Structural Insights into Salinosporamide a Mediated Inhibition of the Human 20S Proteasome

. 2025 Mar 20 ; 30 (6) : . [epub] 20250320

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40142161

Grantová podpora
R01 AI158612 NIAID NIH HHS - United States
R21 AI133393 NIAID NIH HHS - United States
R21 AI146387 NIAID NIH HHS - United States
R21 AI171824 NIAID NIH HHS - United States

The 20S proteasome, a critical component of the ubiquitin-proteasome system, plays a central role in regulating protein degradation in eukaryotic cells. Marizomib (MZB), also known as salinosporamide A, is a natural γ-lactam-β-lactone compound derived from Salinispora tropica and is a potent 20S proteasome covalent inhibitor with demonstrated anticancer properties. Its broad-spectrum inhibition of all three proteasome subunits and its ability to cross the blood-brain barrier has made it a promising therapeutic candidate for glioblastoma. In addition to this, MZB also demonstrates significant inhibition against the 20S proteasome of Trichomonas vaginalis (Tv20S), a protozoan parasite, suggesting its potential for parasitic treatments. Here, we present the cryo-EM structure of the human 20S proteasome in complex with MZB at 2.55 Å resolution. This structure reveals the binding mode of MZB to all six catalytic subunits within the two β-rings of the 20S proteasome, providing a detailed molecular understanding of its irreversible inhibitory mechanism. These findings enhance the therapeutic potential of MZB for both cancer and parasitic diseases at the molecular level and highlight marine-derived natural products in targeting the proteasome for therapeutic applications.

Před aktualizací

PubMed

Zobrazit více v PubMed

Feling R.H., Buchanan G.O., Mincer T.J., Kauffman C.A., Jensen P.R., Fenical W. Salinosporamide A: A highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus Salinospora. Angew. Chem. Int. Ed. 2003;42:355–357. doi: 10.1002/anie.200390115. PubMed DOI

Mincer T.J., Jensen P.R., Kauffman C.A., Fenical W. Widespread and Persistent Populations of a Major New Marine Actinomycete Taxon in Ocean Sediments. Appl. Environ. Microbiol. 2002;68:5005–5011. doi: 10.1128/aem.68.10.5005-5011.2002. PubMed DOI PMC

Roth P., Gorlia T., Reijneveld J.C., de Vos F., Idbaih A., Frenel J.-S., Le Rhun E., Sepulveda J.M., Perry J., Masucci G.L., et al. Marizomib for patients with newly diagnosed glioblastoma: A randomized phase 3 trial. Neuro-Oncology. 2024;26:1670–1682. doi: 10.1093/neuonc/noae053. PubMed DOI PMC

Di K., Lloyd G.K., Abraham V., MacLaren A., Burrows F.J., Desjardins A., Trikha M., Bota D.A. Marizomib activity as a single agent in malignant gliomas: Ability to cross the blood-brain barrier. Neuro-Oncology. 2015;18:840–848. doi: 10.1093/neuonc/nov299. PubMed DOI PMC

Manton C.A., Johnson B., Singh M., Bailey C.P., Bouchier-Hayes L., Chandra J. Induction of cell death by the novel proteasome inhibitor marizomib in glioblastoma in vitro and in vivo. Sci. Rep. 2016;6:18953. doi: 10.1038/srep18953. PubMed DOI PMC

Manasanch E.E., Korde N., Zingone A., Tageja N., de Larrea C.F., Bhutani M., Wu P., Roschewski M., Landgren O. The proteasome: Mechanisms of biology and markers of activity and response to treatment in multiple myeloma. Leuk. Lymphoma. 2014;55:1707–1714. doi: 10.3109/10428194.2013.828351. PubMed DOI

Eisenberg-Lerner A., Benyair R., Hizkiahou N., Nudel N., Maor R., Kramer M.P., Shmueli M.D., Zigdon I., Lev M.C., Ulman A., et al. Golgi organization is regulated by proteasomal degradation. Nat. Commun. 2020;11:409. doi: 10.1038/s41467-019-14038-9. PubMed DOI PMC

