• This record comes from PubMed

Stimulation and quantification of Babesia divergens gametocytogenesis

. 2016 Aug 08 ; 9 (1) : 439. [epub] 20160808

Language English Country Great Britain, England Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 27502772
PubMed Central PMC4977898
DOI 10.1186/s13071-016-1731-y
PII: 10.1186/s13071-016-1731-y
Knihovny.cz E-resources

BACKGROUND: Babesia divergens is the most common blood parasite in Europe causing babesiosis, a tick-borne malaria-like disease. Despite an increasing focus on B. divergens, especially regarding veterinary and human medicine, the sexual development of Babesia is poorly understood. Development of Babesia sexual stages in the host blood (gametocytes) plays a decisive role in parasite acquisition by the tick vector. However, the exact mechanism of gametocytogenesis is still unexplained. METHODS: Babesia divergens gametocytes are characterized by expression of bdccp1, bdccp2 and bdccp3 genes. Using previously described sequences of bdccp1, bdccp2 and bdccp3, we have established a quantitative real-time PCR (qRT-PCR) assay for detection and assessment of the efficiency of B. divergens gametocytes production in bovine blood. We analysed fluctuations in expression of bdccp genes during cultivation in vitro, as well as in cultures treated with different drugs and stimuli. RESULTS: We demonstrated that all B. divergens clonal lines tested, originally derived from naturally infected cows, exhibited sexual stages. Furthermore, sexual commitment was stimulated during continuous growth of the cultures, by addition of specific stress-inducing drugs or by alternating cultivation conditions. Expression of bdccp genes was greatly reduced or even lost after long-term cultivation, suggesting possible problems in the artificial infections of ticks in feeding assays in vitro. CONCLUSIONS: Our research provides insight into sexual development of B. divergens and may facilitate the development of transmission models in vitro, enabling a more detailed understanding of Babesia-tick interactions.

See more in PubMed

Schnittger L, Rodriguez AE, Florin-Christensen M, Morrison DA. Babesia: a world emerging. Infect Genet Evol. 2012;12(8):1788–809. doi: 10.1016/j.meegid.2012.07.004. PubMed DOI

Arisue N, Hashimoto T. Phylogeny and evolution of apicoplasts and apicomplexan parasites. Parasitol Int. 2014;64(3):254-9. PubMed

Zintl A, Mulcahy G, Skerrett HE, Taylor SM, Gray JS. Babesia divergens, a bovine blood parasite of veterinary and zoonotic importance. Clin Microbiol Rev. 2003;16(4):622–36. doi: 10.1128/CMR.16.4.622-636.2003. PubMed DOI PMC

Mehlhorn H, Shein E. The piroplasms: life cycle and sexual stages. Adv Parasitol. 1984;23:37–103. doi: 10.1016/S0065-308X(08)60285-7. PubMed DOI

Smith TG, Walliker D, Ranford-Cartwright LC. Sexual differentiation and sex determination in the Apicomplexa. Trends Parasitol. 2002;18(7):315–23. doi: 10.1016/S1471-4922(02)02292-4. PubMed DOI

Homer MJ, Aguilar-Delfin I, Telford SR, Krause PJ, Persing DH. Babesiosis. Clin Microbiol Rev. 2000;13(3):451–69. doi: 10.1128/CMR.13.3.451-469.2000. PubMed DOI PMC

Chauvin A, Moreau E, Bonnet S, Plantard O, Malandrin L. Babesia and its hosts: adaptation to long-lasting interactions as a way to achieve efficient transmission. Vet Res. 2009;40(2):37. doi: 10.1051/vetres/2009020. PubMed DOI PMC

Dyer M, Day KP. Commitment to gametocytogenesis in Plasmodium falciparum. Parasitol Today. 2000;16(3):102–7. doi: 10.1016/S0169-4758(99)01608-7. PubMed DOI

