Distinct substrate specificities of the three catalytic subunits of the Trichomonas vaginalis proteasome
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
Grantová podpora
St. Baldrick's Foundation
T32GM007752
NIGMS NIH HHS - United States
88887.595578/2020-00
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
R21 AI146387
NIH HHS - United States
88887.684031/2022-00
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
846688
HORIZON EUROPE Marie Sklodowska-Curie Actions
MSM200551901
Akademie Věd České Republiky
DK120515
NIH HHS - United States
R21 AI171824
NIH HHS - United States
Universidade Federal de Minas Gerais
P30 DK120515
NIDDK NIH HHS - United States
R21 AI133393
NIH HHS - United States
R01 AI158612
NIH HHS - United States
PubMed
39589076
PubMed Central
PMC11590128
DOI
10.1002/pro.5225
Knihovny.cz E-zdroje
- Klíčová slova
- drug discovery, drug screening, parasite, protease inhibitor, proteasome, substrate specificity, trichomonas,
- MeSH
- inhibitory proteasomu farmakologie chemie MeSH
- katalytická doména * MeSH
- proteasomový endopeptidasový komplex * metabolismus chemie MeSH
- protozoální proteiny chemie metabolismus antagonisté a inhibitory genetika MeSH
- substrátová specifita MeSH
- Trichomonas vaginalis * enzymologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- inhibitory proteasomu MeSH
- proteasomový endopeptidasový komplex * MeSH
- protozoální proteiny MeSH
The protozoan parasite Trichomonas vaginalis (Tv) causes trichomoniasis, the most common non-viral sexually transmitted infection in the world. Although Tv has been linked to significant health complications, only two closely related 5-nitroimidazole drugs are approved for its treatment. The emergence of resistance to these drugs and lack of alternative treatment options poses an increasing threat to public health, making development of novel anti-Trichomonas compounds an urgent need. The proteasome, a critical enzyme complex found in all eukaryotes has three catalytic subunits, β1, β2, and β5 and has been validated as a drug target to treat trichomoniasis. With the goal of developing tools to study the Tv proteasome, we isolated the enzyme complex and identified inhibitors that preferentially inactivate either one or two of the three catalytic subunits. Using a mass spectrometry-based peptide digestion assay, these inhibitors were used to define the substrate preferences of the β1, β2 and β5 subunits. Subsequently, three model fluorogenic substrates were designed, each specific for one of the catalytic subunits. This novel substrate profiling methodology will allow for individual subunit characterization of other proteasomes of interest. Using the new substrates, we screened a library of 284 peptide epoxyketone inhibitors against Tv and determined the subunits targeted by the most active compounds. The data show that inhibition of the Tv β5 subunit alone is toxic to the parasite. Taken together, the optimized proteasome subunit substrates will be instrumental for understanding the molecular determinants of proteasome specificity and for accelerating drug development against trichomoniasis.
