Structural Insights into Salinosporamide a Mediated Inhibition of the Human 20S Proteasome
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
R01 AI158612
NIAID NIH HHS - United States
R21 AI133393
NIAID NIH HHS - United States
R21 AI146387
NIAID NIH HHS - United States
R21 AI171824
NIAID NIH HHS - United States
PubMed
40142161
PubMed Central
PMC11946101
DOI
10.3390/molecules30061386
PII: molecules30061386
Knihovny.cz E-zdroje
- Klíčová slova
- 20S, MZB, cryo-EM, marizomib, proteasome,
- MeSH
- elektronová kryomikroskopie MeSH
- inhibitory proteasomu * farmakologie chemie MeSH
- laktony * chemie farmakologie MeSH
- lidé MeSH
- molekulární modely MeSH
- proteasomový endopeptidasový komplex * metabolismus chemie MeSH
- pyrroly * chemie farmakologie MeSH
- Trichomonas vaginalis enzymologie účinky léků MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- inhibitory proteasomu * MeSH
- laktony * MeSH
- marizomib MeSH Prohlížeč
- proteasomový endopeptidasový komplex * MeSH
- pyrroly * MeSH
The 20S proteasome, a critical component of the ubiquitin-proteasome system, plays a central role in regulating protein degradation in eukaryotic cells. Marizomib (MZB), also known as salinosporamide A, is a natural γ-lactam-β-lactone compound derived from Salinispora tropica and is a potent 20S proteasome covalent inhibitor with demonstrated anticancer properties. Its broad-spectrum inhibition of all three proteasome subunits and its ability to cross the blood-brain barrier has made it a promising therapeutic candidate for glioblastoma. In addition to this, MZB also demonstrates significant inhibition against the 20S proteasome of Trichomonas vaginalis (Tv20S), a protozoan parasite, suggesting its potential for parasitic treatments. Here, we present the cryo-EM structure of the human 20S proteasome in complex with MZB at 2.55 Å resolution. This structure reveals the binding mode of MZB to all six catalytic subunits within the two β-rings of the 20S proteasome, providing a detailed molecular understanding of its irreversible inhibitory mechanism. These findings enhance the therapeutic potential of MZB for both cancer and parasitic diseases at the molecular level and highlight marine-derived natural products in targeting the proteasome for therapeutic applications.
Zobrazit více v PubMed
Feling R.H., Buchanan G.O., Mincer T.J., Kauffman C.A., Jensen P.R., Fenical W. Salinosporamide A: A highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus Salinospora. Angew. Chem. Int. Ed. 2003;42:355–357. doi: 10.1002/anie.200390115. PubMed DOI
Mincer T.J., Jensen P.R., Kauffman C.A., Fenical W. Widespread and Persistent Populations of a Major New Marine Actinomycete Taxon in Ocean Sediments. Appl. Environ. Microbiol. 2002;68:5005–5011. doi: 10.1128/aem.68.10.5005-5011.2002. PubMed DOI PMC
Roth P., Gorlia T., Reijneveld J.C., de Vos F., Idbaih A., Frenel J.-S., Le Rhun E., Sepulveda J.M., Perry J., Masucci G.L., et al. Marizomib for patients with newly diagnosed glioblastoma: A randomized phase 3 trial. Neuro-Oncology. 2024;26:1670–1682. doi: 10.1093/neuonc/noae053. PubMed DOI PMC
Di K., Lloyd G.K., Abraham V., MacLaren A., Burrows F.J., Desjardins A., Trikha M., Bota D.A. Marizomib activity as a single agent in malignant gliomas: Ability to cross the blood-brain barrier. Neuro-Oncology. 2015;18:840–848. doi: 10.1093/neuonc/nov299. PubMed DOI PMC
