Validation of Babesia proteasome as a drug target
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, validační studie
Grantová podpora
R21 AI133393
NIAID NIH HHS - United States
PubMed
30103207
PubMed Central
PMC6092455
DOI
10.1016/j.ijpddr.2018.08.001
PII: S2211-3207(17)30157-4
Knihovny.cz E-zdroje
- Klíčová slova
- Babesia, Carfilzomib, Cytotoxicity, Epoxyketone, Proteasome,
- MeSH
- Babesia microti účinky léků genetika růst a vývoj MeSH
- Babesia účinky léků genetika růst a vývoj MeSH
- babezióza farmakoterapie MeSH
- buněčné linie MeSH
- inhibitory proteasomu aplikace a dávkování škodlivé účinky farmakologie terapeutické užití MeSH
- kyseliny boronové farmakologie MeSH
- makrofágy účinky léků parazitologie MeSH
- modely nemocí na zvířatech MeSH
- myši MeSH
- oligopeptidy farmakologie MeSH
- proteasomový endopeptidasový komplex účinky léků MeSH
- proteom účinky léků genetika MeSH
- systémy cílené aplikace léků * MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- validační studie MeSH
- Názvy látek
- carfilzomib MeSH Prohlížeč
- epoxomicin MeSH Prohlížeč
- inhibitory proteasomu MeSH
- kyseliny boronové MeSH
- oligopeptidy MeSH
- proteasomový endopeptidasový komplex MeSH
- proteom MeSH
Babesiosis is a tick-transmitted zoonosis caused by apicomplexan parasites of the genus Babesia. Treatment of this emerging malaria-related disease has relied on antimalarial drugs and antibiotics. The proteasome of Plasmodium, the causative agent of malaria, has recently been validated as a target for anti-malarial drug development and therefore, in this study, we investigated the effect of epoxyketone (carfilzomib, ONX-0914 and epoxomicin) and boronic acid (bortezomib and ixazomib) proteasome inhibitors on the growth and survival of Babesia. Testing the compounds against Babesia divergens ex vivo revealed suppressive effects on parasite growth with activity that was higher than the cytotoxic effects on a non-transformed mouse macrophage cell line. Furthermore, we showed that the most-effective compound, carfilzomib, significantly reduces parasite multiplication in a Babesia microti infected mouse model without noticeable adverse effects. In addition, treatment with carfilzomib lead to an ex vivo and in vivo decrease in proteasome activity and accumulation of polyubiquitinated proteins compared to untreated control. Overall, our results demonstrate that the Babesia proteasome is a valid target for drug development and warrants the design of potent and selective B. divergens proteasome inhibitors for the treatment of babesiosis.
Zobrazit více v PubMed
Aboulaila M., Nakamura K., Govind Y., Yokoyama N., Igarashi I. Evaluation of the in vitro growth-inhibitory effect of epoxomicin on Babesia parasites. Vet. Parasitol. 2010;167:19–27. PubMed
Adams J. The proteasome: a suitable antineoplastic target. Nat. Rev. Canc. 2004;4:349–360. PubMed
Arastu-Kapur S., Anderl J.L., Kraus M., Parlati F., Shenk K.D., Lee S.J., Muchamuel T., Bennett M.K., Driessen C., Ball A.J., Kirk C.J. Nonproteasomal targets of the proteasome inhibitors bortezomib and carfilzomib: a link to clinical adverse events. Clin. Canc. Res. 2011;17:2734–2743. PubMed