Department of Medicine University of California San Diego La Jolla California USA
Division of Signaling and Gene Expression La Jolla Institute for Immunology La Jolla California USA
Kezar Life Sciences South San Francisco California USA
Scripps Institution of Oceanography University of California San Diego La Jolla California USA
Zobrazit více v PubMed
Adolf F, Du J, Goodall EA, Walsh RM, Rawson S, von Gronau S, et al. Visualizing chaperone‐mediated multistep assembly of the human 20S proteasome. Nat Struct Mol Biol. 2024;31:1176–1188. 10.1038/s41594-024-01268-9 PubMed DOI PMC
Almaliti J, Fajtová P, Calla J, LaMonte GM, Feng M, Rocamora F, et al. Development of potent and highly selective Epoxyketone‐based plasmodium proteasome inhibitors. Chemistry (Weinheim an Der Bergstrasse, Germany). 2023;29(20):e202203958. 10.1002/chem.202203958 PubMed DOI PMC
Andersson M, Sjøstrand J, Karlsson JO. Proteolytic cleavage of N‐Succ‐Leu‐Leu‐Val‐Tyr‐AMC by the proteasome in lens epithelium from clear and cataractous human lenses. Exp Eye Res. 1998;67:231–236. PubMed
Becker SH, Darwin KH. Bacterial proteasomes: mechanistic and functional insights. Microbiol Mol Biol Rev. 2016;81:e00036‐16. PubMed PMC
Berkers CR, van Leeuwen FWB, Groothuis TA, Peperzak V, van Tilburg EW, Borst J, et al. Profiling proteasome activity in tissue with fluorescent probes. Mol Pharm. 2007;4:739–748. PubMed
Bibo‐Verdugo B, Jiang Z, Caffrey CR, O'Donoghue AJ. Targeting proteasomes in infectious organisms to combat disease. FEBS J. 2017;284:1503–1517. PubMed
Bibo‐Verdugo B, Wang SC, Almaliti J, Ta AP, Jiang Z, Wong DA, et al. The proteasome as a drug target in the metazoan pathogen, Schistosoma mansoni . ACS Infect Dis. 2019;5:1802–1812. PubMed PMC
Bonet‐Costa V, Sun PY, Davies KJA. Measuring redox effects on the activities of intracellular proteases such as the 20S proteasome and the immuno‐proteasome with fluorogenic peptides. Free Radic Biol Med. 2019;143:16–24. PubMed PMC
Brown DM, Upcroft JA, Dodd HN, Chen N, Upcroft P. Alternative 2‐keto acid oxidoreductase activities in Trichomonas vaginalis . Mol Biochem Parasitol. 1999;98:203–214. PubMed
Buac D, Shen M, Schmitt S, Kona FR, Deshmukh R, Zhang Z, et al. From Bortezomib to other inhibitors of the proteasome and beyond. Curr Pharm des. 2013;19:4025–4038. PubMed PMC
Budenholzer L, Cheng CL, Li Y, Hochstrasser M. Proteasome structure and assembly. J Mol Biol. 2017;429:3500–3524. PubMed PMC
Cates W. Estimates of the incidence and prevalence of sexually transmitted diseases in the United States. American Social Health Association Panel. Sex Transm Dis. 1999;26:S2–S7. PubMed
Colaert N, Helsens K, Martens L, Vandekerckhove J, Gevaert K. Improved visualization of protein consensus sequences by iceLogo. Nat Methods. 2009;6:786–787. PubMed
Collins GA, Goldberg AL. The logic of the 26S proteasome. Cell. 2017;169:792–806. PubMed PMC
Collins GA, Gomez TA, Deshaies RJ, Tansey WP. Combined chemical and genetic approach to inhibit proteolysis by the proteasome. Yeast. 2010;27:965–974. PubMed PMC
Cudmore SL, Delgaty KL, Hayward‐McClelland SF, Petrin DP, Garber GE. Treatment of infections caused by metronidazole‐resistant trichomonas vaginalis. Clin Microbiol Rev. 2004;17:783–793. PubMed PMC
