Establishment of a stable transfection and gene targeting system in Babesia divergens
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
38156314
PubMed Central
PMC10753763
DOI
10.3389/fcimb.2023.1278041
Knihovny.cz E-zdroje
- Klíčová slova
- 6-cys-e gene knockout, Babesia divergens, GFP-expression, bidirectional promoter, erythrocytes pre-loading, gene targeting, transfection system,
- MeSH
- Babesia * genetika MeSH
- babezióza * parazitologie MeSH
- erytrocyty parazitologie MeSH
- genový targeting MeSH
- lidé MeSH
- transfekce MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Babesia divergens is an emerging tick-borne pathogen considered as the principal causative agent of bovine babesiosis in Europe with a notable zoonotic risk to human health. Despite its increasing impact, considerable gaps persist in our understanding of the molecular interactions between this parasite and its hosts. In this study, we address the current limitation of functional genomic tools in B. divergens and introduce a stable transfection system specific to this parasite. We define the parameters for a drug selection system hdhfr-WR99210 and evaluate different transfection protocols for highly efficient generation of transgenic parasites expressing GFP. We proved that plasmid delivery into bovine erythrocytes prior to their infection is the most optimal transfection approach for B. divergens, providing novel evidence of Babesia parasites' ability to spontaneously uptake external DNA from erythrocytes cytoplasm. Furthermore, we validated the bidirectional and symmetrical activity of ef-tgtp promoter, enabling simultaneous expression of external genes. Lastly, we generated a B. divergens knockout line by targeting a 6-cys-e gene locus. The observed dispensability of this gene in intraerythrocytic parasite development makes it a suitable recipient locus for further transgenic application. The platform for genetic manipulations presented herein serves as the initial step towards developing advanced functional genomic tools enabling the discovery of B. divergens molecules involved in host-vector-pathogen interactions.
Faculty of Science University of South Bohemia in Ceske Budejovice Ceske Budejovice Czechia
Institute of Parasitology Biology Centre of the Czech Academy of Sciences Ceske Budejovice Czechia
Zobrazit více v PubMed
Alzan H. F., Cooke B. M., Suarez C. E. (2019). Transgenic Babesia bovis lacking 6-Cys sexual-stage genes as the foundation for non-transmissible live vaccines against bovine babesiosis. Ticks Tick Borne Dis. 10 (3), 722–728. doi: 10.1016/j.ttbdis.2019.01.006 PubMed DOI
Alzan H. F., Silva M. G., Davis W. C., Herndon D. R., Schneider D. A., Suarez C. E. (2017). Geno- and phenotypic characteristics of a transfected Babesia bovis 6-Cys-E knockout clonal line. Parasit Vectors 10 (1), 214. doi: 10.1186/s13071-017-2143-3 PubMed DOI PMC
Amos B., Aurrecoechea C., Barba M., Barreto A., Basenko E. Y., Bażant W., et al. . (2022). VEuPathDB: the eukaryotic pathogen, vector and host bioinformatics resource center. Nucleic Acids Res. 50 (D1), D898–D911. doi: 10.1093/nar/gkab929 PubMed DOI PMC
Asada M., Goto Y., Yahata K., Yokoyama N., Kawai S., Inoue N., et al. . (2012. a). Gliding motility of Babesia bovis merozoites visualized by time-lapse video microscopy. PloS One 7 (4), e35227. doi: 10.1371/journal.pone.0035227 PubMed DOI PMC
Asada M., Tanaka M., Goto Y., Yokoyama N., Inoue N., Kawazu S. (2012. b). Stable expression of green fluorescent protein and targeted disruption of thioredoxin peroxidase-1 gene in Babesia bovis with the WR99210/dhfr selection system. Mol. Biochem. Parasitol. 181 (2), 162–170. doi: 10.1016/j.molbiopara.2011.11.001 PubMed DOI
Asada M., Yahata K., Hakimi H., Yokoyama N., Igarashi I., Kaneko O., et al. . (2015). Transfection of Babesia bovis by Double Selection with WR99210 and Blasticidin-S and Its Application for Functional Analysis of Thioredoxin Peroxidase-1. PloS One 10 (5), e0125993. doi: 10.1371/journal.pone.0125993 PubMed DOI PMC