Arisue N., Hashimoto T. Phylogeny and evolution of apicoplasts and apicomplexan parasites. Parasitol. Int. 2015;64:254–259. PubMed
Bedford L., Paine S., Sheppard P.W., Mayer R.J., Roelofs J. Assembly, structure, and function of the 26S proteasome. Trends Cell Biol. 2010;20:391–401. PubMed PMC
Benezra D., Brown A.E., Polsky B., Gold J.W., Armstrong D. Babesiosis and infection with human immunodeficiency virus (HIV) Ann. Intern. Med. 1987;107:944. PubMed
Bibo-Verdugo B., Jiang Z., Caffrey C.R., O'Donoghue A.J. Targeting proteasomes in infectious organisms to combat disease. FEBS J. 2017;284:1503–1517. PubMed
Bock R., Jackson L., de Vos A., Jorgensen W. Babesiosis of cattle. Parasitology. 2004;129(Suppl. l):S247–S269. PubMed
Burki F., Inagaki Y., Bråte J., Archibald J.M., Keeling P.J., Cavalier-Smith T., Sakaguchi M., Hashimoto T., Horak A., Kumar S., Klaveness D., Jakobsen K.S., Pawlowski J., Shalchian-Tabrizi K. Large-scale phylogenomic analyses reveal that two enigmatic protist lineages, telonemia and centroheliozoa, are related to photosynthetic chromalveolates. Genome Biol Evol. 2009;1:231–238. PubMed PMC
de Vries E., Corton C., Harris B., Cornelissen A.W., Berriman M. Expressed sequence tag (EST) analysis of the erythrocytic stages of Babesia bovis. Vet. Parasitol. 2006;138:61–74. PubMed
Demo S.D., Kirk C.J., Aujay M.A., Buchholz T.J., Dajee M., Ho M.N., Jiang J., Laidig G.J., Lewis E.R., Parlati F., Shenk K.D., Smyth M.S., Sun C.M., Vallone M.K., Woo T.M., Molineaux C.J., Bennett M.K. Antitumor activity of PR-171, a novel irreversible inhibitor of the proteasome. Canc. Res. 2007;67:6383–6391. PubMed
Dogovski C., Xie S.C., Burgio G., Bridgford J., Mok S., McCaw J.M., Chotivanich K., Kenny S., Gnädig N., Straimer J., Bozdech Z., Fidock D.A., Simpson J.A., Dondorp A.M., Foote S., Klonis N., Tilley L. Targeting the cell stress response of Plasmodium falciparum to overcome artemisinin resistance. PLoS Biol. 2015;13 PubMed PMC
Falagas M.E., Klempner M.S. Babesiosis in patients with AIDS: a chronic infection presenting as fever of unknown origin. Clin. Infect. Dis. 1996;22:809–812. PubMed
Ferrington D.A., Gregerson D.S. Immunoproteasomes: structure, function, and antigen presentation. Prog Mol Biol Transl Sci. 2012;109:75–112. PubMed PMC
Froberg M.K., Dannen D., Bakken J.S. Babesiosis and HIV. Lancet. 2004;363:704. PubMed
Giguere C.J., Schnellmann R.G. Limitations of SLLVY-AMC in calpain and proteasome measurements. Biochem. Biophys. Res. Commun. 2008;371:578–581. PubMed PMC
Gohil S., Herrmann S., Günther S., Cooke B.M. Bovine babesiosis in the 21st century: advances in biology and functional genomics. Int. J. Parasitol. 2013;43:125–132. PubMed
Groll M., Berkers C.R., Ploegh H.L., Ovaa H. Crystal structure of the boronic acid-based proteasome inhibitor bortezomib in complex with the yeast 20S proteasome. Structure. 2006;14:451–456. PubMed
Gu Y., Bouwman P., Greco D., Saarela J., Yadav B., Jonkers J., Kuznetsov S.G. Suppression of BRCA1 sensitizes cells to proteasome inhibitors. Cell Death Dis. 2014;5 PubMed PMC
