20. doi: 10.1128/mSphere.00928-20. PubMed DOI PMC
Okubo K., Yokoyama N., Govind Y., Alhassan A., Igarashi I. Babesia bovis: Effects of cysteine protease inhibitors on in vitro growth. Exp. Parasitol. 2007;117:214–217. doi: 10.1016/j.exppara.2007.04.009. PubMed DOI
Carletti T., Barreto C., Mesplet M., Mira A., Weir W., Shiels B., Oliva A.G., Schnittger L., Florin-Christensen M. Characterization of a papain-like cysteine protease essential for the survival of Babesia ovis merozoites. Ticks Tick-Borne Dis. 2016;7:85–93. doi: 10.1016/j.ttbdis.2015.09.002. PubMed DOI
Jean L., Long M., Young J., Péry P., Tomley F. Aspartyl proteinase genes from apicomplexan parasites: Evidence for evolution of the gene structure. Trends Parasitol. 2001;17:491–498. doi: 10.1016/S1471-4922(01)02030-X. PubMed DOI
Mastan B.S., Narwal S.K., Dey S., Kumar K.A., Mishra S. Plasmodium berghei plasmepsin VIII is essential for sporozoite gliding motility. Int. J. Parasitol. 2017;47:239–245. doi: 10.1016/j.ijpara.2016.11.009. PubMed DOI
Banerjee R., Liu J., Beatty W., Pelosof L., Klemba M., Goldberg D.E. Four plasmepsins are active in the Plasmodium falciparum food vacuole, including a protease with an active-site histidine. Proc. Natl. Acad. Sci. USA. 2002;99:990–995. doi: 10.1073/pnas.022630099. PubMed DOI PMC
Favuzza P., de Lera Ruiz M., Thompson J.K., Triglia T., Ngo A., Steel R.W., Vavrek M., Christensen J., Healer J., Boyce C. Dual plasmepsin-targeting antimalarial agents disrupt multiple stages of the malaria parasite life cycle. Cell Host Microbe. 2020;27:642–658.e612. doi: 10.1016/j.chom.2020.02.005. PubMed DOI PMC
Sojka D., Šnebergerová P., Robbertse L. Protease inhibition—an established strategy to combat infectious diseases. Int. J. Mol. Sci. 2021;22:5762. doi: 10.3390/ijms22115762. PubMed DOI PMC
Meissner M., Ferguson D.J., Frischknecht F. Invasion factors of apicomplexan parasites: Essential or redundant? Curr. Opin. Microbiol. 2013;16:438–444. doi: 10.1016/j.mib.2013.05.002. PubMed DOI
Frénal K., Dubremetz J.-F., Lebrun M., Soldati-Favre D. Gliding motility powers invasion and egress in Apicomplexa. Nat. Rev. Microbiol. 2017;15:645–660. doi: 10.1038/nrmicro.2017.86. PubMed DOI
Chauvin A., Moreau E., Bonnet S., Plantard O., Malandrin L. Babesia and its hosts: Adaptation to long-lasting interactions as a way to achieve efficient transmission. Vet. Res. 2009;40:1–18. doi: 10.1051/vetres/2009020. PubMed DOI PMC
Lobo C.-A. Babesia divergens and Plasmodium falciparum use common receptors, glycophorins A and B, to invade the human red blood cell. Infect. Immun. 2005;73:649–651. doi: 10.1128/IAI.73.1.649-651.2005. PubMed DOI PMC
Malpede B.M., Tolia N.H. Malaria adhesins: Structure and function. Cell. Microbiol. 2014;16:621–631. doi: 10.1111/cmi.12276. PubMed DOI PMC
Beeson J.G., Drew D.R., Boyle M.J., Feng G., Fowkes F.J., Richards J.S. Merozoite surface proteins in red blood cell invasion, immunity and vaccines against malaria. FEMS Microbiol. Rev. 2016;40:343–372. doi: 10.1093/femsre/fuw001. PubMed DOI PMC
Mosqueda J., McElwain T.F., Palmer G.H. Babesia bovis merozoite surface antigen 2 proteins are expressed on the merozoite and sporozoite surface, and specific antibodies inhibit attachment and invasion of erythrocytes. Infect. Immun. 2002;70:6448–6455. doi: 10.1128/IAI.70.11.6448-6455.2002. PubMed DOI PMC
Woods K., Perry C., Brühlmann F., Olias P. Theileria’s strategies and effector mechanisms for host cell transformation: From invasion to immortalization. Front. Cell Dev. Biol. 2021;9:972. doi: 10.3389/fcell.2021.662805. PubMed DOI PMC
Lobo C.A., Rodriguez M., Cursino-Santos J.R. Babesia and red cell invasion. Curr. Opin. Hematol. 2012;19:170–175. doi: 10.1097/MOH.0b013e328352245a. PubMed DOI