Cuesta I., González L. M., Estrada K., Grande R., Zaballos A., Lobo C. A., et al. . (2014). High-quality draft genome sequence of babesia divergens, the etiological agent of cattle and human babesiosis. Genome Announc 2 (6), e01194-14. doi: 10.1128/genomeA.01194-14 PubMed DOI PMC
De Goeyse I., Jansen F., Madder M., Hayashida K., Berkvens D., Dobbelaere D., et al. . (2015). Transfection of live, tick derived sporozoites of the protozoan Apicomplexan parasite Theileria parva . Vet. Parasitol. 208 (3-4), 238–241. doi: 10.1016/j.vetpar.2015.01.013 PubMed DOI
Deitsch K., Driskill C., Wellems T. (2001). Transformation of malaria parasites by the spontaneous uptake and expression of DNA from human erythrocytes. Nucleic Acids Res. 29 (3), 850–853. doi: 10.1093/nar/29.3.850 PubMed DOI PMC
Elsworth B., Keroack C., Rezvani Y., Paul A., Barazorda K., Tennessen J., et al. . (2023). Babesia divergens egress from host cells is orchestrated by essential and druggable kinases and proteases. Res. Sq, rs.3.rs-2553721. doi: 10.21203/rs.3.rs-2553721/v1 DOI
Gaffar F. R., Wilschut K., Franssen F. F., de Vries E. (2004). An amino acid substitution in the Babesia bovis dihydrofolate reductase-thymidylate synthase gene is correlated to cross-resistance against pyrimethamine and WR99210. Mol. Biochem. Parasitol. 133 (2), 209–219. doi: 10.1016/j.molbiopara.2003.08.013 PubMed DOI
González L. M., Estrada K., Grande R., Jiménez-Jacinto V., Vega-Alvarado L., Sevilla E., et al. . (2019). Comparative and functional genomics of the protozoan parasite Babesia divergens highlighting the invasion and egress processes. PloS Negl. Trop. Dis. 13 (8), e0007680. doi: 10.1371/journal.pntd.0007680 PubMed DOI PMC
Hakimi H., Asada M., Ishizaki T., Kawazu S. (2021. a). Isolation of viable Babesia bovis merozoites to study parasite invasion. Sci. Rep. 11 (1), 16959. doi: 10.1038/s41598-021-96365-w PubMed DOI PMC
Hakimi H., Asada M., Kawazu S. I. (2021. b). Recent advances in molecular genetic tools for babesia . Vet. Sci. 8 (10), 222. doi: 10.3390/vetsci8100222 PubMed DOI PMC
Hakimi H., Yamagishi J., Kegawa Y., Kaneko O., Kawazu S., Asada M. (2016). Establishment of transient and stable transfection systems for Babesia ovata . Parasit Vectors 9, 171. doi: 10.1186/s13071-016-1439-z PubMed DOI PMC
Hasenkamp S., Russell K. T., Horrocks P. (2012). Comparison of the absolute and relative efficiencies of electroporation-based transfection protocols for Plasmodium falciparum . Malar J. 11, 210. doi: 10.1186/1475-2875-11-210 PubMed DOI PMC
Hildebrandt A., Zintl A., Montero E., Hunfeld K. P., Gray J. (2021). Human babesiosis in europe. Pathogens 10 (9), 1165. doi: 10.3390/pathogens10091165 PubMed DOI PMC
Hussein H. E., Bastos R. G., Schneider D. A., Johnson W. C., Adham F. K., Davis W. C., et al. . (2017). The Babesia bovis hap2 gene is not required for blood stage replication, but expressed upon in vitro sexual stage induction. PloS Negl. Trop. Dis. 11 (10), e0005965. doi: 10.1371/journal.pntd.0005965 PubMed DOI PMC
Jaijyan D. K., Govindasamy K., Singh J., Bhattacharya S., Singh A. P. (2020). Establishment of a stable transfection method in Babesia microti and identification of a novel bidirectional promoter of Babesia microti . Sci. Rep. 10 (1), 15614. doi: 10.1038/s41598-020-72489-3 PubMed DOI PMC
Jalovecka M., Bonsergent C., Hajdusek O., Kopacek P., Malandrin L. (2016). Stimulation and quantification of Babesia divergens gametocytogenesis. Parasit Vectors 9 (1), 439. doi: 10.1186/s13071-016-1731-y PubMed DOI PMC
Jalovecka M., Hartmann D., Miyamoto Y., Eckmann L., Hajdusek O., O'Donoghue A. J., et al. . (2018). Validation of Babesia proteasome as a drug target. Int. J. Parasitol. Drugs Drug Resist. 8 (3), 394–402. doi: 10.1016/j.ijpddr.2018.08.001 PubMed DOI PMC
Jalovecka M., Sojka D., Ascencio M., Schnittger L. (2019). Babesia life cycle - when phylogeny meets biology. Trends Parasitol. 35 (5), 356–368. doi: 10.1016/j.pt.2019.01.007 PubMed DOI
Limenitakis J., Soldati-Favre D. (2011). Functional genetics in Apicomplexa: potentials and limits. FEBS Lett. 585 (11), 1579–1588. doi: 10.1016/j.febslet.2011.05.002 PubMed DOI