Haapasalo K., Suomalainen P., Sukura A., Siikamaki H., Jokiranta T.S. Fatal babesiosis in man, Finland, 2004. Emerg. Infect. Dis. 2010;16:1116–1118. PubMed PMC
Hildebrandt A., Gray J.S., Hunfeld K.P. Human babesiosis in Europe: what clinicians need to know. Infection. 2013;41:1057–1072. PubMed
Häselbarth K., Tenter A.M., Brade V., Krieger G., Hunfeld K.P. First case of human babesiosis in Germany - clinical presentation and molecular characterisation of the pathogen. Int J Med Microbiol. 2007;297:197–204. PubMed
Janouskovec J., Horák A., Oborník M., Lukes J., Keeling P.J. A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids. Proc. Natl. Acad. Sci. U. S. A. 2010;107:10949–10954. PubMed PMC
Kane R.C., Bross P.F., Farrell A.T., Pazdur R. Velcade: U.S. FDA approval for the treatment of multiple myeloma progressing on prior therapy. Oncology. 2003;8:508–513. PubMed
Kane R.C., Farrell A.T., Sridhara R., Pazdur R. United States Food and Drug Administration approval summary: bortezomib for the treatment of progressive multiple myeloma after one prior therapy. Clin. Canc. Res. 2006;12:2955–2960. PubMed
Khare S., Nagle A.S., Biggart A., Lai Y.H., Liang F., Davis L.C., Barnes S.W., Mathison C.J., Myburgh E., Gao M.Y., Gillespie J.R., Liu X., Tan J.L., Stinson M., Rivera I.C., Ballard J., Yeh V., Groessl T., Federe G., Koh H.X., Venable J.D., Bursulaya B., Shapiro M., Mishra P.K., Spraggon G., Brock A., Mottram J.C., Buckner F.S., Rao S.P., Wen B.G., Walker J.R., Tuntland T., Molteni V., Glynne R.J., Supek F. Proteasome inhibition for treatment of leishmaniasis, Chagas disease and sleeping sickness. Nature. 2016;537:229–233. PubMed PMC
Kim K.B., Crews C.M. From epoxomicin to carfilzomib: chemistry, biology, and medical outcomes. Nat. Prod. Rep. 2013;30:600–604. PubMed PMC
Kish-Trier E., Hill C.P. Structural biology of the proteasome. Annu. Rev. Biophys. 2013;42:29–49. PubMed PMC
Kisselev A.F., van der Linden W.A., Overkleeft H.S. Proteasome inhibitors: an expanding army attacking a unique target. Chem. Biol. 2012;19:99–115. PubMed PMC
Krause P.J., Gewurz B.E., Hill D., Marty F.M., Vannier E., Foppa I.M., Furman R.R., Neuhaus E., Skowron G., Gupta S., McCalla C., Pesanti E.L., Young M., Heiman D., Hsue G., Gelfand J.A., Wormser G.P., Dickason J., Bia F.J., Hartman B., Telford S.R., Christianson D., Dardick K., Coleman M., Girotto J.E., Spielman A. Persistent and relapsing babesiosis in immunocompromised patients. Clin. Infect. Dis. 2008;46:370–376. PubMed
Kuhn D.J., Chen Q., Voorhees P.M., Strader J.S., Shenk K.D., Sun C.M., Demo S.D., Bennett M.K., van Leeuwen F.W., Chanan-Khan A.A., Orlowski R.Z. Potent activity of carfilzomib, a novel, irreversible inhibitor of the ubiquitin-proteasome pathway, against preclinical models of multiple myeloma. Blood. 2007;110:3281–3290. PubMed PMC
Kupperman E., Lee E.C., Cao Y., Bannerman B., Fitzgerald M., Berger A., Yu J., Yang Y., Hales P., Bruzzese F., Liu J., Blank J., Garcia K., Tsu C., Dick L., Fleming P., Yu L., Manfredi M., Rolfe M., Bolen J. Evaluation of the proteasome inhibitor MLN9708 in preclinical models of human cancer. Canc. Res. 2010;70:1970–1980. PubMed