Besteiro S., Dubremetz J.F., Lebrun M. The moving junction of apicomplexan parasites: A key structure for invasion. Cell. Microbiol. 2011;13:797–805. doi: 10.1111/j.1462-5822.2011.01597.x. PubMed DOI
Montero E., Rodriguez M., Oksov Y., Lobo C.A. Babesia divergens apical membrane antigen 1 and its interaction with the human red blood cell. Infect. Immun. 2009;77:4783–4793. doi: 10.1128/IAI.00969-08. PubMed DOI PMC
Moitra P., Zheng H., Anantharaman V., Banerjee R., Takeda K., Kozakai Y., Lepore T., Krause P.J., Aravind L., Kumar S. Expression, purification, and biological characterization of Babesia microti apical membrane antigen 1. Infect. Immun. 2015;83:3890–3901. doi: 10.1128/IAI.00168-15. PubMed DOI PMC
Gaffar F.R., Yatsuda A.P., Franssen F.F., de Vries E. Erythrocyte invasion by Babesia bovis merozoites is inhibited by polyclonal antisera directed against peptides derived from a homologue of Plasmodium falciparum apical membrane antigen 1. Infect. Immun. 2004;72:2947–2955. doi: 10.1128/IAI.72.5.2947-2955.2004. PubMed DOI PMC
González L.M., Estrada K., Grande R., Jiménez-Jacinto V., Vega-Alvarado L., Sevilla E., Barrera J., Cuesta I., Zaballos Á., Bautista J.M., et al. Comparative and functional genomics of the protozoan parasite Babesia divergens highlighting the invasion and egress processes. PLoS Negl. Trop. Dis. 2019;13:e0007680. doi: 10.1371/journal.pntd.0007680. PubMed DOI PMC
Buguliskis J.S., Brossier F., Shuman J., Sibley L.D. Rhomboid 4 (ROM4) affects the processing of surface adhesins and facilitates host cell invasion by Toxoplasma gondii. PLoS Pathog. 2010;6:e1000858. doi: 10.1371/journal.ppat.1000858. PubMed DOI PMC
Shaw M.K. Cell invasion by Theileria sporozoites. Trends Parasitol. 2003;19:2–6. doi: 10.1016/S1471-4922(02)00015-6. PubMed DOI
Shaw M.K. Theileria. Springer; Boston, MA, USA: 2002. Theileria development and host cell invasion; pp. 1–22.
Thomas J.A., Tan M.S., Bisson C., Borg A., Umrekar T.R., Hackett F., Hale V.L., Vizcay-Barrena G., Fleck R.A., Snijders A.P. A protease cascade regulates release of the human malaria parasite Plasmodium falciparum from host red blood cells. Nat. Microbiol. 2018;3:447–455. doi: 10.1038/s41564-018-0111-0. PubMed DOI PMC
Collins C.R., Hackett F., Atid J., Tan M.S.Y., Blackman M.J. The Plasmodium falciparum pseudoprotease SERA5 regulates the kinetics and efficiency of malaria parasite egress from host erythrocytes. PLoS Pathog. 2017;13:e1006453. doi: 10.1371/journal.ppat.1006453. PubMed DOI PMC
Withers-Martinez C., Strath M., Hackett F., Haire L.F., Howell S.A., Walker P.A., Christodoulou E., Dodson G.G., Blackman M.J. The malaria parasite egress protease SUB1 is a calcium-dependent redox switch subtilisin. Nat. Commun. 2014;5:1–11. doi: 10.1038/ncomms4726. PubMed DOI PMC
Das S., Hertrich N., Perrin A.J., Withers-Martinez C., Collins C.R., Jones M.L., Watermeyer J.M., Fobes E.T., Martin S.R., Saibil H.R. Processing of Plasmodium falciparum merozoite surface protein MSP1 activates a spectrin-binding function enabling parasite egress from RBCs. Cell Host Microbe. 2015;18:433–444. doi: 10.1016/j.chom.2015.09.007. PubMed DOI PMC
Koussis K., Withers-Martinez C., Yeoh S., Child M., Hackett F., Knuepfer E., Juliano L., Woehlbier U., Bujard H., Blackman M.J. A multifunctional serine protease primes the malaria parasite for red blood cell invasion. EMBO J. 2009;28:725–735. doi: 10.1038/emboj.2009.22. PubMed DOI PMC
Montero E., Gonzalez L.M., Rodriguez M., Oksov Y., Blackman M.J., Lobo C.A. A conserved subtilisin protease identified in Babesia divergens merozoites. J. Biol. Chem. 2006;281:35717–35726. doi: 10.1074/jbc.M604344200. PubMed DOI
