Evaluating Antimalarial Proteasome Inhibitors for Efficacy in Babesia Blood Stage Cultures
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39554424
PubMed Central
PMC11561622
DOI
10.1021/acsomega.4c04564
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Tick-transmitted Babesia are a major global veterinary threat and an emerging risk to humans. Unlike their Plasmodium relatives, these erythrocyte-infecting Apicomplexa have been largely overlooked and lack specific treatment. Selective targeting of the Babesia proteasome holds promise for drug development. In this study, we screened a library of peptide epoxyketone inhibitors derived from the marine natural product carmaphycin B for their activity against Babesia. Several of these compounds showed activity against both the asexual and sexual blood stages of Plasmodium falciparum. These compounds inactivate β5 proteasome subunit activity in the lysates of Babesia divergens and Babesia microti in the low nanomolar range. Several compounds were tested with the purified B. divergens proteasome and showed IC50 values comparable to carfilzomib, an approved anticancer proteasome inhibitor. They also inhibited B. divergens growth in bovine erythrocyte cultures with solid EC50 values, but importantly, they appeared less toxic to human cells than carfilzomib. These compounds therefore offer a wider therapeutic window and provide new insights into the development of small proteasome inhibitors as selective drugs for babesiosis.
Zobrazit více v PubMed
Vannier E. G.; Diuk-Wasser M. A.; Ben Mamoun C.; Krause P. J. Babesiosis. Infect Dis Clin North Am. 2015, 29 (2), 357–370. 10.1016/j.idc.2015.02.008. PubMed DOI PMC
Florin-Christensen M.; Schnittger L. Piroplasmids and ticks: a long-lasting intimate relationship. Front. Biosci. 2009, 14, 3064–3073. 10.2741/3435. PubMed DOI
Yabsley M. J.; Shock B. C. Natural history of Zoonotic Babesia: Role of wildlife reservoirs. Int. J. Parasitol Parasites Wildl 2013, 2, 18–31. 10.1016/j.ijppaw.2012.11.003. PubMed DOI PMC
Ord R. L.; Lobo C. A. Human Babesiosis: Pathogens, Prevalence, Diagnosis and Treatment. Curr. Clin Microbiol Rep 2015, 2 (4), 173–181. 10.1007/s40588-015-0025-z. PubMed DOI PMC
Schnittger L.; Rodriguez A. E.; Florin-Christensen M.; Morrison D. A. Babesia: a world emerging. Infect Genet Evol 2012, 12 (8), 1788–1809. 10.1016/j.meegid.2012.07.004. PubMed DOI
Bock R.; Jackson L.; de Vos A.; Jorgensen W. Babesiosis of cattle. Parasitology 2004, 129 (Suppl), S247–269. 10.1017/S0031182004005190. PubMed DOI
Hildebrandt A.; Gray J. S.; Hunfeld K. P. Human babesiosis in Europe: what clinicians need to know. Infection 2013, 41 (6), 1057–1072. 10.1007/s15010-013-0526-8. PubMed DOI
Gray E. B.; Herwaldt B. L. Babesiosis Surveillance - United States, 2011–2015. MMWR Surveill Summ 2019, 68 (6), 1–11. 10.15585/mmwr.ss6806a1. PubMed DOI
Rizk M. A.; AbouLaila M.; El-Sayed S. A. E.; Guswanto A.; Yokoyama N.; Igarashi I. Inhibitory effects of fluoroquinolone antibiotics on Babesia divergens and Babesia microti, blood parasites of veterinary and zoonotic importance. Infect Drug Resist 2018, 11, 1605–1615. 10.2147/IDR.S159519. PubMed DOI PMC
Simon M. S.; Westblade L. F.; Dziedziech A.; Visone J. E.; Furman R. R.; Jenkins S. G.; Schuetz A. N.; Kirkman L. A. Clinical and Molecular Evidence of Atovaquone and Azithromycin Resistance in Relapsed Babesia microti infection associated with Rituximab and Chronic Lymphocytic Leukemia. Clin Infect Dis 2017, 65, 1222.10.1093/cid/cix477. PubMed DOI PMC
Lemieux J. E.; Tran A. D.; Freimark L.; Schaffner S. F.; Goethert H.; Andersen K. G.; Bazner S.; Li A.; McGrath G.; Sloan L.; et al. A global map of genetic diversity in Babesia microti reveals strong population structure and identifies variants associated with clinical relapse. Nat. Microbiol 2016, 1 (7), 16079.10.1038/nmicrobiol.2016.79. PubMed DOI PMC