Ribeiro MF, Patarroyo JH. Ultrastructure of Babesia bigemina gametes obtained in “in vitro” erythrocyte cultures. Vet Parasitol. 1998;76(1–2):19–25. doi: 10.1016/S0304-4017(97)00205-7. PubMed DOI

Rudzinska MA, Spielman A, Riek RF, Lewengrub SJ, Piesman J. Intraerythrocytic ‘gametocytes’ of Babesia microti and their maturation in ticks. Can J Zool. 1979;57(2):424–34. doi: 10.1139/z79-050. PubMed DOI

Mosqueda J, Falcon A, Antonio Alvarez J, Alberto Ramos J, Oropeza-Hernandez LF, Figueroa JV. Babesia bigemina sexual stages are induced in vitro and are specifically recognized by antibodies in the midgut of infected Boophilus microplus ticks. Int J Parasitol. 2004;34(11):1229–36. doi: 10.1016/j.ijpara.2004.07.003. PubMed DOI

Gough JM, Jorgensen WK, Kemp DH. Development of tick gut forms of Babesia bigemina in vitro. J Eukaryot Microbiol. 1998;45(3):298–306. doi: 10.1111/j.1550-7408.1998.tb04540.x. PubMed DOI

Vichido R, Falcon A, Ramos JA, Alvarez A, Figueroa JV, Norimine J, et al. Expression analysis of heat shock protein 20 and rhoptry-associated protein 1a in sexual stages and kinetes of Babesia bigemina. Ann N Y Acad Sci. 2008;1149:136–40. doi: 10.1196/annals.1428.073. PubMed DOI

Becker CA, Malandrin L, Depoix D, Larcher T, David PH, Chauvin A, et al. Identification of three CCp genes in Babesia divergens: novel markers for sexual stages parasites. Mol Biochem Parasitol. 2010;174(1):36–43. doi: 10.1016/j.molbiopara.2010.06.011. PubMed DOI

Trexler M, Bányai L, Patthy L. The LCCL module. Eur J Biochem. 2000;267(18):5751–7. doi: 10.1046/j.1432-1327.2000.01641.x. PubMed DOI

Dessens JT, Sinden RE, Claudianos C. LCCL proteins of apicomplexan parasites. Trends Parasitol. 2004;20(3):102–8. doi: 10.1016/j.pt.2004.01.002. PubMed DOI

Tosini F, Trasarti E, Pozio E. Apicomplexa genes involved in the host cell invasion: the Cpa135 protein family. Parassitologia. 2006;48(1–2):105–7. PubMed

Templeton TJ, Enomoto S, Chen WJ, Huang CG, Lancto CA, Abrahamsen MS, Zhu G. A genome-sequence survey for Ascogregarina taiwanensis supports evolutionary affiliation but metabolic diversity between a Gregarine and Cryptosporidium. Mol Biol Evol. 2010;27(2):235–48. doi: 10.1093/molbev/msp226. PubMed DOI PMC

Bastos RG, Suarez CE, Laughery JM, Johnson WC, Ueti MW, Knowles DP. Differential expression of three members of the multidomain adhesion CCp family in Babesia bigemina, Babesia bovis and Theileria equi. PLoS One. 2013;8(7):e67765. doi: 10.1371/journal.pone.0067765. PubMed DOI PMC

Pradel G, Hayton K, Aravind L, Iyer LM, Abrahamsen MS, Bonawitz A, et al. A multidomain adhesion protein family expressed in Plasmodium falciparum is essential for transmission to the mosquito. J Exp Med. 2004;199(11):1533–44. doi: 10.1084/jem.20031274. PubMed DOI PMC

Lavazec C, Moreira CK, Mair GR, Waters AP, Janse CJ, Templeton TJ. Analysis of mutant Plasmodium berghei parasites lacking expression of multiple PbCCp genes. Mol Biochem Parasitol. 2009;163(1):1–7. doi: 10.1016/j.molbiopara.2008.09.002. PubMed DOI