Manton C.A., Johnson B., Singh M., Bailey C.P., Bouchier-Hayes L., Chandra J. Induction of cell death by the novel proteasome inhibitor marizomib in glioblastoma in vitro and in vivo. Sci. Rep. 2016;6:18953. doi: 10.1038/srep18953. PubMed DOI PMC
Manasanch E.E., Korde N., Zingone A., Tageja N., de Larrea C.F., Bhutani M., Wu P., Roschewski M., Landgren O. The proteasome: Mechanisms of biology and markers of activity and response to treatment in multiple myeloma. Leuk. Lymphoma. 2014;55:1707–1714. doi: 10.3109/10428194.2013.828351. PubMed DOI
Eisenberg-Lerner A., Benyair R., Hizkiahou N., Nudel N., Maor R., Kramer M.P., Shmueli M.D., Zigdon I., Lev M.C., Ulman A., et al. Golgi organization is regulated by proteasomal degradation. Nat. Commun. 2020;11:409. doi: 10.1038/s41467-019-14038-9. PubMed DOI PMC
Tanaka K. The proteasome: Overview of structure and functions. Proc. Jpn. Acad Ser. B Phys. Biol. Sci. 2009;85:12–36. doi: 10.2183/pjab.85.12. PubMed DOI PMC
Coux O., Tanaka K., Goldberg A.L. STRUCTURE AND FUNCTIONS OF THE 20S AND 26S PROTEASOMES. Annu. Rev. Biochem. 1996;65:801–847. doi: 10.1146/annurev.bi.65.070196.004101. PubMed DOI
Lupas A., Zwickl P., Wenzel T., Seemuller E., Baumeister W. Structure and Function of the 20S Proteasome and of Its Regulatory Complexes. Cold Spring Harb. Symp. Quant. Biol. 1995;60:515–524. doi: 10.1101/sqb.1995.060.01.055. PubMed DOI
Löwe J., Stock D., Jap B., Zwickl P., Baumeister W., Huber R. Crystal Structure of the 20S Proteasome from the Archaeon T. acidophilum at 3.4 Å Resolution. Science. 1995;268:533–539. doi: 10.1126/science.7725097. PubMed DOI
Orlowski M., Cardozo C., Michaud C. Evidence for the presence of five distinct proteolytic components in the pituitary multicatalytic proteinase complex. Properties of two components cleaving bonds on the carboxyl side of branched chain and small neutral amino acids. Biochemistry. 1993;32:1563–1572. doi: 10.1021/bi00057a022. PubMed DOI
Mishra R., Upadhyay A., Prajapati V.K., Mishra A. Proteasome-mediated proteostasis: Novel medicinal and pharmacological strategies for diseases. Med. Res. Rev. 2018;38:1916–1973. doi: 10.1002/med.21502. PubMed DOI
Schmidt M., Finley D. Regulation of proteasome activity in health and disease. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2014;1843:13–25. doi: 10.1016/j.bbamcr.2013.08.012. PubMed DOI PMC
Fenteany G., Standaert R.F., Lane W.S., Choi S., Corey E.J., Schreiber S.L. Inhibition of Proteasome Activities and Subunit-Specific Amino-Terminal Threonine Modification by Lactacystin. Science. 1995;268:726–731. doi: 10.1126/science.7732382. PubMed DOI
Groll M., Potts B.C. Proteasome Structure, Function, and Lessons Learned from Beta-Lactone Inhibitors. Curr. Top. Med. Chem. 2011;11:2850–2878. doi: 10.2174/156802611798281320. PubMed DOI
Macherla V.R., Mitchell S.S., Manam R.R., Reed K.A., Chao T.-H., Nicholson B., Deyanat-Yazdi G., Mai B., Jensen P.R., Fenical W.F., et al. Structure–Activity Relationship Studies of Salinosporamide A (NPI-0052), a Novel Marine Derived Proteasome Inhibitor. J. Med. Chem. 2005;48:3684–3687. doi: 10.1021/jm048995+. PubMed DOI
Groll M., Huber R., Potts B.C.M. Crystal Structures of Salinosporamide A (NPI-0052) and B (NPI-0047) in Complex with the 20S Proteasome Reveal Important Consequences of β-Lactone Ring Opening and a Mechanism for Irreversible Binding. J. Am. Chem. Soc. 2006;128:5136–5141. doi: 10.1021/ja058320b. PubMed DOI