Tanaka K. The proteasome: Overview of structure and functions. Proc. Jpn. Acad Ser. B Phys. Biol. Sci. 2009;85:12–36. doi: 10.2183/pjab.85.12. PubMed DOI PMC

Coux O., Tanaka K., Goldberg A.L. STRUCTURE AND FUNCTIONS OF THE 20S AND 26S PROTEASOMES. Annu. Rev. Biochem. 1996;65:801–847. doi: 10.1146/annurev.bi.65.070196.004101. PubMed DOI

Lupas A., Zwickl P., Wenzel T., Seemuller E., Baumeister W. Structure and Function of the 20S Proteasome and of Its Regulatory Complexes. Cold Spring Harb. Symp. Quant. Biol. 1995;60:515–524. doi: 10.1101/sqb.1995.060.01.055. PubMed DOI

Löwe J., Stock D., Jap B., Zwickl P., Baumeister W., Huber R. Crystal Structure of the 20S Proteasome from the Archaeon T. acidophilum at 3.4 Å Resolution. Science. 1995;268:533–539. doi: 10.1126/science.7725097. PubMed DOI

Orlowski M., Cardozo C., Michaud C. Evidence for the presence of five distinct proteolytic components in the pituitary multicatalytic proteinase complex. Properties of two components cleaving bonds on the carboxyl side of branched chain and small neutral amino acids. Biochemistry. 1993;32:1563–1572. doi: 10.1021/bi00057a022. PubMed DOI

Mishra R., Upadhyay A., Prajapati V.K., Mishra A. Proteasome-mediated proteostasis: Novel medicinal and pharmacological strategies for diseases. Med. Res. Rev. 2018;38:1916–1973. doi: 10.1002/med.21502. PubMed DOI

Schmidt M., Finley D. Regulation of proteasome activity in health and disease. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2014;1843:13–25. doi: 10.1016/j.bbamcr.2013.08.012. PubMed DOI PMC

Fenteany G., Standaert R.F., Lane W.S., Choi S., Corey E.J., Schreiber S.L. Inhibition of Proteasome Activities and Subunit-Specific Amino-Terminal Threonine Modification by Lactacystin. Science. 1995;268:726–731. doi: 10.1126/science.7732382. PubMed DOI

Groll M., Potts B.C. Proteasome Structure, Function, and Lessons Learned from Beta-Lactone Inhibitors. Curr. Top. Med. Chem. 2011;11:2850–2878. doi: 10.2174/156802611798281320. PubMed DOI

Macherla V.R., Mitchell S.S., Manam R.R., Reed K.A., Chao T.-H., Nicholson B., Deyanat-Yazdi G., Mai B., Jensen P.R., Fenical W.F., et al. Structure–Activity Relationship Studies of Salinosporamide A (NPI-0052), a Novel Marine Derived Proteasome Inhibitor. J. Med. Chem. 2005;48:3684–3687. doi: 10.1021/jm048995+. PubMed DOI

Groll M., Huber R., Potts B.C.M. Crystal Structures of Salinosporamide A (NPI-0052) and B (NPI-0047) in Complex with the 20S Proteasome Reveal Important Consequences of β-Lactone Ring Opening and a Mechanism for Irreversible Binding. J. Am. Chem. Soc. 2006;128:5136–5141. doi: 10.1021/ja058320b. PubMed DOI

Silhan J., Silhan J., Fajtova P., Fajtova P., Bartosova J., Bartosova J., Hurysz B.M., Hurysz B.M., Almaliti J., Almaliti J., et al. Structural elucidation of recombinant Trichomonas vaginalis 20S proteasome bound to covalent inhibitors. Nat. Commun. 2024;15:8621. doi: 10.1038/s41467-024-53022-w. PubMed DOI PMC