Becker CA, Malandrin L, Larcher T, Chauvin A, Bischoff E, Bonnet SI. Validation of BdCCp2 as a marker for Babesia divergens sexual stages in ticks. Exp Parasitol. 2013;133(1):51–6. doi: 10.1016/j.exppara.2012.10.007. PubMed DOI

Scholz SM, Simon N, Lavazec C, Dude MA, Templeton TJ, Pradel G. PfCCp proteins of Plasmodium falciparum: gametocyte-specific expression and role in complement-mediated inhibition of exflagellation. Int J Parasitol. 2008;38(3–4):327–40. doi: 10.1016/j.ijpara.2007.08.009. PubMed DOI

Simon N, Scholz SM, Moreira CK, Templeton TJ, Kuehn A, Dude MA, Pradel G. Sexual stage adhesion proteins form multi-protein complexes in the malaria parasite Plasmodium falciparum. J Biol Chem. 2009;284(21):14537–46. doi: 10.1074/jbc.M808472200. PubMed DOI PMC

Malandrin L, L’Hostis M, Chauvin A. Isolation of Babesia divergens from carrier cattle blood using in vitro culture. Vet Res. 2004;35(1):131–9. doi: 10.1051/vetres:2003047. PubMed DOI

Malandrin L, Jouglin M, Moreau E, Chauvin A. Individual heterogeneity in erythrocyte susceptibility to Babesia divergens is a critical factor for the outcome of experimental spleen-intact sheep infections. Vet Res. 2009;40(4):25. doi: 10.1051/vetres/2009008. PubMed DOI PMC

Chauvin A, Valentin A, Malandrin L, L’Hostis M. Sheep as a new experimental host for Babesia divergens. Vet Res. 2002;33(4):429–33. doi: 10.1051/vetres:2002029. PubMed DOI

Jackson AP, Otto TD, Darby A, Ramaprasad A, Xia D, Echaide IE, et al. The evolutionary dynamics of variant antigen genes in Babesia reveal a history of genomic innovation underlying host-parasite interaction. Nucleic Acids Res. 2014;42(11):7113–31. doi: 10.1093/nar/gku322. PubMed DOI PMC

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI

Malandrin L, Jouglin M, Sun Y, Brisseau N, Chauvin A. Redescription of Babesia capreoli (Enigk and Friedhoff, 1962) from roe deer (Capreolus capreolus): isolation, cultivation, host specificity, molecular characterisation and differentiation from Babesia divergens. Int J Parasitol. 2010;40(3):277–84. doi: 10.1016/j.ijpara.2009.08.008. PubMed DOI

Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55(4):611–22. doi: 10.1373/clinchem.2008.112797. PubMed DOI

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–8. doi: 10.1006/meth.2001.1262. PubMed DOI

Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3(6):1101–8. doi: 10.1038/nprot.2008.73. PubMed DOI

Alano P, Carter R. Sexual differentiation in malaria parasites. Annu Rev Microbiol. 1990;44:429–49. doi: 10.1146/annurev.mi.44.100190.002241. PubMed DOI

Lobo CA, Kumar N. Sexual differentiation and development in the malaria parasite. Parasitol Today. 1998;14(4):146–50. doi: 10.1016/S0169-4758(97)01210-6. PubMed DOI

Babiker HA, Schneider P, Reece SE. Gametocytes: insights gained during a decade of molecular monitoring. Trends Parasitol. 2008;24(11):525–30. doi: 10.1016/j.pt.2008.08.001. PubMed DOI PMC

Talman AM, Domarle O, McKenzie FE, Ariey F, Robert V. Gametocytogenesis: the puberty of Plasmodium falciparum. Malar J. 2004;3:24. doi: 10.1186/1475-2875-3-24. PubMed DOI PMC

Vannier E, Krause PJ. Human babesiosis. N Engl J Med. 2012;366(25):2397–407. doi: 10.1056/NEJMra1202018. PubMed DOI