Silhan J., Silhan J., Fajtova P., Fajtova P., Bartosova J., Bartosova J., Hurysz B.M., Hurysz B.M., Almaliti J., Almaliti J., et al. Structural elucidation of recombinant Trichomonas vaginalis 20S proteasome bound to covalent inhibitors. Nat. Commun. 2024;15:8621. doi: 10.1038/s41467-024-53022-w. PubMed DOI PMC
Prudhomme J., McDaniel E., Ponts N., Bertani S., Fenical W., Jensen P., Le Roch K. Marine Actinomycetes: A New Source of Compounds against the Human Malaria Parasite. PLoS ONE. 2008;3:e2335. doi: 10.1371/journal.pone.0002335. PubMed DOI PMC
Afonine P.V., Klaholz B.P., Moriarty N.W., Poon B.K., Sobolev O.V., Terwilliger T.C., Adams P.D., Urzhumtsev A. New tools for the analysis and validation of cryo-EM maps and atomic models. Acta Crystallogr. Sect. D Struct. Biol. 2018;74:814–840. doi: 10.1107/s2059798318009324. PubMed DOI PMC
He J., Li T., Huang S.-Y. Improvement of cryo-EM maps by simultaneous local and non-local deep learning. Nat. Commun. 2023;14:3217. doi: 10.1038/s41467-023-39031-1. PubMed DOI PMC
Borissenko L., Groll M. 20S Proteasome and Its Inhibitors: Crystallographic Knowledge for Drug Development. Chem. Rev. 2007;107:687–717. doi: 10.1021/cr0502504. PubMed DOI
Fajtova P., Hurysz B.M., Miyamoto Y., Serafim M.S.M., Jiang Z., Vazquez J.M., Trujillo D.F., Liu L.J., Somani U., Almaliti J., et al. Distinct substrate specificities of the three catalytic subunits of the Trichomonas vaginalis proteasome. Protein Sci. 2024;33:e5225. doi: 10.1002/pro.5225. PubMed DOI PMC
Ciechanover A. The ubiquitin-proteasome proteolytic pathway. Cell. 1994;79:13–21. doi: 10.1016/0092-8674(94)90396-4. PubMed DOI
Chauhan D., Catley L., Li G., Podar K., Hideshima T., Velankar M., Mitsiades C., Mitsiades N., Yasui H., Letai A., et al. A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from Bortezomib. Cancer Cell. 2005;8:407–419. doi: 10.1016/j.ccr.2005.10.013. PubMed DOI
Nunes A.T., Annunziata C.M. Proteasome inhibitors: Structure and function. Semin. Oncol. 2017;44:377–380. doi: 10.1053/j.seminoncol.2018.01.004. PubMed DOI PMC
Park J.E., Miller Z., Jun Y., Lee W., Kim K.B. Next-generation proteasome inhibitors for cancer therapy. Transl. Res. 2018;198:1–16. doi: 10.1016/j.trsl.2018.03.002. PubMed DOI PMC
Kegyes D., Gulei D., Drula R., Cenariu D., Tigu B., Dima D., Tanase A., Badelita S., Buzoianu A.-D., Ciurea S., et al. Proteasome inhibition in combination with immunotherapies: State-of-the-Art in multiple myeloma. Blood Rev. 2023;61:101100. doi: 10.1016/j.blre.2023.101100. PubMed DOI
Raninga P.V., Lee A., Sinha D., Dong L.-F., Datta K.K., Lu X., Croft P.K.-D., Dutt M., Hill M., Pouliot N., et al. Marizomib suppresses triple-negative breast cancer via proteasome and oxidative phosphorylation inhibition. Theranostics. 2020;10:5259–5275. doi: 10.7150/thno.42705. PubMed DOI PMC
Zhang Z., Zhang S., Lin B., Wang Q., Nie X., Shi Y. Combined treatment of marizomib and cisplatin modulates cervical cancer growth and invasion and enhances antitumor potential in vitro and in vivo. Front. Oncol. 2022;12:974573. doi: 10.3389/fonc.2022.974573. PubMed DOI PMC
Kaplan G.S., Torcun C.C., Grune T., Ozer N.K., Karademir B. Proteasome inhibitors in cancer therapy: Treatment regimen and peripheral neuropathy as a side effect. Free Radic. Biol. Med. 2017;103:1–13. doi: 10.1016/j.freeradbiomed.2016.12.007. PubMed DOI