Dingsdag SA, Hunter N. Metronidazole: an update on metabolism, structure–cytotoxicity and resistance mechanisms. J Antimicrob Chemother. 2018;73:265–279. PubMed
Ekici OD, Götz MG, James KE, Li ZZ, Rukamp BJ, Asgian JL, et al. Aza‐peptide Michael acceptors: a new class of inhibitors specific for caspases and other clan CD cysteine proteases. J Med Chem. 2004;47:1889–1892. PubMed
Geier E, Pfeifer G, Wilm M, Lucchiari‐Hartz M, Baumeister W, Eichmann K, et al. A giant protease with potential to substitute for some functions of the proteasome. Science. 1999;283:978–981. PubMed
Götz MG, James KE, Hansell E, Dvorák J, Seshaadri A, Sojka D, et al. Aza‐peptidyl Michael acceptors. A new class of potent and selective inhibitors of asparaginyl endopeptidases (legumains) from evolutionarily diverse pathogens. J Med Chem. 2008;51:2816–2832. PubMed
Harris JL, Alper PB, Li J, Rechsteiner M, Backes BJ. Substrate specificity of the human proteasome. Chem Biol. 2001;8:1131–1141. PubMed
Hernández Ceruelos A, Romero‐Quezada LC, Ruvalcaba Ledezma JC, López Contreras L. Therapeutic uses of metronidazole and its side effects: an update. Eur Rev Med Pharmacol Sci. 2019;23:397–401. PubMed
Huang C, Feng S, Huo F, Liu H. Effects of four antibiotics on the diversity of the intestinal microbiota. Microbiol Spectrum. 2022;10:e01904‐21. PubMed PMC
Jalovecka M, Hartmann D, Miyamoto Y, Eckmann L, Hajdusek O, O'Donoghue AJ, et al. Validation of Babesia proteasome as a drug target. Int J Parasitol Drugs Drug Resist. 2018;8:394–402. PubMed PMC
Johnson HWB, Lowe E, Anderl JL, Fan A, Muchamuel T, Bowers S, et al. Required immunoproteasome subunit inhibition profile for anti‐inflammatory efficacy and clinical candidate KZR‐616 ((2S,3R)‐N‐((S)‐3‐(Cyclopent‐1‐en‐1‐yl)‐1‐((R)‐2‐methyloxiran‐2‐yl)‐1‐oxopropan‐2‐yl)‐3‐hydroxy‐3‐(4‐methoxyphenyl)‐2‐((S)‐2‐(2‐morpholinoacetamido)propanamido)propenamide). J Med Chem. 2018;61:11127–11143. PubMed
Kisselev AF. Site‐specific proteasome inhibitors. Biomolecules. 2022;12:54. PubMed PMC
Kisselev AF, Callard A, Goldberg AL. Importance of the different proteolytic sites of the proteasome and the efficacy of inhibitors varies with the protein substrate. J Biol Chem. 2006;281:8582–8590. PubMed
Kissinger P. Trichomonas vaginalis: a review of epidemiologic, clinical and treatment issues. BMC Infect Dis. 2015;15:307. PubMed PMC
Koester DC, Marx VM, Williams S, Jiricek J, Dauphinais M, René O, et al. Discovery of novel quinoline‐based proteasome inhibitors for human African trypanosomiasis (HAT). J Med Chem. 2022;65:11776–11787. PubMed PMC
Krishnan KM, Williamson KC. The proteasome as a target to combat malaria: hits and misses. Transl Res. 2018;198:40–47. PubMed PMC
LaMonte GM, Almaliti J, Bibo‐Verdugo B, Keller L, Zou BY, Yang J, et al. Development of a potent inhibitor of the Plasmodium proteasome with reduced mammalian toxicity. J Med Chem. 2017;60:6721–6732. PubMed PMC
Lapek JD, Jiang Z, Wozniak JM, Arutyunova E, Wang SC, Lemieux MJ, et al. Quantitative multiplex substrate profiling of peptidases by mass spectrometry. Mol Cell Proteomics. 2019;18:968–981. PubMed PMC
León‐Félix J, Ortega‐López J, Orozco‐Solís R, Arroyo R. Two novel asparaginyl endopeptidase‐like cysteine proteinases from the protist Trichomonas vaginalis: their evolutionary relationship within the clan CD cysteine proteinases. Gene. 2004;335:25–35. PubMed