Lempereur L., Larcombe S.D., Durrani Z., Karagenc T., Bilgic H.B., Bakirci S., Hacilarlioglu S., Kinnaird J., Thompson J., Weir W., et al. Identification of candidate transmission-blocking antigen genes in Theileria annulata and related vector-borne apicomplexan parasites. BMC Genom. 2017;18:438. doi: 10.1186/s12864-017-3788-1. PubMed DOI PMC
Kariu T., Ishino T., Yano K., Chinzei Y., Yuda M. CelTOS, a novel malarial protein that mediates transmission to mosquito and vertebrate hosts. Mol. Microbiol. 2006;59:1369–1379. doi: 10.1111/j.1365-2958.2005.05024.x. PubMed DOI
Jimah J.R., Salinas N.D., Sala-Rabanal M., Jones N.G., Sibley L.D., Nichols C.G., Schlesinger P.H., Tolia N.H. Malaria parasite CelTOS targets the inner leaflet of cell membranes for pore-dependent disruption. Elife. 2016;5:e20621. doi: 10.7554/eLife.20621. PubMed DOI PMC
Baldi D.L., Andrews K.T., Waller R.F., Roos D.S., Howard R.F., Crabb B.S., Cowman A.F. RAP1 controls rhoptry targeting of RAP2 in the malaria parasite Plasmodium Falciparum. EMBO J. 2000;19:2435–2443. doi: 10.1093/emboj/19.11.2435. PubMed DOI PMC
Low L.M., Azasi Y., Sherling E.S., Garten M., Zimmerberg J., Tsuboi T., Brzostowski J., Mu J., Blackman M.J., Miller L.H. Deletion of Plasmodium falciparum protein RON3 affects the functional translocation of exported proteins and glucose uptake. MBio. 2019;10:e01419–e01460. doi: 10.1128/mBio.01460-19. PubMed DOI PMC
Bargieri D.Y., Thiberge S., Tay C.L., Carey A.F., Rantz A., Hischen F., Lorthiois A., Straschil U., Singh P., Singh S. Plasmodium merozoite TRAP family protein is essential for vacuole membrane disruption and gamete egress from erythrocytes. Cell Host Microbe. 2016;20:618–630. doi: 10.1016/j.chom.2016.10.015. PubMed DOI PMC
Cai H., Wang Y., McCarthy D., Wen H., Borchelt D.R., Price D.L., Wong P.C. BACE1 is the major β-secretase for generation of Aβ peptides by neurons. Nat. Neurosci. 2001;4:233–234. doi: 10.1038/85064. PubMed DOI
Sleebs B.E., Lopaticki S., Marapana D.S., O’Neill M.T., Rajasekaran P., Gazdik M., Günther S., Whitehead L.W., Lowes K.N., Barfod L. Inhibition of Plasmepsin V activity demonstrates its essential role in protein export, PfEMP1 display, and survival of malaria parasites. PLoS Biol. 2014;12:e1001897. doi: 10.1371/journal.pbio.1001897. PubMed DOI PMC
Curt-Varesano A., Braun L., Ranquet C., Hakimi M.A., Bougdour A. The aspartyl protease TgASP5 mediates the export of the Toxoplasma GRA16 and GRA24 effectors into host cells. Cell. Microbiol. 2016;18:151–167. doi: 10.1111/cmi.12498. PubMed DOI
Hammoudi P.-M., Jacot D., Mueller C., Di Cristina M., Dogga S.K., Marq J.-B., Romano J., Tosetti N., Dubrot J., Emre Y., et al. Fundamental roles of the Golgi-associated Toxoplasma aspartyl protease, ASP5, at the host-parasite interface. PLoS Pathog. 2015;11:e1005211. doi: 10.1371/journal.ppat.1005211. PubMed DOI PMC
Asada M., Goto Y., Yahata K., Yokoyama N., Kawai S., Inoue N., Kaneko O., Kawazu S.-I. Gliding motility of Babesia bovis merozoites visualized by time-lapse video microscopy. PLoS ONE. 2012;7:e35227. doi: 10.1371/journal.pone.0035227. PubMed DOI PMC
Repnik U., Gangopadhyay P., Bietz S., Przyborski J.M., Griffiths G., Lingelbach K. The apicomplexan parasite Babesia divergens internalizes band 3, glycophorin A and spectrin during invasion of human red blood cells. Cell. Microbiol. 2015;17:1052–1068. doi: 10.1111/cmi.12422. PubMed DOI
Matz J.M., Beck J.R., Blackman M.J. The parasitophorous vacuole of the blood-stage malaria parasite. Nat. Rev. Microbiol. 2020;18:379–391. doi: 10.1038/s41579-019-0321-3. PubMed DOI
Egea P.F. Crossing the vacuolar rubicon: Structural insights into effector protein trafficking in apicomplexan parasites. Microorganisms. 2020;8:865. doi: 10.3390/microorganisms8060865. PubMed DOI PMC