Prudhomme J., McDaniel E., Ponts N., Bertani S., Fenical W., Jensen P., Le Roch K. Marine Actinomycetes: A New Source of Compounds against the Human Malaria Parasite. PLoS ONE. 2008;3:e2335. doi: 10.1371/journal.pone.0002335. PubMed DOI PMC

Afonine P.V., Klaholz B.P., Moriarty N.W., Poon B.K., Sobolev O.V., Terwilliger T.C., Adams P.D., Urzhumtsev A. New tools for the analysis and validation of cryo-EM maps and atomic models. Acta Crystallogr. Sect. D Struct. Biol. 2018;74:814–840. doi: 10.1107/s2059798318009324. PubMed DOI PMC

He J., Li T., Huang S.-Y. Improvement of cryo-EM maps by simultaneous local and non-local deep learning. Nat. Commun. 2023;14:3217. doi: 10.1038/s41467-023-39031-1. PubMed DOI PMC

Borissenko L., Groll M. 20S Proteasome and Its Inhibitors: Crystallographic Knowledge for Drug Development. Chem. Rev. 2007;107:687–717. doi: 10.1021/cr0502504. PubMed DOI

Fajtova P., Hurysz B.M., Miyamoto Y., Serafim M.S.M., Jiang Z., Vazquez J.M., Trujillo D.F., Liu L.J., Somani U., Almaliti J., et al. Distinct substrate specificities of the three catalytic subunits of the Trichomonas vaginalis proteasome. Protein Sci. 2024;33:e5225. doi: 10.1002/pro.5225. PubMed DOI PMC

Ciechanover A. The ubiquitin-proteasome proteolytic pathway. Cell. 1994;79:13–21. doi: 10.1016/0092-8674(94)90396-4. PubMed DOI

Chauhan D., Catley L., Li G., Podar K., Hideshima T., Velankar M., Mitsiades C., Mitsiades N., Yasui H., Letai A., et al. A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from Bortezomib. Cancer Cell. 2005;8:407–419. doi: 10.1016/j.ccr.2005.10.013. PubMed DOI

Nunes A.T., Annunziata C.M. Proteasome inhibitors: Structure and function. Semin. Oncol. 2017;44:377–380. doi: 10.1053/j.seminoncol.2018.01.004. PubMed DOI PMC

Park J.E., Miller Z., Jun Y., Lee W., Kim K.B. Next-generation proteasome inhibitors for cancer therapy. Transl. Res. 2018;198:1–16. doi: 10.1016/j.trsl.2018.03.002. PubMed DOI PMC

Kegyes D., Gulei D., Drula R., Cenariu D., Tigu B., Dima D., Tanase A., Badelita S., Buzoianu A.-D., Ciurea S., et al. Proteasome inhibition in combination with immunotherapies: State-of-the-Art in multiple myeloma. Blood Rev. 2023;61:101100. doi: 10.1016/j.blre.2023.101100. PubMed DOI

Raninga P.V., Lee A., Sinha D., Dong L.-F., Datta K.K., Lu X., Croft P.K.-D., Dutt M., Hill M., Pouliot N., et al. Marizomib suppresses triple-negative breast cancer via proteasome and oxidative phosphorylation inhibition. Theranostics. 2020;10:5259–5275. doi: 10.7150/thno.42705. PubMed DOI PMC

Zhang Z., Zhang S., Lin B., Wang Q., Nie X., Shi Y. Combined treatment of marizomib and cisplatin modulates cervical cancer growth and invasion and enhances antitumor potential in vitro and in vivo. Front. Oncol. 2022;12:974573. doi: 10.3389/fonc.2022.974573. PubMed DOI PMC

Kaplan G.S., Torcun C.C., Grune T., Ozer N.K., Karademir B. Proteasome inhibitors in cancer therapy: Treatment regimen and peripheral neuropathy as a side effect. Free Radic. Biol. Med. 2017;103:1–13. doi: 10.1016/j.freeradbiomed.2016.12.007. PubMed DOI