Li H, O’Donoghue A, van der Linden W, et al. Structure‐ and function‐based design of Plasmodium‐selective proteasome inhibitors. Nature. 2016;530(7589):233–236. 10.1038/nature16936 PubMed DOI PMC
Li H, Tsu C, Blackburn C, Li G, Hales P, Dick L, et al. Identification of potent and selective non‐covalent inhibitors of the Plasmodium falciparum proteasome. J Am Chem Soc. 2014;136:13562–13565. PubMed PMC
Liggett A, Crawford LJ, Walker B, Morris TCM, Irvine AE. Methods for measuring proteasome activity: current limitations and future developments. Leuk Res. 2010;34:1403–1409. PubMed
Manasanch EE, Orlowski RZ. Proteasome inhibitors in cancer therapy. Nat Rev Clin Oncol. 2017;14:417–433. PubMed PMC
Menezes CB, Frasson AP, Tasca T. Trichomoniasis—Are we giving the deserved attention to the most common non‐viral sexually transmitted disease worldwide? Microb Cell. 2016;3:404–419. PubMed PMC
Muchamuel T, Fan RA, Anderl JL, Bomba DJ, Johnson HWB, Lowe E, et al. Zetomipzomib (KZR‐616) attenuates lupus in mice via modulation of innate and adaptive immune responses. Front Immunol. 2023;14:1043680. PubMed PMC
Nagle A, Biggart A, Be C, Srinivas H, Hein A, Caridha D, et al. Discovery and characterization of clinical candidate LXE408 as a kinetoplastid‐selective proteasome inhibitor for the treatment of leishmaniases. J Med Chem. 2020a;63:10773–10781. PubMed PMC
Nagle A, Biggart A, Be C, Srinivas H, Hein A, Caridha D, et al. Discovery and characterization of clinical candidate LXE408 as a Kinetoplastid‐selective proteasome inhibitor for the treatment of leishmaniases. J Med Chem. 2020b;63(19):10773–10781. PubMed PMC
Narcisi EM, Secor WE. In vitro effect of tinidazole and furazolidone on metronidazole‐resistant trichomonas vaginalis. Antimicrob Agents Chemother. 1996;40:1121–1125. PubMed PMC
O'Donoghue AJ, Bibo‐Verdugo B, Miyamoto Y, Wang SC, Yang JZ, Zuill DE, et al. 20S proteasome as a drug target in trichomonas vaginalis. Antimicrob Agents Chemother. 2019;63:e00448‐19. PubMed PMC
Ott C, Tomasina F, Campolo N, Bartesaghi S, Mastrogiovanni M, Leyva A, et al. Decreased proteasomal cleavage at nitrotyrosine sites in proteins and peptides. Redox Biol. 2021;46:102106. PubMed PMC
Petrin D, Delgaty K, Bhatt R, Garber G. Clinical and microbiological aspects of trichomonas vaginalis. Clin Microbiol Rev. 1998;11:300–317. PubMed PMC
Pilla R, Gaschen FP, Barr JW, Olson E, Honneffer J, Guard BC, et al. Effects of metronidazole on the fecal microbiome and metabolome in healthy dogs. J Vet Intern Med. 2020;34:1853–1866. PubMed PMC
Piro E, Kropp M, Cantaffa R, Lamberti AG, Carillio G, Molica S. Visceral leishmaniasis infection in a refractory multiple myeloma patient treated with bortezomib. Ann Hematol. 2012;91:1827–1828. PubMed
Rendón‐Gandarilla FJ, de Ramón‐Luing AL, Ortega‐López J, Rosa de Andrade I, Benchimol M, Arroyo R. The TvLEGU‐1, a legumain‐like cysteine proteinase, plays a key role in Trichomonas vaginalis cytoadherence. Biomed Res Int. 2013;2013:1–18. PubMed PMC
Reynolds JM, El Bissati K, Brandenburg J, Günzl A, Mamoun CB. Antimalarial activity of the anticancer and proteasome inhibitor bortezomib and its analog ZL3B. BMC Clin Pharmacol. 2007;7:13. PubMed PMC