Wampfler R, Mwingira F, Javati S, Robinson L, Betuela I, Siba P, et al. Strategies for detection of Plasmodium species gametocytes. PLoS One. 2013;8(9):e76316. doi: 10.1371/journal.pone.0076316. PubMed DOI PMC

Schneider P, Reece SE, van Schaijk BC, Bousema T, Lanke KH, Meaden CS, et al. Quantification of female and male Plasmodium falciparum gametocytes by reverse transcriptase quantitative PCR. Mol Biochem Parasitol. 2015;199(1–2):29–33. PubMed

Churcher TS, Bousema T, Walker M, Drakeley C, Schneider P, Ouédraogo AL, Basáñez MG. Predicting mosquito infection from Plasmodium falciparum gametocyte density and estimating the reservoir of infection. Elife. 2013;2:e00626. doi: 10.7554/eLife.00626. PubMed DOI PMC

Da DF, Churcher TS, Yerbanga RS, Yaméogo B, Sangaré I, Ouedraogo JB, et al. Experimental study of the relationship between Plasmodium gametocyte density and infection success in mosquitoes; implications for the evaluation of malaria transmission-reducing interventions. Exp Parasitol. 2015;149:74–83. doi: 10.1016/j.exppara.2014.12.010. PubMed DOI

Morlais I, Nsango SE, Toussile W, Abate L, Annan Z, Tchioffo MT, et al. Plasmodium falciparum mating patterns and mosquito infectivity of natural isolates of gametocytes. PLoS One. 2015;10(4):e0123777. doi: 10.1371/journal.pone.0123777. PubMed DOI PMC

Stone W, Gonçalves BP, Bousema T, Drakeley C. Assessing the infectious reservoir of falciparum malaria: past and future. Trends Parasitol. 2015;31(7):287–96. doi: 10.1016/j.pt.2015.04.004. PubMed DOI

Bustin SA. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol. 2002;29(1):23–39. doi: 10.1677/jme.0.0290023. PubMed DOI

Bas A, Forsberg G, Hammarström S, Hammarström ML. Utility of the housekeeping genes 18S rRNA, beta-actin and glyceraldehyde-3-phosphate-dehydrogenase for normalization in real-time quantitative reverse transcriptase-polymerase chain reaction analysis of gene expression in human T lymphocytes. Scand J Immunol. 2004;59(6):566–73. doi: 10.1111/j.0300-9475.2004.01440.x. PubMed DOI

Josling GA, Llinas M. Sexual development in Plasmodium parasites: knowing when it’s time to commit. Nat Rev Microbiol. 2015;13(9):573–87. doi: 10.1038/nrmicro3519. PubMed DOI

Dixon MW, Thompson J, Gardiner DL, Trenholme KR. Sex in Plasmodium: a sign of commitment. Trends Parasitol. 2008;24(4):168–75. doi: 10.1016/j.pt.2008.01.004. PubMed DOI

Liu Z, Miao J, Cui L. Gametocytogenesis in malaria parasite: commitment, development and regulation. Future Microbiol. 2011;6(11):1351–69. doi: 10.2217/fmb.11.108. PubMed DOI PMC

Bousema T, Drakeley C. Epidemiology and infectivity of Plasmodium falciparum and Plasmodium vivax gametocytes in relation to malaria control and elimination. Clin Microbiol Rev. 2011;24(2):377–410. doi: 10.1128/CMR.00051-10. PubMed DOI PMC

Pieszko M, Weir W, Goodhead I, Kinnaird J, Shiels B. ApiAP2 factors as candidate regulators of stochastic commitment to merozoite production in Theileria annulata. PLoS Negl Trop Dis. 2015;9(8):e0003933. doi: 10.1371/journal.pntd.0003933. PubMed DOI PMC

Schneweis S, Maier WA, Seitz HM. Haemolysis of infected erythrocytes--a trigger for formation of Plasmodium falciparum gametocytes? Parasitol Res. 1991;77(5):458–60. doi: 10.1007/BF00931646. PubMed DOI