Robbertse L., Fajtová P., Šnebergerová P., Jalovecká M., Levytska V., da Silva E.B., Sharma V., Pachl P., Almaliti J., Al-Hindy M., et al. Evaluating Antimalarial Proteasome Inhibitors for Efficacy in Babesia Blood Stage Cultures. ACS Omega. 2024;9:44989–44999. doi: 10.1021/acsomega.4c04564. PubMed DOI PMC

Eadsforth T.C., Torrie L.S., Rowland P., Edgar E.V., MacLean L.M., Paterson C., Robinson D.A., Shepherd S.M., Thomas J., Thomas M.G., et al. Pharmacological and structural understanding of the Trypanosoma cruzi proteasome provides key insights for developing site-specific inhibitors. J. Biol. Chem. 2024;301:108049. doi: 10.1016/j.jbc.2024.108049. PubMed DOI PMC

Miller C.P., Manton C.A., Hale R., DeBose L., Macherla V.R., Potts B.C., Palladino M.A., Chandra J. Specific and prolonged proteasome inhibition dictates apoptosis induction by marizomib and its analogs. Chem. Interact. 2011;194:58–68. doi: 10.1016/j.cbi.2011.08.005. PubMed DOI PMC

Punjani A., Rubinstein J.L., Fleet D.J., A Brubaker M. cryoSPARC: Algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods. 2017;14:290–296. doi: 10.1038/nmeth.4169. PubMed DOI

Sahu I., Mali S.M., Sulkshane P., Xu C., Rozenberg A., Morag R., Sahoo M.P., Singh S.K., Ding Z., Wang Y., et al. The 20S as a stand-alone proteasome in cells can degrade the ubiquitin tag. Nat. Commun. 2021;12:6173. doi: 10.1038/s41467-021-26427-0. PubMed DOI PMC

Pettersen E.F., Goddard T.D., Huang C.C., Meng E.C., Couch G.S., Croll T.I., Morris J.H., Ferrin T.E. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 2020;30:70–82. doi: 10.1002/pro.3943. PubMed DOI PMC

Afonine P.V., Poon B.K., Read R.J., Sobolev O.V., Terwilliger T.C., Urzhumtsev A., Adams P.D. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. Sect. D Struct. Biol. 2018;74:531–544. doi: 10.1107/s2059798318006551. PubMed DOI PMC

Liebschner D., Afonine P.V., Baker M.L., Bunkóczi G., Chen V.B., Croll T.I., Hintze B., Hung L.-W., Jain S., McCoy A.J., et al. Macromolecular structure determination using X-rays, neutrons and electrons: Recent developments in Phenix. Acta Crystallogr. Sect. D Struct. Biol. 2019;75:861–877. doi: 10.1107/s2059798319011471. PubMed DOI PMC

Emsley P., Lohkamp B., Scott W.G., Cowtan K. Features and development of Coot. Acta Crystallogr. Sect. D Biol. Crystallogr. 2010;66:486–501. doi: 10.1107/S0907444910007493. PubMed DOI PMC

Croll T.I. ISOLDE: A physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr. Sect. D Struct. Biol. 2018;74:519–530. doi: 10.1107/S2059798318002425. PubMed DOI PMC

Lebedev A.A., Young P., Isupov M.N., Moroz O.V., Vagin A.A., Murshudov G.N. JLigand: A graphical tool for the CCP4 template-restraint library. Acta Crystallogr. Sect. D Struct. Biol. 2012;68:431–440. doi: 10.1107/S090744491200251X. PubMed DOI PMC

Williams C.J., Headd J.J., Moriarty N.W., Prisant M.G., Videau L.L., Deis L.N., Verma V., Keedy D.A., Hintze B.J., Chen V.B., et al. MolProbity: More and better reference data for improved all-atom structure validation. Protein Sci. 2018;27:293–315. doi: 10.1002/pro.3330. PubMed DOI PMC

Laskowski R.A., Swindells M.B. LigPlot+: Multiple ligand–protein interaction diagrams for drug discovery. J. Chem. Inf. Model. 2011;51:2778–2786. doi: 10.1021/ci200227u. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...