LaMonte G.M., Almaliti J., Bibo-Verdugo B., Keller L., Zou B.Y., Yang J., Antonova-Koch Y., Orjuela-Sanchez P., Boyle C.A., Vigil E., Wang L., Goldgof G.M., Gerwick L., O'Donoghue A.J., Winzeler E.A., Gerwick W.H., Ottilie S. Development of a potent inhibitor of the Plasmodium proteasome with reduced mammalian toxicity. J. Med. Chem. 2017;60:6721–6732. PubMed PMC
Lantos P.M., Krause P.J. Babesiosis: similar to malaria but different. Pediatr. Ann. 2002;31:192–197. PubMed
Leiby D.A. Transfusion-transmitted Babesia spp.: bull's-eye on Babesia microti. Clin. Microbiol. Rev. 2011;24:14–28. PubMed PMC
Lemieux J.E., Tran A.D., Freimark L., Schaffner S.F., Goethert H., Andersen K.G., Bazner S., Li A., McGrath G., Sloan L., Vannier E., Milner D., Pritt B., Rosenberg E., Telford S., Bailey J.A., Sabeti P.C. A global map of genetic diversity in Babesia microti reveals strong population structure and identifies variants associated with clinical relapse. Nat Microbiol. 2016;1:16079. PubMed PMC
Li H., Bogyo M., da Fonseca P.C. The cryo-EM structure of the Plasmodium falciparum 20S proteasome and its use in the fight against malaria. FEBS J. 2016;283:4238–4243. PubMed PMC
Li H., O'Donoghue A.J., van der Linden W.A., Xie S.C., Yoo E., Foe I.T., Tilley L., Craik C.S., da Fonseca P.C., Bogyo M. Structure- and function-based design of Plasmodium-selective proteasome inhibitors. Nature. 2016;530:233–236. PubMed PMC
Li H., Ponder E.L., Verdoes M., Asbjornsdottir K.H., Deu E., Edgington L.E., Lee J.T., Kirk C.J., Demo S.D., Williamson K.C., Bogyo M. Validation of the proteasome as a therapeutic target in Plasmodium using an epoxyketone inhibitor with parasite-specific toxicity. Chem. Biol. 2012;19:1535–1545. PubMed PMC
Lobo C.A., Cursino-Santos J.R., Alhassan A., Rodrigues M. Babesia: an emerging infectious threat in transfusion medicine. PLoS Pathog. 2013;9 PubMed PMC
Malandrin L., L'Hostis M., Chauvin A. Isolation of Babesia divergens from Carrier cattle blood using in vitro culture. Vet. Res. 2004;35:131–139. PubMed
Muchamuel T., Basler M., Aujay M.A., Suzuki E., Kalim K.W., Lauer C., Sylvain C., Ring E.R., Shields J., Jiang J., Shwonek P., Parlati F., Demo S.D., Bennett M.K., Kirk C.J., Groettrup M. A selective inhibitor of the immunoproteasome subunit LMP7 blocks cytokine production and attenuates progression of experimental arthritis. Nat. Med. 2009;15:781–787. PubMed
Mørch K., Holmaas G., Frolander P.S., Kristoffersen E.K. Severe human Babesia divergens infection in Norway. Int. J. Infect. Dis. 2015;33:37–38. PubMed
Ord R.L., Lobo C.A. Human babesiosis: pathogens, prevalence, diagnosis and treatment. Curr. Clin. Microbiol. Rep. 2015;2:173–181. PubMed PMC
Perner J., Sobotka R., Sima R., Konvickova J., Sojka D., Oliveira P.L., Hajdusek O., Kopacek P. Acquisition of exogenous haem is essential for tick reproduction. Elife. 2016;5 PubMed PMC
Rosner F., Zarrabi M.H., Benach J.L., Habicht G.S. Babesiosis in splenectomized adults. Review of 22 reported cases. Am. J. Med. 1984;76:696–701. PubMed
Schnittger L., Rodriguez A.E., Florin-Christensen M., Morrison D.A. Babesia: a world emerging. Infect. Genet. Evol. 2012;12:1788–1809. PubMed