Carter LM, Schneider P, Reece SE. Information use and plasticity in the reproductive decisions of malaria parasites. Malar J. 2014;13:115. doi: 10.1186/1475-2875-13-115. PubMed DOI PMC

Taylor LH, Walliker D, Read AF. Mixed-genotype infections of the rodent malaria Plasmodium chabaudi are more infectious to mosquitoes than single-genotype infections. Parasitology. 1997;115(Pt 2):121–32. doi: 10.1017/S0031182097001145. PubMed DOI

Bousema JT, Drakeley CJ, Mens PF, Arens T, Houben R, Omar SA, Gouagna LC, Schallig H, Sauerwein RW. Increased Plasmodium falciparum gametocyte production in mixed infections with P. malariae. Am J Trop Med Hyg. 2008;78(3):442–8. PubMed

Nsango SE, Abate L, Thoma M, Pompon J, Fraiture M, Rademacher A, Berry A, Awono-Ambene PH, Levashina EA, Morlais I. Genetic clonality of Plasmodium falciparum affects the outcome of infection in Anopheles gambiae. Int J Parasitol. 2012;42(6):589–95. doi: 10.1016/j.ijpara.2012.03.008. PubMed DOI

Butterworth AS, Skinner-Adams TS, Gardiner DL, Trenholme KR. Plasmodium falciparum gametocytes: with a view to a kill. Parasitology. 2013;140(14):1718–34. doi: 10.1017/S0031182013001236. PubMed DOI

Mosqueda J, Olvera-Ramirez A, Aguilar-Tipacamu G, Canto GJ. Current advances in detection and treatment of babesiosis. Curr Med Chem. 2012;19(10):1504–18. doi: 10.2174/092986712799828355. PubMed DOI PMC

Müller IB, Hyde JE. Antimalarial drugs: modes of action and mechanisms of parasite resistance. Future Microbiol. 2010;5(12):1857–73. doi: 10.2217/fmb.10.136. PubMed DOI

Adjalley SH, Johnston GL, Li T, Eastman RT, Ekland EH, Eappen AG, et al. Quantitative assessment of Plasmodium falciparum sexual development reveals potent transmission-blocking activity by methylene blue. Proc Natl Acad Sci USA. 2011;108(47):E1214–23. doi: 10.1073/pnas.1112037108. PubMed DOI PMC

Fleck SL, Pudney M, Sinden RE. The effect of atovaquone (566C80) on the maturation and viability of Plasmodium falciparum gametocytes in vitro. Trans R Soc Trop Med Hyg. 1996;90(3):309–12. doi: 10.1016/S0035-9203(96)90266-7. PubMed DOI

Weber G, Friedhoff KT. Preliminary observations on the ultrastructure of suppossed sexual stages of Babesia bigemina (Piroplasmea) Z Parasitenkd. 1977;53(1):83–92. doi: 10.1007/BF00383118. PubMed DOI

Billker O, Lindo V, Panico M, Etienne AE, Paxton T, Dell A, Rogers M, Sinden RE, Morris HR. Identification of xanthurenic acid as the putative inducer of malaria development in the mosquito. Nature. 1998;392(6673):289–92. doi: 10.1038/32667. PubMed DOI

Garcia GE, Wirtz RA, Barr JR, Woolfitt A, Rosenberg R. Xanthurenic acid induces gametogenesis in Plasmodium, the malaria parasite. J Biol Chem. 1998;273(20):12003–5. doi: 10.1074/jbc.273.20.12003. PubMed DOI

Kröber T, Guerin PM. In vitro feeding assays for hard ticks. Trends Parasitol. 2007;23(9):445–9. doi: 10.1016/j.pt.2007.07.010. PubMed DOI

Malandrin L, Marchand AM, Chauvin A. Development of a microtitre-based spectrophotometric method to monitor Babesia divergens growth in vitro. J Microbiol Methods. 2004;58(3):303–12. doi: 10.1016/j.mimet.2004.04.010. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...