Mordue D. G.; Wormser G. P. Could the Drug Tafenoquine Revolutionize Treatment of Babesia microti Infection?. J. Infect Dis 2019, 220 (3), 442–447. 10.1093/infdis/jiz119. PubMed DOI PMC
Vanheer L. N.; Kafsack B. F. C. Activity Comparison of Epigenetic Modulators against the Hemoprotozoan Parasites. ACS Infect Dis 2021, 7 (8), 2277–2284. 10.1021/acsinfecdis.0c00853. PubMed DOI PMC
Rizk M. A.; El-Sayed S. A. E.; Alkhoudary M. S.; Alsharif K. F.; Abdel-Daim M. M.; Igarashi I. Compounds from the Medicines for Malaria Venture Box Inhibit In Vitro Growth of Babesia divergens, a Blood-Borne Parasite of Veterinary and Zoonotic Importance. Molecules 2021, 26 (23), 711810.3390/molecules26237118. PubMed DOI PMC
Rizk M. A.; El-Sayed S. A. E.; Igarashi I. activity and atom pair fingerprint analysis of MMV665941 against the apicomplexan parasite Babesia microti, the causative agent of babesiosis in humans and rodents. Pathog Glob Health 2023, 117 (3), 315–321. 10.1080/20477724.2022.2128571. PubMed DOI PMC
Bloch E. M.; Herwaldt B. L.; Leiby D. A.; Shaieb A.; Herron R. M.; Chervenak M.; Reed W.; Hunter R.; Ryals R.; Hagar W.; et al. The third described case of transfusion-transmitted Babesia duncani. Transfusion 2012, 52 (7), 1517–1522. 10.1111/j.1537-2995.2011.03467.x. PubMed DOI
Dantas-Torres F.; Chomel B. B.; Otranto D. Ticks and tick-borne diseases: a One Health perspective. Trends Parasitol 2012, 28 (10), 437–446. 10.1016/j.pt.2012.07.003. PubMed DOI
Bedford L.; Paine S.; Sheppard P. W.; Mayer R. J.; Roelofs J. Assembly, structure, and function of the 26S proteasome. Trends Cell Biol. 2010, 20 (7), 391–401. 10.1016/j.tcb.2010.03.007. PubMed DOI PMC
Kish-Trier E.; Hill C. P. Structural biology of the proteasome. Annu. Rev. Biophys 2013, 42, 29–49. 10.1146/annurev-biophys-083012-130417. PubMed DOI PMC
Winzeler E. A.; Ottilie S. The proteasome as a target: How not tidying up can have toxic consequences for parasitic protozoa. Proc. Natl. Acad. Sci. U. S. A. 2019, 116 (21), 10198–10200. 10.1073/pnas.1904694116. PubMed DOI PMC
Bibo-Verdugo B.; Jiang Z.; Caffrey C. R.; O’Donoghue A. J. Targeting proteasomes in infectious organisms to combat disease. FEBS J. 2017, 284 (10), 1503–1517. 10.1111/febs.14029. PubMed DOI
Li H.; O’Donoghue A. J.; van der Linden W. A.; Xie S. C.; Yoo E.; Foe I. T.; Tilley L.; Craik C. S.; da Fonseca P. C.; Bogyo M. Structure- and function-based design of Plasmodium-selective proteasome inhibitors. Nature 2016, 530 (7589), 233–236. 10.1038/nature16936. PubMed DOI PMC
Khare S.; Nagle A. S.; Biggart A.; Lai Y. H.; Liang F.; Davis L. C.; Barnes S. W.; Mathison C. J.; Myburgh E.; Gao M. Y.; et al. Proteasome inhibition for treatment of leishmaniasis, Chagas disease and sleeping sickness. Nature 2016, 537, 229.10.1038/nature19339. PubMed DOI PMC
Silva M. L.; de Santiago-Silva K. M.; Fabris M.; Camargo P. G.; de Lima Ferreira Bispo M. Proteasome as a Drug Target in Trypanosomatid Diseases. Curr. Drug Targets 2023, 24 (10), 781–789. 10.2174/1389450124666230719104147. PubMed DOI
O’Donoghue A. J.; Bibo-Verdugo B.; Miyamoto Y.; Wang S. C.; Yang J. Z.; Zuill D. E.; Matsuka S.; Jiang Z.; Almaliti J.; Caffrey C. R.; et al. 20S Proteasome as a Drug Target in Trichomonas vaginalis. Antimicrob. Agents Chemother. 2019, 63 (11), e00448-1910.1128/AAC.00448-19. PubMed DOI PMC
Bibo-Verdugo B.; Wang S. C.; Almaliti J.; Ta A. P.; Jiang Z.; Wong D. A.; Lietz C. B.; Suzuki B. M.; El-Sakkary N.; Hook V.; et al. The Proteasome as a Drug Target in the Metazoan Pathogen. Schistosoma mansoni. ACS Infect Dis 2019, 5 (10), 1802–1812. 10.1021/acsinfecdis.9b00237. PubMed DOI PMC
Jalovecka M.; Hartmann D.; Miyamoto Y.; Eckmann L.; Hajdusek O.; O’Donoghue A. J.; Sojka D. Validation of Babesia proteasome as a drug target. Int. J. Parasitol Drugs Drug Resist 2018, 8 (3), 394–402. 10.1016/j.ijpddr.2018.08.001. PubMed DOI PMC