Rohweder PJ, Jiang Z, Hurysz BM, O'Donoghue AJ, Craik CS. Multiplex substrate profiling by mass spectrometry for proteases. Methods in enzymology. Volume 682. Amsterdem: Academic Press; 2022. p. 375–411. 10.1016/bs.mie.2022.09.009 PubMed DOI PMC
Rowley J, Vander Hoorn S, Korenromp E, Low N, Unemo M, Abu‐Raddad LJ, et al. Chlamydia, gonorrhoea, trichomoniasis and syphilis: global prevalence and incidence estimates, 2016. Bull World Health Organ. 2019;97:548–562. PubMed PMC
Røyseth V, Hurysz BM, Kaczorowska A‐K, Dorawa S, Fedøy A‐E, Arsın H, et al. Activation mechanism and activity of globupain, a thermostable C11 protease from the Arctic Mid‐Ocean ridge hydrothermal system. Front Microbiol. 2023;14:1199085. PubMed PMC
Rut W, Poręba M, Kasperkiewicz P, Snipas SJ, Drąg M. Selective substrates and activity‐based probes for imaging of the human constitutive 20S proteasome in cells and blood samples. J Med Chem. 2018;61(12):5222–5234. 10.1021/acs.jmedchem.8b00026 PubMed DOI
Saha A, Oanca G, Mondal D, Warshel A. Exploring the proteolysis mechanism of the proteasomes. J Phys Chem B. 2020;124:5626–5635. PubMed PMC
Schneider CA, Rasband WS, Eliceiri KW. NIH image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–675. PubMed PMC
Schwebke JR, Barrientes FJ. Prevalence of trichomonas vaginalis isolates with resistance to metronidazole and tinidazole. Antimicrob Agents Chemother. 2006;50:4209–4210. PubMed PMC
Schwebke JR, Burgess D. Trichomoniasis. Clin Microbiol Rev. 2004;17:794–803. PubMed PMC
Tanaka K. The proteasome: overview of structure and functions. Proc Jpn Acad Ser B Phys Biol Sci. 2009;85:12–36. PubMed PMC
Thibaudeau TA, Smith DM. A practical review of proteasome pharmacology. Pharmacol Rev. 2019;71:170–197. PubMed PMC
Vigneron N, Van den Eynde BJ. Proteasome subtypes and regulators in the processing of antigenic peptides presented by class I molecules of the major histocompatibility complex. Biomolecules. 2014;4(4):994–1025. PubMed PMC
Winter MB, La Greca F, Arastu‐Kapur S, Caiazza F, Cimermancic P, Buchholz TJ, et al. Immunoproteasome functions explained by divergence in cleavage specificity and regulation. eLife. 2017;6:e27364. PubMed PMC
Wyllie S, Brand S, Thomas M, De Rycker M, Chung C, Pena I, et al. Preclinical candidate for the treatment of visceral leishmaniasis that acts through proteasome inhibition. Proc Natl Acad Sci. 2019a;116:9318–9323. PubMed PMC
Wyllie S, Brand S, Thomas M, De Rycker M, Chung C, Pena I, et al. Preclinical candidate for the treatment of visceral leishmaniasis that acts through proteasome inhibition. Proc Natl Acad Sci. 2019b;116(19):9318–9323. PubMed PMC
Xie SC, Dick LR, Gould A, Brand S, Tilley L. The proteasome as a target for protozoan parasites. Expert Opin Ther Targets. 2019;23:903–914. PubMed
Xu J, Kelly R, Fang H, Tong W. ArrayTrack: a free FDA bioinformatics tool to support emerging biomedical research—an update. Hum Genomics. 2010;4:428–434. PubMed PMC
Zhang H, Ginn J, Zhan W, Liu YJ, Leung A, Toita A, et al. Design, synthesis, and optimization of macrocyclic peptides as species‐selective Antimalaria proteasome inhibitors. J Med Chem. 2022;65(13):9350–9375. 10.1021/acs.jmedchem.2c00611 PubMed DOI PMC
Zhang H, Lin G. Microbial proteasomes as drug targets. PLoS Pathog. 2021;17:e1010058. PubMed PMC