Schreeg M.E., Marr H.S., Tarigo J.L., Cohn L.A., Bird D.M., Scholl E.H., Levy M.G., Wiegmann B.M., Birkenheuer A.J. Mitochondrial genome sequences and structures aid in the resolution of piroplasmida phylogeny. PLoS One. 2016;11 PubMed PMC
Simon M.S., Westblade L.F., Dziedziech A., Visone J.E., Furman R.R., Jenkins S.G., Schuetz A.N., Kirkman L.A. Clinical and molecular evidence of atovaquone and azithromycin resistance in relapsed Babesia microti infection associated with rituximab and chronic lymphocytic leukemia. Clin. Infect. Dis. 2017;65:1222–1225. PubMed PMC
Stowell C.P., Gelfand J.A., Shepard J.A., Kratz A. Case records of the Massachusetts General Hospital. Case 17-2007. A 25-year-old woman with relapsing fevers and recent onset of dyspnea. N. Engl. J. Med. 2007;356:2313–2319. PubMed
Tomko R.J., Hochstrasser M. Molecular architecture and assembly of the eukaryotic proteasome. Annu. Rev. Biochem. 2013;82:415–445. PubMed PMC
Uhnoo I., Cars O., Christensson D., Nyström-Rosander C. First documented case of human babesiosis in Sweden. Scand. J. Infect. Dis. 1992;24:541–547. PubMed
Vannier E., Krause P.J. Human babesiosis. N. Engl. J. Med. 2012;366:2397–2407. PubMed
Vannier E.G., Diuk-Wasser M.A., Ben Mamoun C., Krause P.J. Babesiosis. Infect. Dis. Clin. 2015;29:357–370. PubMed PMC
Verdoes M., Florea B.I., Menendez-Benito V., Maynard C.J., Witte M.D., van der Linden W.A., van den Nieuwendijk A.M., Hofmann T., Berkers C.R., van Leeuwen F.W., Groothuis T.A., Leeuwenburgh M.A., Ovaa H., Neefjes J.J., Filippov D.V., van der Marel G.A., Dantuma N.P., Overkleeft H.S. A fluorescent broad-spectrum proteasome inhibitor for labeling proteasomes in vitro and in vivo. Chem. Biol. 2006;13:1217–1226. PubMed
Vial H.J., Gorenflot A. Chemotherapy against babesiosis. Vet. Parasitol. 2006;138:147–160. PubMed
Voges D., Zwickl P., Baumeister W. The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu. Rev. Biochem. 1999;68:1015–1068. PubMed
Wormser G.P., Prasad A., Neuhaus E., Joshi S., Nowakowski J., Nelson J., Mittleman A., Aguero-Rosenfeld M., Topal J., Krause P.J. Emergence of resistance to azithromycin-atovaquone in immunocompromised patients with Babesia microti infection. Clin. Infect. Dis. 2010;50:381–386. PubMed
Yabsley M.J., Shock B.C. Natural history of zoonotic Babesia: role of wildlife reservoirs. Int J Parasitol Parasites Wildl. 2013;2:18–31. PubMed PMC
Yang J., Wang Z., Fang Y., Jiang J., Zhao F., Wong H., Bennett M.K., Molineaux C.J., Kirk C.J. Pharmacokinetics, pharmacodynamics, metabolism, distribution, and excretion of carfilzomib in rats. Drug Metab. Dispos. 2011;39:1873–1882. PubMed
Zintl A., Mulcahy G., Skerrett H.E., Taylor S.M., Gray J.S. Babesia divergens, a bovine blood parasite of veterinary and zoonotic importance. Clin. Microbiol. Rev. 2003;16:622–636. PubMed PMC
Evaluating Antimalarial Proteasome Inhibitors for Efficacy in Babesia Blood Stage Cultures
Chelation of Mitochondrial Iron as an Antiparasitic Strategy
Establishment of a stable transfection and gene targeting system in Babesia divergens