LaMonte G. M.; Almaliti J.; Bibo-Verdugo B.; Keller L.; Zou B. Y.; Yang J.; Antonova-Koch Y.; Orjuela-Sanchez P.; Boyle C. A.; Vigil E.; et al. Development of a Potent Inhibitor of the Plasmodium Proteasome with Reduced Mammalian Toxicity. J. Med. Chem. 2017, 60 (15), 6721–6732. 10.1021/acs.jmedchem.7b00671. PubMed DOI PMC
Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. 10.1006/abio.1976.9999. PubMed DOI
Almaliti J.; Fajtová P.; Calla J.; LaMonte G. M.; Feng M.; Rocamora F.; Ottilie S.; Glukhov E.; Boura E.; Suhandynata R. T.; et al. Development of Potent and Highly Selective Epoxyketone-Based Plasmodium Proteasome Inhibitors. Chemistry 2023, 29 (20), e20220395810.1002/chem.202203958. PubMed DOI PMC
Cubillos E. F. G.; Snebergerova P.; Borsodi S.; Reichensdorferova D.; Levytska V.; Asada M.; Sojka D.; Jalovecka M. Establishment of a stable transfection and gene targeting system in Babesia divergens. Front Cell Infect Microbiol 2023, 13, 1278041.10.3389/fcimb.2023.1278041. PubMed DOI PMC
Robert X.; Gouet P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 2014, 42 (W1), W320–W324. 10.1093/nar/gku316. PubMed DOI PMC
Trifinopoulos J.; Nguyen L. T.; von Haeseler A.; Minh B. Q. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016, 44 (W1), W232–235. 10.1093/nar/gkw256. PubMed DOI PMC
Trivella D. B.; Pereira A. R.; Stein M. L.; Kasai Y.; Byrum T.; Valeriote F. A.; Tantillo D. J.; Groll M.; Gerwick W. H.; Moore B. S. Enzyme inhibition by hydroamination: design and mechanism of a hybrid carmaphycin-syringolin enone proteasome inhibitor. Chem. Biol. 2014, 21 (6), 782–791. 10.1016/j.chembiol.2014.04.010. PubMed DOI PMC
Aboulaila M.; Nakamura K.; Govind Y.; Yokoyama N.; Igarashi I. Evaluation of the in vitro growth-inhibitory effect of epoxomicin on Babesia parasites. Vet Parasitol 2010, 167 (1), 19–27. 10.1016/j.vetpar.2009.09.049. PubMed DOI
Ciechanover A. The ubiquitin-proteasome proteolytic pathway. Cell 1994, 79 (1), 13–21. 10.1016/0092-8674(94)90396-4. PubMed DOI
Florin-Christensen M.; Wieser S. N.; Suarez C. E.; Schnittger L. In Silico Survey and Characterization of Babesia microti Functional and Non-Functional Proteases. Pathogens 2021, 10 (11), 145710.3390/pathogens10111457. PubMed DOI PMC
Jalovecka M.; Sojka D.; Ascencio M.; Schnittger L. Babesia Life Cycle - When Phylogeny Meets Biology. Trends Parasitol 2019, 35 (5), 356–368. 10.1016/j.pt.2019.01.007. PubMed DOI
Fajtova P.; Hurysz B. M.; Miyamoto Y.; Serafim M.; Jiang Z.; Trujillo D. F.; Liu L.; Somani U.; Almaliti J.; Myers S. A.. et al.Development of subunit selective substrates for Trichomonas vaginalis proteasome. bioRxiv 2023. DOI: 10.1101/2023.04.05.535794. DOI
Tanaka K.; Yoshimura T.; Ichihara A. Role of substrate in reversible activation of proteasomes (multi-protease complexes) by sodium dodecyl sulfate. J. Biochem 1989, 106 (3), 495–500. 10.1093/oxfordjournals.jbchem.a122880. PubMed DOI
Li H.; Tsu C.; Blackburn C.; Li G.; Hales P.; Dick L.; Bogyo M. Identification of potent and selective non-covalent inhibitors of the Plasmodium falciparum proteasome. J. Am. Chem. Soc. 2014, 136 (39), 13562–13565. 10.1021/ja507692y. PubMed DOI PMC
Pereira A. R.; Kale A. J.; Fenley A. T.; Byrum T.; Debonsi H. M.; Gilson M. K.; Valeriote F. A.; Moore B. S.; Gerwick W. H. The carmaphycins: new proteasome inhibitors exhibiting an α,β-epoxyketone warhead from a marine cyanobacterium. Chembiochem 2012, 13 (6), 810–817. 10.1002/cbic.201200007. PubMed DOI PMC
Jiang Z.; Silva E. B.; Liu C.; Fajtová P.; Liu L. J.; El-Sakkary N.; Skinner D. E.; Syed A.; Wang S. C.; Caffrey C. R.. et al.Development of subunit selective proteasome substrates for Schistosoma species. bioRxiv 2024. DOI: 10.1101/2024.02.13.580161. DOI