Liu M., Adjou Moumouni P. F., Asada M., Hakimi H., Masatani T., Vudriko P., et al. . (2018. a). Establishment of a stable transfection system for genetic manipulation of Babesia gibsoni . Parasit Vectors 11 (1), 260. doi: 10.1186/s13071-018-2853-1 PubMed DOI PMC
Liu M., Adjou Moumouni P. F., Cao S., Asada M., Wang G., Gao Y., et al. . (2018. b). Identification and characterization of interchangeable cross-species functional promoters between Babesia gibsoni and Babesia bovis . Ticks Tick Borne Dis. 9 (2), 330–333. doi: 10.1016/j.ttbdis.2017.11.008 PubMed DOI
Lobo C. A. (2005). Babesia divergens and Plasmodium falciparum use common receptors, glycophorins A and B, to invade the human red blood cell. Infect. Immun. 73 (1), 649–651. doi: 10.1128/IAI.73.1.649-651.2005 PubMed DOI PMC
Malandrin L., L'Hostis M., Chauvin A. (2004). Isolation of Babesia divergens from carrier cattle blood using in vitro culture. Vet. Res. 35 (1), 131–139. doi: 10.1051/vetres:2003047 PubMed DOI
Rezvani Y., Keroack C. D., Elsworth B., Arriojas A., Gubbels M. J., Duraisingh M. T., et al. . (2022). Comparative single-cell transcriptional atlases of Babesia species reveal conserved and species-specific expression profiles. PloS Biol. 20 (9), e3001816. doi: 10.1371/journal.pbio.3001816 PubMed DOI PMC
Rosa C., Asada M., Hakimi H., Domingos A., Pimentel M., Antunes S. (2019). Transient transfection of Babesia ovis using heterologous promoters. Ticks Tick Borne Dis. 10 (6), 101279. doi: 10.1016/j.ttbdis.2019.101279 PubMed DOI
Silva M. G., Knowles D. P., Suarez C. E. (2016). Identification of interchangeable cross-species function of elongation factor-1 alpha promoters in Babesia bigemina and Babesia bovis . Parasit Vectors 9 (1), 576. doi: 10.1186/s13071-016-1859-9 PubMed DOI PMC
Skinner-Adams T. S., Lawrie P. M., Hawthorne P. L., Gardiner D. L., Trenholme K. R. (2003). Comparison of Plasmodium falciparum transfection methods. Malar J. 2, 19. doi: 10.1186/1475-2875-2-19 PubMed DOI PMC
Suarez C. E., Bishop R. P., Alzan H. F., Poole W. A., Cooke B. M. (2017). Advances in the application of genetic manipulation methods to apicomplexan parasites. Int. J. Parasitol. 47 (12), 701–710. doi: 10.1016/j.ijpara.2017.08.002 PubMed DOI
Suarez C. E., Lacy P., Laughery J., Gonzalez M. G., McElwain T. (2007). Optimization of Babesia bovis transfection methods. Parassitologia 49 Suppl 1, 67–70. PubMed
Suarez C. E., McElwain T. F. (2008). Transient transfection of purified Babesia bovis merozoites. Exp. Parasitol. 118 (4), 498–504. doi: 10.1016/j.exppara.2007.10.013 PubMed DOI
Suarez C. E., McElwain T. F. (2009). Stable expression of a GFP-BSD fusion protein in Babesia bovis merozoites. Int. J. Parasitol. 39 (3), 289–297. doi: 10.1016/j.ijpara.2008.08.006 PubMed DOI
Suarez C. E., McElwain T. F. (2010). Transfection systems for Babesia bovis: a review of methods for the transient and stable expression of exogenous genes. Vet. Parasitol. 167 (2-4), 205–215. doi: 10.1016/j.vetpar.2009.09.022 PubMed DOI
Suarez C. E., Norimine J., Lacy P., McElwain T. F. (2006). Characterization and gene expression of Babesia bovis elongation factor-1alpha. Int. J. Parasitol. 36 (8), 965–973. doi: 10.1016/j.ijpara.2006.02.022 PubMed DOI
Vieira T. B., Astro T. P., de Moraes Barros R. R. (2021). Genetic manipulation of non-falciparum human malaria parasites. Front. Cell Infect. Microbiol. 11, 680460. doi: 10.3389/fcimb.2021.680460 PubMed DOI PMC
Vinayak S., Pawlowic M. C., Sateriale A., Brooks C. F., Studstill C. J., Bar-Peled Y., et al. . (2015). Genetic modification of the diarrhoeal pathogen Cryptosporidium parvum . Nature 523 (7561), 477–480. doi: 10.1038/nature14651 PubMed DOI PMC
Wang S., Li D., Chen F., Jiang W., Luo W., Zhu G., et al. . (2022). Establishment of a transient and stable transfection system for babesia duncani using a homologous recombination strategy. Front. Cell Infect. Microbiol. 12, 844498. doi: 10.3389/fcimb.2022.844498 PubMed DOI PMC
Zintl A., Mulcahy G., Skerrett H. E., Taylor S. M., Gray J. S. (2003). Babesia divergens, a bovine blood parasite of veterinary and zoonotic importance. Clin. Microbiol. Rev. 16 (4), 622–636. doi: 10.1128/CMR.16.4.622-636.2003 PubMed DOI PMC
figshare
10.6084/m9.figshare.24433384.v1