Ho C.-M., Beck J.R., Lai M., Cui Y., Goldberg D.E., Egea P.F., Zhou Z.H. Malaria parasite translocon structure and mechanism of effector export. Nature. 2018;561:70–75. doi: 10.1038/s41586-018-0469-4. PubMed DOI PMC
Cygan A.M., Theisen T.C., Mendoza A.G., Marino N.D., Panas M.W., Boothroyd J.C. Coimmunoprecipitation with MYR1 identifies three additional proteins within the Toxoplasma gondii parasitophorous vacuole required for translocation of dense granule effectors into host cells. Msphere. 2020;5:e00819–e00858. doi: 10.1128/mSphere.00858-19. PubMed DOI PMC
Hakimi H., Templeton T.J., Sakaguchi M., Yamagishi J., Miyazaki S., Yahata K., Uchihashi T., Kawazu S.-I., Kaneko O., Asada M. Novel Babesia bovis exported proteins that modify properties of infected red blood cells. PLoS Pathog. 2020;16:e1008917. doi: 10.1371/journal.ppat.1008917. PubMed DOI PMC
Pellé K.G., Jiang R.H., Mantel P.Y., Xiao Y.P., Hjelmqvist D., Gallego-Lopez G.M., OTLau A., Kang B.H., Allred D.R., Marti M. Shared elements of host-targeting pathways among apicomplexan parasites of differing lifestyles. Cell. Microbiol. 2015;17:1618–1639. doi: 10.1111/cmi.12460. PubMed DOI
Suarez C.E., Alzan H.F., Silva M.G., Rathinasamy V., Poole W.A., Cooke B.M. Unravelling the cellular and molecular pathogenesis of bovine babesiosis: Is the sky the limit? Int. J. Parasitol. 2019;49:183–197. doi: 10.1016/j.ijpara.2018.11.002. PubMed DOI PMC
Jackson A.P., Otto T.D., Darby A., Ramaprasad A., Xia D., Echaide I.E., Farber M., Gahlot S., Gamble J., Gupta D. The evolutionary dynamics of variant antigen genes in Babesia reveal a history of genomic innovation underlying host–parasite interaction. Nucleic Acids Res. 2014;42:7113–7131. doi: 10.1093/nar/gku322. PubMed DOI PMC
Cornillot E., Hadj-Kaddour K., Dassouli A., Noel B., Ranwez V., Vacherie B., Augagneur Y., Brès V., Duclos A., Randazzo S. Sequencing of the smallest Apicomplexan genome from the human pathogen Babesia microti. Nucleic Acids Res. 2012;40:9102–9114. doi: 10.1093/nar/gks700. PubMed DOI PMC
Guo J., Hu J., Sun Y., Yu L., He J., He P., Nie Z., Li M., Zhan X., Zhao Y. A novel Babesia orientalis 135-kilodalton spherical body protein like: Identification of its secretion into cytoplasm of infected erythrocytes. Parasites Vectors. 2018;11:1–10. doi: 10.1186/s13071-018-2795-7. PubMed DOI PMC
Mastan B.S., Kumari A., Gupta D., Mishra S., Kumar K.A. Gene disruption reveals a dispensable role for plasmepsin VII in the Plasmodium berghei life cycle. Mol. Biochem. Parasitol. 2014;195:10–13. doi: 10.1016/j.molbiopara.2014.05.004. PubMed DOI
Polonais V., Shea M., Soldati-Favre D. Toxoplasma gondii aspartic protease 1 is not essential in tachyzoites. Exp. Parasitol. 2011;128:454–459. doi: 10.1016/j.exppara.2011.05.003. PubMed DOI
Francia M.E., Striepen B. Cell division in apicomplexan parasites. Nat. Rev. Microbiol. 2014;12:125–136. doi: 10.1038/nrmicro3184. PubMed DOI
Jalovecka M., Bonsergent C., Hajdusek O., Kopacek P., Malandrin L. Stimulation and quantification of Babesia divergens gametocytogenesis. Parasites Vectors. 2016;9:439. doi: 10.1186/s13071-016-1731-y. PubMed DOI PMC
Pfaffl M.W. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 2001;29:e45. doi: 10.1093/nar/29.9.e45. PubMed DOI PMC
Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., Buxton S., Cooper A., Markowitz S., Duran C. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–1649. doi: 10.1093/bioinformatics/bts199. PubMed DOI PMC
Trifinopoulos J., Nguyen L.-T., von Haeseler A., Minh B.Q. W-IQ-TREE: A fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016;44:W232–W235. doi: 10.1093/nar/gkw256. PubMed DOI PMC
Kalyaanamoorthy S., Minh B.Q., Wong T.K., Von Haeseler A., Jermiin L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods. 2017;14:587–589. doi: 10.1038/nmeth.4285. PubMed DOI PMC