Robbertse L., Fajtová P., Šnebergerová P., Jalovecká M., Levytska V., da Silva E.B., Sharma V., Pachl P., Almaliti J., Al-Hindy M., et al. Evaluating Antimalarial Proteasome Inhibitors for Efficacy in Babesia Blood Stage Cultures. ACS Omega. 2024;9:44989–44999. doi: 10.1021/acsomega.4c04564. PubMed DOI PMC
Eadsforth T.C., Torrie L.S., Rowland P., Edgar E.V., MacLean L.M., Paterson C., Robinson D.A., Shepherd S.M., Thomas J., Thomas M.G., et al. Pharmacological and structural understanding of the Trypanosoma cruzi proteasome provides key insights for developing site-specific inhibitors. J. Biol. Chem. 2024;301:108049. doi: 10.1016/j.jbc.2024.108049. PubMed DOI PMC
Miller C.P., Manton C.A., Hale R., DeBose L., Macherla V.R., Potts B.C., Palladino M.A., Chandra J. Specific and prolonged proteasome inhibition dictates apoptosis induction by marizomib and its analogs. Chem. Interact. 2011;194:58–68. doi: 10.1016/j.cbi.2011.08.005. PubMed DOI PMC
Punjani A., Rubinstein J.L., Fleet D.J., A Brubaker M. cryoSPARC: Algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods. 2017;14:290–296. doi: 10.1038/nmeth.4169. PubMed DOI
Sahu I., Mali S.M., Sulkshane P., Xu C., Rozenberg A., Morag R., Sahoo M.P., Singh S.K., Ding Z., Wang Y., et al. The 20S as a stand-alone proteasome in cells can degrade the ubiquitin tag. Nat. Commun. 2021;12:6173. doi: 10.1038/s41467-021-26427-0. PubMed DOI PMC
Pettersen E.F., Goddard T.D., Huang C.C., Meng E.C., Couch G.S., Croll T.I., Morris J.H., Ferrin T.E. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 2020;30:70–82. doi: 10.1002/pro.3943. PubMed DOI PMC
Afonine P.V., Poon B.K., Read R.J., Sobolev O.V., Terwilliger T.C., Urzhumtsev A., Adams P.D. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. Sect. D Struct. Biol. 2018;74:531–544. doi: 10.1107/s2059798318006551. PubMed DOI PMC
Liebschner D., Afonine P.V., Baker M.L., Bunkóczi G., Chen V.B., Croll T.I., Hintze B., Hung L.-W., Jain S., McCoy A.J., et al. Macromolecular structure determination using X-rays, neutrons and electrons: Recent developments in Phenix. Acta Crystallogr. Sect. D Struct. Biol. 2019;75:861–877. doi: 10.1107/s2059798319011471. PubMed DOI PMC
Emsley P., Lohkamp B., Scott W.G., Cowtan K. Features and development of Coot. Acta Crystallogr. Sect. D Biol. Crystallogr. 2010;66:486–501. doi: 10.1107/S0907444910007493. PubMed DOI PMC
Croll T.I. ISOLDE: A physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr. Sect. D Struct. Biol. 2018;74:519–530. doi: 10.1107/S2059798318002425. PubMed DOI PMC
Lebedev A.A., Young P., Isupov M.N., Moroz O.V., Vagin A.A., Murshudov G.N. JLigand: A graphical tool for the CCP4 template-restraint library. Acta Crystallogr. Sect. D Struct. Biol. 2012;68:431–440. doi: 10.1107/S090744491200251X. PubMed DOI PMC
Williams C.J., Headd J.J., Moriarty N.W., Prisant M.G., Videau L.L., Deis L.N., Verma V., Keedy D.A., Hintze B.J., Chen V.B., et al. MolProbity: More and better reference data for improved all-atom structure validation. Protein Sci. 2018;27:293–315. doi: 10.1002/pro.3330. PubMed DOI PMC
Laskowski R.A., Swindells M.B. LigPlot+: Multiple ligand–protein interaction diagrams for drug discovery. J. Chem. Inf. Model. 2011;51:2778–2786. doi: 10.1021/ci200227u. PubMed DOI